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Abstract
Identifying community structure in networks is an issue of particular interest in network sci-

ence. The modularity introduced by Newman and Girvan is the most popular quality function

for community detection in networks. In this study, we identify a problem in the concept of

modularity and suggest a solution to overcome this problem. Specifically, we obtain a new

quality function for community detection. We refer to the function as Z-modularity because it

measures the Z-score of a given partition with respect to the fraction of the number of edges

within communities. Our theoretical analysis shows that Z-modularity mitigates the resolu-

tion limit of the original modularity in certain cases. Computational experiments using both

artificial networks and well-known real-world networks demonstrate the validity and reliabil-

ity of the proposed quality function.

Introduction
Many complex systems can be represented as networks. Analyzing the structure and dynamics
of these networks provides meaningful information about the underlying systems. In fact, com-
plex networks have attracted significant attention from diverse fields such as physics, chemis-
try, biology, and sociology [1, 2].

An issue of particular interest in network science is the identification of community struc-
ture [3]. Roughly speaking, a community (also referred to as amodule) is a subset of vertices
more densely connected with each other than with nodes in the rest of the network. Note that
no absolute definition of a community exists because any such definition typically depends on
the specific system at hand. Detecting communities is a powerful way to discover components
that have some special roles or possess important functions. For example, consider the network
representing the World Wide Web, where vertices correspond to web pages and edges repre-
sent the hyperlinks between pages. Communities in this network are likely to be the sets of web
pages dealing with the same or similar topics.

There are various methods to detect community structure in networks, which can be
roughly divided into two types. First, there are methods based on some conditions that should
be satisfied by a community. The most fundamental concept is a clique. A clique is a subset of
vertices wherein every pair of vertices is connected by an edge. As even a singleton or an edge is
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a clique, we are usually interested in finding amaximum clique or amaximal clique, i.e., cliques
with maximum size and cliques not contained in any other clique, respectively. Although the
definition of a clique is very intuitive, it is too strong and restrictive to use practically. In 2004,
Radicchi et al. [4] introduced more practical definitions: a community in a strong sense and a
community in a weak sense. A subset S of vertices is called a community in a strong sense if for
every vertex in S, the number of neighbors in S is strictly greater than the number of neighbors
outside S. On the other hand, a subset S of vertices is called a community in a weak sense if the
sum, over all vertices in S, of the number of neighbors in S is strictly greater than the number of
cut edges of S. Thus, if a subset of vertices is a community in a strong sense, then it is also a
community in a weak sense. Recently, Cafieri et al. [5] proposed an enumerative algorithm to
list all partitions of the set of vertices into communities in a strong sense with moderate sizes.

Second, but perhaps more importantly, there are methods that maximize a globally defined
quality function. The best known and most commonly used quality function ismodularity,
which was introduced by Newman and Girvan [6]. Here let G = (V,E) be an undirected net-
work consisting of n = |V| vertices andm = |E| edges. The modularity, a quality function for

partition C ¼ fC1; . . . ;Ckg of V (i.e.,
Sk

i¼1 Ci ¼ V and Ci \ Cj = ; for i 6¼ j), can be written as

QðCÞ ¼
X
C2C

mC

m
� DC

2m

� �2
 !

;

wheremC is the number of edges in community C, and DC is the sum of the degrees of the verti-
ces in community C. The modularity represents the sum, over all communities, of the fraction
of the number of edges in the communities minus the expected fraction of such edges assuming
that they are placed at random with the same distribution of vertex degree.

Many studies have examined modularity maximization. In 2008, Brandes et al. [7] proved
that modularity maximization is NP-hard. This implies that unless P = NP, no modularity
maximization method that simultaneously satisfies the following exists: (i) finds a partition
that maximizes modularity exactly (ii) in time polynomial in n andm (iii) for any network. To
date, a major focus in modularity maximization has been designing accurate and scalable heu-
ristics. In fact, there are a wide variety of algorithms based on greedy techniques [6, 8, 9], simu-
lated annealing [10–12], extremal optimization [13], spectral optimization [14, 15],
mathematical programming [16–19], and other techniques. Note that to reduce computation
time, a few pre-processing techniques have been proposed [20]. Moreover, to improve the
quality of partitions obtained by such heuristics, some post-processing algorithms have also
been developed [21].

Although modularity maximization is the most popular and widely used method in practice,
it is also known to have some serious drawbacks; i.e., the resolution limit [22] and degeneracies
[23]. The former means that modularity maximization fails to detect communities smaller
than a certain scale depending on the total number of edges in a network even if the communi-
ties are cliques connected by single edges. The latter means that there exist numerous nearly
optimal partitions in terms of modularity maximization, which makes finding communities
with maximum modularity extremely difficult. The resolution limit particularly narrows the
application range of modularity maximization because most real-world networks consist of
communities with very different sizes. To avoid this issue, some multiresolution variants of the
modularity have been adopted in practical applications [24–26]. In these variants, the resolu-
tion level can be tuned freely by adjusting certain parameters. However, once the resolution
level is determined, communities larger than the determined resolution level tend to be divided
and smaller communities tend to be merged. Therefore, such multiresolution variants also fail
to detect real community structure [27].
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In this study, we identify a problem in the concept of modularity and suggest a solution to
overcome this problem. Specifically, we obtain a new quality function for community detec-
tion. We refer to this function as Z-modularity because it measures the Z-score of a given parti-
tion with respect to the fraction of the number of edges within communities. Our theoretical
analysis shows that Z-modularity mitigates the resolution limit of the original modularity in
certain cases. In fact, Z-modularity never merges adjacent cliques in the well-known ring of cli-
ques network with any number and size of cliques. Computational experiments using both arti-
ficial networks and well-known real-world networks demonstrate the validity and reliability of
the proposed quality function.

Note that there are many other quality functions based on modularity or other concepts
[28–33]. Most of them are collected in reference [3].

Methods

Definition of Z-modularity
Modularity simply computes the fraction of the number of edges within communities minus
its expected value. The definition is quite intuitive; thus, it is the most popular and widely used
quality function in practice.

However, we identify a problem with the concept of modularity. Here consider two parti-
tions C1 and C2. Assume that the fraction of the number of edges within communities of C1 and
C2 are 0.2 and 0.6, respectively. In addition, assume that their expected values are 0.1 and 0.5,
respectively. Then, we see that these two partitions share the same modularity value (i.e.,
QðC1Þ ¼ QðC2Þ ¼ 0:1). The key question is as follows: should these two partitions receive the
same quality value? Our answer is that it must depend on the variance of the probability distri-
bution of the fraction of the number of edges within communities of C1 and C2. Fig 1 illustrates
an example. In this case, we wish to assign a higher quality value to C1 because it is statistically
much rarer than C2. This simple but critical observation forms the basis of our quality function.

Given an undirected network G = (V,E) consisting of n = |V| vertices andm = |E| edges, and
a partition C of V, we aim to quantify the statistical rarity of partition C in terms of the fraction

Fig 1. Probability distributions.

doi:10.1371/journal.pone.0147805.g001
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of the number of edges within communities. To this end, we consider the following edge gener-
ation process over V. Place N edges over V at random with the same distribution of vertex
degree. Then, when we place an edge, the probability that the edge is placed within communi-
ties is given by

p ¼
X
C2C

DC

2m

� �2

:

Note that this edge generation process is the same as the null-model (also known as the config-
uration model [34]) used in the definition of modularity, with the exception of the sample size.
We simply wish to estimate the probability distribution of the fraction of the number of edges
within communities. Thus, unlike the null-model, the sample size N is not necessarily equal to
the number of edgesm.

Let X be a random variable denoting the number of edges generated by the process within
communities. Then, X follows the binomial distribution B(N,p). By the central limit theorem,
when the sample size N is sufficiently large, the distribution of X/N can be approximated by the
normal distributionN ðp; pð1� pÞ=NÞ. Thus, we can quantify the statistical rarity of partition C
in terms of the fraction of the number of edges within communities using the Z-score as follows:

ZðCÞ ¼
P

C2C
mC
m
�PC2C

DC
2m

� �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
C2C

DC
2m

� �2
1�PC2C

DC
2m

� �2� �r :

The sample size N never depends on a given partition; thus, it is omitted in the denominator.
For partition C with p = 0 or 1, we define ZðCÞ ¼ 0. We refer to this quality function as Z-
modularity.

Remarks on Z-modularity
The numerator of Z-modularity is none other than modularity. Although it does not make
sense to compare the Z-modularity value and the modularity value for a given partition, they
have the same sign. In fact, since the denominator of Z-modularity is always positive, Z-modu-
larity takes a positive value if and only if so does modularity. Thus, the positive (resp. negative)
value of Z-modularity implies that the fraction of the number of edges within communities is
greater (resp. less) than the expected fraction of such edges in the above edge generation
process.

Here we provide upper and lower bounds on Z-modularity. As shown in Brandes et al. [7],
for any partition C, the modularity value QðCÞ falls into the interval [−1/2,1]. On the other
hand, Z-modularity has an upper bound of

ffiffiffi
n

p
and a lower bound of −n, as shown below.

Recall that p ¼PC2C
DC
2m

� �2
. As for the upper bound, since p� 1/n (unless p = 0), we have

ZðCÞ ¼
P

C2C
mC
m
� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞp � 1� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞp ¼

ffiffiffiffiffiffiffiffiffiffiffi
1

p
� 1

s
�

ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
<

ffiffiffi
n

p
:

As for the lower bound, since p � 2m�1
2m

� �2 þ 1
2m

� �2 ¼ 1� 1
m
þ 1

2m2 � 1� 1
2m

< 1� 1
n2
(unless

p = 1), we have

ZðCÞ ¼
P

C2C
mC
m
� pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pð1� pÞp � �
ffiffiffiffiffiffiffiffiffiffiffi
p

1� p

r
> �n:
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Finally, we mention the computation time concerning Z-modularity. Although Z-modular-
ity is of a more complicated form than modularity, the computation time of the function value
is almost the same. On the other hand, if we replace modularity with Z-modularity in some
modularity maximization algorithms, their running time may change drastically because, for
instance, the number of iterations to converge to a local optimum may increase or decrease
substantially. However, as an example, our computational experiments confirmed that the sim-
ulated annealing algorithm proposed by Guimerà and Amaral [10] and its Z-modularity maxi-
mization version run in almost the same time.

Theoretical Results
Fortunato and Barthélemy [22] pointed out the resolution limit of modularity. This resolution
limit means that modularity maximization fails to detect communities that are smaller than a
certain scale depending on the total number of edges in a network. This phenomenon occurs
even if the communities are cliques connected by single edges. Here we theoretically analyze Z-
modularity from a resolution limit perspective. As a result, we demonstrate that Z-modularity
mitigates the resolution limit of the original modularity in certain cases.

Ring of cliques network
First, we consider a ring of cliques network that consists of a number of cliques connected by
single edges (Fig 2). Assume that each clique consists of p (�3) vertices and the number of cli-
ques is q (�2). Then, the network has n = p�q vertices andm = q�(1+p(p−1)/2) edges. Fortunato
and Barthélemy [22] showed that modularity maximization would merge adjacent cliques if q
is larger than a certain value depending on p. However, adjacent cliques are never merged in a
partition with maximal Z-modularity value, as shown below.

Let C� be the partition of V into the cliques. In addition, let C ¼ fC1; . . . ;Clg (1< l< q) be

a partition of V such that each Ci consists of a series of si (�1) cliques and q ¼Pl
i¼1 si. Then,

Z-modularity for C� and C are calculated by

ZðC�Þ ¼ 1� q=m� 1=qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� 1=qÞ=qp and ZðCÞ ¼ 1� l=m� tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tð1� tÞp ;

respectively, where t ¼Pl
i¼1 ðsi=qÞ2. By the Cauchy–Schwarz inequality, we have

1 > t ¼Pl
i¼1 ðsi=qÞ2 � ðPl

i¼1 ðsi=qÞ2=l ¼ 1=l. To analyze the behavior of the function ZðCÞ in
details, we rewrite ZðCÞ using two variables x and y as follows:

f ðx; yÞ ¼ 1� y=m� xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞp :

Then, the derivative of f(x,y) with respect to x is

@

@x
f ðx; yÞ ¼ �x � y=m� ð1� y=mÞð1� xÞ

2 � ðxð1� xÞÞ3=2 < 0

for 0< x< 1 and 1� y�m. Thus, we obtain

f ð1=l; lÞ � f ðt; lÞ:
Moreover, the derivative of f(1/y,y) with respect to y is

@

@y
f ð1=y; yÞ ¼ ðm� 3yÞðy � 1Þ þ y

2m � ðy � 1Þ3=2 > 0
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Fig 2. Ring of cliques network. Kp represents a clique with p vertices.

doi:10.1371/journal.pone.0147805.g002
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for 1< y<m/3. Thus, we have

f ð1=q; qÞ > f ð1=l; lÞ;
since 1< l< q�m/4 bym = q�(1 + p(p−1)/2)� 4q. Therefore, we have

ZðC�Þ ¼ f ð1=q; qÞ > f ð1=l; lÞ � f ðt; lÞ ¼ ZðCÞ;
which means that maximizing Z-modularity never merges adjacent cliques.

Table 1 lists the values of modularity and Z-modularity of partitions C� and C (si = 2 for
i = 1, . . ., l) for some ring of cliques networks. As can be seen, the modularity of C is greater
than that of C� when the number of cliques is large, which is consistent with Fortunato and
Barthélemy [22]. On the other hand, as we proved above, Z-modularity of C� is certainly higher
than that of C for every number of cliques.

Network with two pairwise identical cliques
Here we consider a network with two pairwise identical cliques that consists of a pair of cliques
C1 and C2 with q vertices each and a pair of cliques C3 and C4 with p (< q) vertices each. These
four cliques are connected by single edges, as described in Fig 3. This network has n = 2(p + q)
vertices andm = p(p−1) + q(q−1) + 4 edges.

Consider two partitions CA ¼ fC1;C2;C3;C4g and CB ¼ fC1;C2;C3 [ C4g. Note that parti-
tion CA is a more natural community structure that we would like to identify. Unfortunately,
maximizing Z-modularity may choose CB, i.e., ZðCAÞ < ZðCBÞ holds for some pair of p and q.
However, if modularity maximization adopts CA, then so does Z-modularity, i.e., for any pair
of p and q, if QðCAÞ > QðCBÞ holds, then ZðCAÞ > ZðCBÞ also holds. This fact follows directly
from the definitions of Z-modularity and the original modularity.

Table 1. Numerical examples of modularity and Z-modularity for some ring of cliques networks.

n m p q QðC�Þ% QðCÞ% ZðC�Þ% ZðCÞ%
100 220 5 20 0.8591 0.8548 3.942 2.848

200 440 5 40 0.8841 0.9045 5.663 4.150

400 880 5 80 0.8966 0.9295 8.070 5.954

5000 11000 5 1000 0.9081 0.9525 28.73 21.32

doi:10.1371/journal.pone.0147805.t001

Fig 3. Network with two pairwise identical cliques. Kp and Kq represent cliques with p and q vertices,
respectively.

doi:10.1371/journal.pone.0147805.g003
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Table 2 lists the values of modularity and Z-modularity of partitions CA and CB for some net-
works with two pairwise identical cliques. We can confirm that both modularity and Z-modu-
larity tend to merge C3 and C4 as the sizes of C1 and C2 become large. However, there is the
case where only Z-modularity could divide C3 and C4. Therefore, we see that Z-modularity
again mitigates the resolution limit of modularity in this case.

Experimental Results and Discussion
The purpose of our computational experiments is to evaluate the validity and reliability of the
quality function Z-modularity. To this end, throughout the experiments, we maximize Z-mod-
ularity using a simulated annealing algorithm. Note that our algorithm is obtained immediately
by changing the objective function from modularity to Z-modularity in the algorithm proposed
by Guimerà and Amaral [10]. The implementation of their algorithm can be found on Lanci-
chinetti’s web page [35], and we use it with default parameters with the exception of the above
change of objective function. Our experiments are conducted on various artificial networks
and on well-known real-world networks.

Artificial networks
First, we report the results of computational experiments with artificial networks. We compare
partitions obtained by maximizing Z-modularity with partitions obtained by modularity maxi-
mization on a wide variety of networks. The modularity is also maximized by the simulated
annealing algorithm proposed by Guimerà and Amaral [10]. We deal with three types of artifi-
cial networks: the planted l-partition model, the Lancichinetti–Fortunato–Radicchi (LFR)
benchmark, and the Hanoi graph. For the planted l-partition model and the LFR benchmark,
once their parameters are set, the ground-truth community structure is fixed. Thus, we can
evaluate the quality of the obtained community structure by comparison with the ground-
truth using some measure.

To this end, we adopt the normalized mutual information for two partitions, which was
introduced by Fred and Jain [36]. The normalized mutual information for two partitions C1

and C2 of n vertices is defined as follows:

InormðC1; C2Þ ¼
2IðC1; C2Þ

HðC1Þ þ HðC2Þ
;

where

IðC1; C2Þ ¼
X
C12C1

X
C22C2

jC1 \ C2j
n

log 2

n � jC1 \ C2j
jC1j � jC2j

� �

Table 2. Numerical examples of modularity and Z-modularity for some networks with two pairwise identical cliques.

n m p q QðCAÞ QðCBÞ ZðCAÞ ZðCBÞ
26 80 5 8 0.6618 0.3385 1.443 1.345

42 264 5 16 0.5650 0.5653 1.144 1.143

74 1016 5 32 0.5182 0.5190 1.037 1.039

138 4056 5 64 0.5047 0.5049 1.009 1.010

doi:10.1371/journal.pone.0147805.t002
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and

HðCÞ ¼ �
X
C2C

jCj
n

log 2

jCj
n

:

The normalized mutual information ranges from 0 to 1. For two partitions C1 and C2, the
higher the normalized mutual information is, the more similar they are (and vice versa). In
fact, InormðC1; C2Þ ¼ 1 if C1 and C2 are identical, and InormðC1; C2Þ ¼ 0 if they are independent.
This measure has often been used to evaluate community detection methods. For example, see
the computational experiments in references [37, 38].

Planted l-partition model. The planted l-partition model was introduced by Condon and
Karp [39]. In this model, n vertices are divided into l equally sized groups (with size c = n/l).
Two vertices in the same group are connected by probability pin, whereas two vertices in differ-
ent groups are connected by probability pout (< pin). Throughout the experiments, we set pin =
0.5. We construct four networks corresponding to combinations of two different network sizes
(n = 1000 or 5000) and two different community sizes (c = 20 or 50). The parameter pout starts
with 0.01 and then increases in stages.

The results are shown in Fig 4. As can be seen, Z-modularity outperforms the original mod-
ularity in all four cases. In particular, Z-modularity provides much more superior results com-
pared to modularity for networks consisting of relatively small communities.

LFR benchmark. In the planted l-partition model, each group in a generated network
forms the Erdő–Rényi random graph [40]. Thus, all vertices have approximately the same
degree. Moreover, all groups have exactly the same size. These phenomena are rarely observed
in networks in real-world systems. As a more realistic model, the LFR benchmark was pro-
posed by Lancichinetti, Fortunato, and Radicchi [41] for the case of unweighted and undirected

Fig 4. Results for the planted l-partitionmodel. Each point is the result of averaging over 100 network
realizations. The top and bottom bars represent the maximum and minimum values, respectively.

doi:10.1371/journal.pone.0147805.g004
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networks. The LFR benchmark was then extended to the case of directed and weighted net-
works with overlapping communities [42]. We now use the original unweighted and undi-
rected case without overlapping communities.

In the model, degree distribution and community size distribution follow power laws with
exponents γ and β, respectively. Furthermore, we can specify the number of vertices n, average
degree hki, maximum degree kmax, minimum community size cmin, maximum community size
cmax, and mixing parameter μ. In particular, mixing parameter μ indicates the mixing ratio of
communities, i.e., the higher μ is, the more densely connected the communities are. The model
constructs a network consistent with the specified parameters. For more details, see reference
[41]. In our experiments, we set the parameters as in references [37, 38] as follows: γ = −2, β =
−1, hki = 20, and kmax = 50. We construct eight networks corresponding to combinations of
two different network sizes (n = 1000 or 5000) and four different ranges of community size
((cmin, cmax) = (10,50), (20,100), (30,150), or (40,200)).

The results are illustrated in Fig 5 (n = 1000) and Fig 6 (n = 5000). For the smaller networks
(n = 1000), the mutual information values obtained by maximizing Z-modularity are lower
than those obtained by modularity maximization when μ� 0.5 for all community size settings.
This trend is significant when the network consists of relatively large communities (e.g., (cmin,
cmax) = (30,150) and (40,200)). On the other hand, for larger networks (n = 5000), Z-modular-
ity outperforms the original modularity for all community size settings. From the above, we see
that Z-modularity is particularly suitable for identifying community structure when a network
consists of relatively small communities.

Here we investigate why the mutual information values obtained by maximizing Z-modu-
larity are low when the community sizes are large. To this end, Fig 7 depicts the adjacency
matrices of the LFR benchmark network with parameters γ = −2, β = −1, n = 1000, hki = 20,
kmax = 50, cmin = 40, cmax = 200, and μ = 0.3. The vertices are ordered according to both the

Fig 5. Results for the LFR benchmark (n = 1000). Each point is the result of averaging over 100 network
realizations. The top and bottom bars represent the maximum and minimum values, respectively.

doi:10.1371/journal.pone.0147805.g005
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Fig 6. Results for the LFR benchmark (n = 5000). Each point is the result of averaging over 100 network
realizations. The top and bottom bars represent the maximum and minimum values, respectively.

doi:10.1371/journal.pone.0147805.g006

Fig 7. Adjacencymatrices for an LFR benchmark network. (A) Ground-truth partition: 10 communities. (B) Optimal partition for Z-modularity: 81
communities and Inorm = 0.6942.

doi:10.1371/journal.pone.0147805.g007
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ground-truth partition and the optimal partition for Z-modularity. The edges connecting verti-
ces in the same community and in different communities are plotted with different colors, i.e.,
red and blue, respectively. As can be seen, maximizing Z-modularity divides the relatively large
ground-truth communities because they contain much denser communities in the hierarchical
structure by random behavior.

Hanoi graph. Here we demonstrate optimal partitions with respect to Z-modularity and
the original modularity for the Hanoi graph, which is an example of networks with hierarchical
organization. The Hanoi graph Hn corresponds to the allowed moves in the tower of Hanoi for
n disks, which is a famous puzzle invented by Édouard Lucas in 1883. The Hanoi graph Hn has
3n vertices and 3�(3n−1)/2 edges. In the context of community detection in networks, Hanoi
graph H3 is used by Rosvall and Bergstrom [43]. Note that since the Hanoi graph does not have
the ground-truth community structure, it is impossible to conclude whether the obtained parti-
tion is reasonable; we use this instance to observe the behavior of Z-modularity maximization.

The results for Hanoi graphH4 are shown in Fig 8, where the label (and color) of each vertex
represents the community to which the vertex belongs. As can be seen, maximizing Z-modu-
larity leads to more detailed partition than modularity maximization. This result supports the
trend observed in the experiments for the planted l-partition model and the LFR benchmark.

Real-world networks
Here we report the results of computational experiments with real-world networks; i.e., the Zach-
ary’s karate club network, the Les Misérables network, and the American college football network.

Zachary’s karate club network. The first example is the famous karate club network ana-
lyzed by Zachary [44], which is often used as a benchmark to evaluate community detection
methods. It consists of 34 vertices representing the members of a karate club in an American
university, in addition to 78 edges representing friendship relations among individuals. Because
of a conflict between the club administrator and the instructor, the club members split into two
groups, one supporting the administrator and the other supporting the instructor. Therefore,
these groups can be viewed as a ground-truth community structure.

Fig 8. Community structure for Hanoi graphH4. (A) Optimal partition for Z-modularity: 27 communities, Z = 3.376, andQ = 0.6379. (B) Optimal partition for
modularity: 9 communities, Z = 2.510, andQ = 0.7889.

doi:10.1371/journal.pone.0147805.g008
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The partition obtained by maximizing Z-modularity is shown in Fig 9, where vertices with
the same color represent a community. The label of each vertex represents an identification
number of the member. For example, 1 and 34 represent the administrator and the instructor,
respectively. The dashed line gives the partition of the network into the above two groups. The
mutual information value of the obtained partition is not high. In fact, in comparison with the
ground-truth community structure, the obtained partition consists of relatively small communi-
ties. This result is consistent with the trend observed in the experiments for artificial networks.

Les Misérables network. The second example is the network of the characters in the novel
Les Misérables by Victor Hugo, compiled by Knuth [45]. It consists of 77 vertices representing
the characters and 254 edges indicating the co-appearance of characters. Note here that since
this network does not have the ground-truth community structure, it is impossible to evaluate
the obtained partition using the mutual information value; we use this network to observe the
behavior of Z-modularity maximization.

The partition obtained by maximizing Z-modularity is presented in Fig 10, where vertices
with the same color represent a community. The label of each vertex represents the name of
the character. Identified communities are likely to correspond to specific groups within the
story. For example, the community consisting of 12 vertices (shaded with light brown) at the
top left corner contains major characters belonging to the revolutionary student club Friends of
the ABC.

American college football network. The third and final example is a network of college
football teams in the United States, which was derived by Girvan and Newman [46]. There are
115 vertices representing the football teams, and 654 edges connecting teams that played each
other in a regular season. The teams are divided into 12 groups referred to as conferences con-
taining approximately 10 teams each. More games are played between teams in the same

Fig 9. Community structure for Zachary’s karate club network: 6 communities, Z = 0.9266,Q = 0.3882,
and Inorm = 0.4796.

doi:10.1371/journal.pone.0147805.g009
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conference than between teams in different conferences. Thus, the conferences can be viewed
as a ground-truth community structure.

The partition obtained by maximizing Z-modularity is shown in Fig 11, where vertices with
the same color represent a community. Note that the label of each vertex now represents the

Fig 10. Community structure for Les Misérables network: 9 communities, Z = 1.490, andQ = 0.5245.

doi:10.1371/journal.pone.0147805.g010

Fig 11. Community structure for American college football network: 14 communities, Z = 2.111,
Q = 0.5738, and Inorm = 0.9205.

doi:10.1371/journal.pone.0147805.g011
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conference to which the team belongs rather than an identification number of the team.
Although some misclassifications are observed, Z-modularity correctly identifies 7 out of 12
conferences (i.e., conferences 0, 1, 2, 3, 7, 8, and 9). This result is outstanding in comparison
with partitions obtained by modularity maximization. In fact, as reported in reference [16],
only four conferences were correctly recovered by partition with a higher modularity value
Q = 0.6046.

Conclusions
In this study, we have identified a problem in the concept of modularity and suggested a solu-
tion to overcome this problem. Specifically, we have obtained a new quality function Z-modu-
larity that measures the Z-score of a given partition with respect to the fraction of the number
of edges within communities. Theoretical analysis has shown that Z-modularity mitigates the
resolution limit of the original modularity in certain cases. In fact, Z-modularity never merges
adjacent cliques in the well-known ring of cliques network with any number and size of cliques.
In computational experiments, we have evaluated the validity and reliability of Z-modularity.
The results for artificial networks show that Z-modularity more accurately detects the ground-
truth community structure than the original modularity in most cases. In particular, Z-modu-
larity outperforms modularity for networks consisting of relatively small communities. Fur-
thermore, the results for real-world networks demonstrate that Z-modularity leads to natural
and reasonable community structure in practical use. Therefore, we conclude that Z-modular-
ity could be another option for the quality function in community detection.

In the future, further experiments should be conducted to examine the performance of Z-
modularity in more details. In fact, computational experiments in the present study have not
used large-scale networks (with heterogeneous community sizes). This is due to the time com-
plexity of the simulated annealing algorithm proposed by Guimerà and Amaral [10], on which
our algorithm is based. To conduct computational experiments on large-scale networks, scal-
able Z-modularity maximization algorithms should be developed. For modularity maximiza-
tion, there exist a wide variety of fast algorithms that perform well in practice. For example, the
greedy algorithm proposed by Blondel et al. [8], which is known as the Louvain method, runs
in time approximately linear in the size of the network. It should be noted that the correspond-
ing Z-modularity maximization algorithm is derived directly by changing the objective func-
tion from modularity to Z-modularity. However, our preliminary experiments demonstrated
that the Louvain method is not suitable for Z-modularity maximization. Indeed, the first aggre-
gation step in the algorithm is not effective due to the term in the denominator of Z-
modularity.

As another future direction, the physical interpretation of maximizing Z-modularity should
be investigated. For example, it is known that modularity maximization can be interpreted as
the problem of finding the ground state of a spin glass model [24].
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