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Pressure and temperature 
predictions of Al2O3/water 
nanofluid flow in a porous pipe 
for different nanoparticles volume 
fractions: combination of CFD 
and ACOFIS
Meisam Babanezhad1,2,3, Iman Behroyan4,5, Azam Marjani6,7* & Saeed Shirazian8

Artificial intelligence (AI) techniques have illustrated significant roles in finding general patterns of 
CFD (Computational fluid dynamics) results. This study is conducted to develop combination of the 
ant colony optimization (ACO) algorithm with the fuzzy inference system (ACOFIS) for learning the 
CFD results of a physical case study. This binary join of the ACOFIS and CFD was used for pressure and 
temperature predictions of Al2O3/water nanofluid flow in a heated porous pipe. The intelligence of 
ACOFIS is investigated for different input numbers and pheromone effects, as the ant colony tuning 
parameter. The results showed that the intelligence of the ACOFIS could be found for three inputs (x 
and y nodes coordinates and nanoparticles fraction) and the pheromone effect of 0.1. At the system 
intelligence, the ACOFIS could predict the pressure and temperature of the nanofluid on any values 
of the nanoparticles fraction between 0.5 and 2%. Comparing the ANFIS and the ACOFIS, it was 
shown that both methods could reach the same accuracy in predictions of the nanofluid pressure and 
temperature. The root mean square error (RMSE) of the ACOFIS (~ 1.3) was a little more than that of 
the ANFIS (~ 0.03), while the total process time of the ANFIS (~ 213 s) was a bit more than that of the 
ACOFIS (~ 198 s). The AI algorithms process time (less than 4 min) shows their ability in the reduction 
of CFD modeling calculations and expenses.

Nanofluids possess an increasing utilization in thermal engineering industries in order to improve the heat trans-
fer efficiency and reduce heat loss and energy costs1–6. In these novel heat transfer fluids (HTFs), the well-known 
Brownian movement of the nanoparticles (NPs) in the medium, known as the important parameter, influences 
the nanofluids’ heat transfer rate7. Using porous media could also increase heat transfer rates considerably. The 
porous matrix causes more heat transfer area, higher thermal conductivity, and more mixing effect. So, it is a 
promising research area to use both nanofluid and porous media for different kinds of application such as heat 
exchangers (e.g. shell and tube type) due to the synergistic effect of nanofluids and porous media8,9.

Some studies have been focused on the nanofluids’ heat transfer in porous structures10–12. Nazari et al.10 
experimentally analyzed heat transfer of water/CuO nanofluid (NF) in foam tubes with various types of con-
figurations, and assessed the heat transfer rates13. It was revealed by them the improvements of heat transfer by 
the dispersion of the NPs into the base fluids for metal and helical foam tubes, comparing to the straight tube. 
In a study12, the development of convection for alumina/water NF was considered in a tube occupied by an 
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aluminum metal foam. It was reported the heat transfer enhancement is caused by the increase of the nanofluid 
concentration and the Reynolds number as well.

As discussed above, a few studies have considered the potential of the application of nanofluids in porous 
ducts. So, this concept is still attractive for researchers in many aspects, specifically for process engineers to 
develop novel HTFs for industrial applications. Besides, the computational fluid dynamics (CFD) approach is a 
perfect and versatile tool for the predictions and simulations of thermal and hydrodynamic parameters of fluid 
flows in different regimes and geometries14. CFD modeling requires to solve many calculations on the system 
nodes to obtain the desired distributions, such as pressure and velocity. However, these calculations could be 
complex for 3-dimension analysis, turbulent flows, complex geometries, large scale cases, multi-phase flows, 
etc. For instance, the CFD modeling has its own difficulties and challenges for the evaluation of nanofluids 
flow characteristics in porous media. Changing in the nanoparticles concentrations is caused to the changes 
in thermo-physical properties of the nanofluids which need to be considered in the CFD simulations. Hence, 
a new simulation strategy is required for the new nanoparticles concentrations that can obviate the need for 
expensive and tedious CFD calculations. From the engineering point of view, pressure and temperature could be 
the important parameters of nanofluid flow in porous media which should be precisely predicted by theoretical 
methods. A supplementary method is needed to optimize the CFD approach and make it faster. Artificial intel-
ligence (AI) algorithms have the potential in finding the pattern of simulation data. AI algorithms could learn the 
CFD results for several specific conditions (e.g. specific positions, times, properties, boundary conditions, etc.), 
find the general pattern of data, and predict the targeted variables for the other conditions without any further 
computational expenses. The machine learning of the CFD results was used for the first time by references15–22. 
The researchers used the fuzzy inference system (FIS) with the adaptive network (AN) algorithm for the training 
process. There are a number of other trainers such as genetic algorithm (GA), ant colony optimization (ACO), 
neural network (NN), etc. that are available and could be used with integration with FIS. Every AI algorithm 
that possesses the highest level of accuracy would be called the best intelligent condition. There are several 
parameters, specifically for each AI algorithm, defining the best intelligence condition. These parameters could 
be changeable from one CFD case study to another one. The details of the artificial intelligence algorithm and 
also the effects of the parameters are absent in these studies. Additionally, the extra investigations are required 
to show the contribution of other trainers like ant colony optimization with the FIS for helping the CFD.

This study tries to do machine learning of the CFD results of a nanofluid flow in a porous media for some 
specific nanoparticle concentrations. The ant colony optimization-based fuzzy inference system (ACOFIS) is 
developed, for the first time, for this purpose. After obtaining the best intelligence, the pressure and temperature 
can be predicted by the ACOFIS for any other values of the nanoparticles concentrations without any other CDF 
modeling. The computational times of the ACOFIS are presented for such a case as feedback for facilitating the 
CFD method. The general parameter of input number and the specific one, the pheromone effect related to ant 
colony optimization, are considered for sensitivity tests of the best intelligence condition.

Methodology
Computational fluid dynamics.  A cylindrical duct with a length (L) of 1.0 m completely occupied with a 
porous medium was considered as the geometrical configuration, in which the porous medium is saturated with 
a circular section with the diameter of 0.01 m (D) and a single phase. The single-phase model with a mixture 
behaving like a single-phase fluid hypothetically was taken into account in this work. The nanofluid within the 
single-phase model is considered as a normal fluid, but with improved features owing to the presence of nano-
particles in the system.

The mathematical explanation of single-phase leading equations is represented as follows23–26.
Continuity equation:

Momentum equation:

Energy equation:

The parameters of porous media such as porosity ε, inertia coefficient Cd and permeability K are reported 
in references27–30.
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Effective thermal conductivity is influenced by nanofluid thermal conductivity and the copper porous con-
ductivity and is given as follows27,30:

The effective thermophysical properties of the nanofluid are collected in Table 1. Considering the effect of 
Brownian phenomenon, Chon et al.31 correlation is adopted for the calculation of thermal conductivity, while 
the correlation suggested by Masoumi et al.32 is employed for estimating the fluid viscosity. So, for using such 
temperature-dependent correlations of conductivity and viscosity, User Defined Function (UDF) codes have 
been developed and added to the ANSYS-FLUENT CFD codes.

The k − ε turbulence model to calculate the turbulent eddy viscosity, its energy dissipation rate (ε) , and the 
turbulent kinetic energy (k) are based on the literature23,33,34:

CFD grid test and validation.  The mesh dependency test has been carried out for two different grid arrange-
ments (i.e. 107,400 nodes, and 161,100 nodes). According to the CFD results and testing both mesh sizes, the 
relative temperature and velocity differences were less than 0.05%. So, the first mesh size was selected for the 
calculations due to less computational expenses and shorter solution time.
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Table 1.   Al2O3/water properties.

Properties Equation

Density23 ρeff = (1− ϕ)ρf + ϕρp

Heat capacity23
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Table 2.   Nusselt number calculation (CFD and experiment comparison).

Study Fluid Tube type Re Nu

Fotukian and Esfahany35

0.054% Al2O3/water Simple tube 9,950 82.95

0.14% Al2O3/water Simple tube 7,084.23 67.07

0.14% Al2O3/water Simple tube 10,799.1 86.13

Present study

0.3% Al2O3/water Simple tube 10,000 85.86

2% Al2O3/water Simple tube 10,000 99.13

2% Al2O3/water Porous tube 10,000 306.27
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For verifying the CFD outputs, calculated Nusselt numbers (Nu) are compared with those measured data 
of Fotukian and Esfahany35 investigations. According to Table 2, the CFD results for the simple tube (without 
porous) are the same as those of the experiment. Inserting the porous material inside the pipe, the Nu becomes 
threefold.

Ant colony optimization (ACO).  Ant System (AS) is the first ant colony optimization method aimed 
at finding the shortest routes for linking some cities36. The same concept is used in development of ACO 
algorithm37. The colony’s experience is reflected by the pheromone factor, however, the heuristic factor deals 
with the interest in choosing a component based on an objective function38. These parameters are weighted 
through α and β as38,39:

Pheromone trails are updated when all of the ants create their tours38,39:

Furthermore, by leaving pheromone over the arcs crossed by the ants in their pathway and by the superior 
the tour, the higher the quantity of pheromone will be received for the arcs38,39:

The first enhancement of initial ant system was known as the elitist approach for AS. It deals with providing 
robust additional reinforcement for the arcs related to the best tour found since starting the method38–40:
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Figure 1.   Schematics of combination of ant colony algorithm with fuzzy system.
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The rank-based version is another enhancement over ant system. Each ant deposits some pheromone decreas-
ing by its rank. Moreover, the largest quantity of pheromone is always deposited by the best-ant-so-far during 
every iteration38–40.

Fuzzy inference system (FIS).  The FIS is utilized in the fields of optimization, control, classification and 
prediction in engineering sciences. Here, if–then rules are employed to design the FIS structure41. In this rule, 
the signals are multiplied based on the AND rule as the node function. For case, the ith rule function can be 
written as41:

The firing strength value is determined for each rule, as following16,41:
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Figure 2.   ACOFIS learning processes using two inputs and diversity of pheromone effect.

Figure 3.   ACOFIS learning processes using three inputs and diversity of pheromone effect.
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where wi is determined as normalized firing strengths. If–then rule developed by Takagi and Sugeno41.
Consequently, the node function is:

Detailed descriptions of FIS can be found in our previous publications16,42–46.

(18)wi =
wi

∑

(wi)

(19)wifi = wi

(

piX + qiY + riNVF + si
)

Figure 4.   (a) Regression plot of the best of ACOFIS intelligence using two inputs in learning process. (b) 
Regression plot of the best of ACOFIS intelligence using three inputs in learning process.
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Results and discussions
This study tries to develop a new artificial intelligence algorithm using the ant colony optimization, as a trainer, 
in a combination with the fuzzy inference system. The hybrid algorithm is then called ACOFIS. The ability of 
the developed algorithm is tested in the pressure and the temperature predictions of the Al2O3/H2O NF in a 
porous tubular duct. Machine learning (ML) of the CFD results is employed in order to recognize the pattern of 
the flow characteristics. The pressure and temperature of the nanofluid on the cross-section plate at 0.3 m from 
the inlet are considered for such predictions in this study. Each trainer has its own parameters playing crucial 
roles in the accurate predictions of the data patterns extracted from the CFD computations. These parameters 
could be also changeable from one CFD case study to another. The pheromone effect is one of the important 
parameters of ant colony optimization. The effect of such parameters in the accurate prediction of CFD results 

Table 3.   ACOFIS setup for predicting pressure and temperature in the same setup.

ACOFIS for predicting pressure ACOFIS for predicting temperature

CFD case study Nanofluid turbulent flow in heated porous 
pipe

Nanofluid turbulent flow in heated porous 
pipe

AI method Combination of ACO with FIS Combination of ACO with FIS

Material of case study Nanofluid (Al2O3) Nanofluid (Al2O3)

Number of input in the best intelligence 3 3

Pheromone effect in the best intelligence 
(ACO parameter) 0.1 0.4

Changes in number of inputs was 
evaluated(FIS parameter) 2,3 3

Changes in pheromone effect was 
evaluated(ACO parameter) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 0.1, 0.2, 0.3, 0.4, 0.5, 0.6

The highest of correlation coefficient in test-
ing process with 100% of data 0.994 0.968

P(%) percentage of used data in training 
process 77% 77%

Number of data 2 inputs (537) and 3 inputs (2685) 3 inputs (2685)

Number of iteration 115 115

Type of data clustering FCM clustering FCM clustering

Type of membership function Guassmf Guassmf

Number of MFs for each input 16 16

Number of rules (which is for hidden layer 
of FIS) 16 16

Number of membership functions (MFs) for 
output 16 16

ACOFIS input1 x-direction x-direction

ACOFIS input2 y-direction y-direction

ACOFIS input3 Nano particle Fraction = 0.5,0.8,1,1.5,2% Nano particle Fraction = 0.5,0.8,1,1.5,2%

ACOFIS output Pressure Temperature

Table 4.   Detail of ACOFIS and ANFIS setup and learning times.

Method ACOFIS method ANFIS method

Number of inputs 3 3

Percentage of data in training process 77 77

Number of iterations 115 115

Clustering Type Fuzzy C-mean Clustering Fuzzy C-mean Clustering

Exponent as FCM clustering parameter 2 2

Minimum Improvement as FCM clustering parameter 1.00E-05 1.00E-05

Correlation coefficient (R) in training process 0.997867326 0.99999993

Coefficient of determination (R2) in training process 0.995739201 0.99999986

RMSE error in testing process 1.331970484 0.025145357

Correlation coefficient (R) in testing process 0.997857536 0.999998829

Coefficient of determination (R2) in testing process 0.995719663 0.999997657

Learning process time (s) 198.0029725 212.5959348

Prediction process time (s) 0.1300083 0.519412
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Figure 5.   Comparison of pressure prediction with different AI methods.

Figure 6.   FIS structure in the best results.

Figure 7.   ACOFIS validation with comparison prediction data and CFD data.
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is investigated in this study. The accuracy of the ACOFIS is checked with the CFD results and the predictions of 
the widely used artificial intelligence of ANFIS.

Figure 1 shows flowchart of using ACO as trainer in fuzzy inference system for learning the CFD results. 
As seen, the predicted pressures and temperatures are compared with the CFD calculations. The intelligence of 
model is checked by the root mean square error (RMSE) and the regression number (R). RMSE and the R values 
are recorded for different input numbers and pheromone effects. The lowest RMSE and the highest R means that 
the ACOFIS has achieved the best intelligence. At the best intelligence, for further validation, several nodes are 
selected randomly. The ACOFIS predicts nanofluid pressures and temperatures on the selected nodes for any 
values of the nanoparticles fraction.

Herein, the details of the tuning analysis of the ACOFIS are given just for the pressure prediction. Figure 2 
shows the histogram error distribution graph for two inputs and different values of the pheromone effect. No 
change is seen by increasing the pheromone effect. Indeed, the error is distributed between ± 3, and the RMSE 
is around 9 × 10–5 for all values of the pheromone effect. Adding the nanoparticles volume fraction as the third 
input, the RMSE increases to the higher values (i.e. between 1.5 and 2) as illustrated in Fig. 3. According to 
Fig. 3, the error distribution and the RMSE are sensitive to the pheromone effect. The least RMSE (i.e. 1.5) is 
for the pheromone effect of 0.1 and the errors are distributed between ± 4. Although the RMSE value of 3 inputs 

Figure 8.   Random points for pattern recognition of pressure in different nanoparticle fractions.

Figure 9.   Pattern prediction of pressure in different Nano particle fractions.
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is higher than that of 2 inputs, the ACOFIS reaches the best intelligence for the case when 3 inputs have been 
considered. This is shown in Fig. 4; the increase of input number from 2 to 3 leads to the increase of regression 
number from 0.07 to 0.99. Therefore, the RMSE only is not enough for intelligence determination. The RMSE 
increment by the number of inputs could be justified by the increase of data from 547 for 2 inputs to 2685 for 3 
inputs. In fact, learning more data leads to more RMSE.

A similar analysis could be done for the best condition in prediction of temperature. A summary of this 
analysis and its results are given in Table 3. Unlike the pressure, the pheromone effect is equal to 0.4 at the best 
intelligence in prediction of temperature. This means that AI algorithms should be tuned for the prediction of 
each type of parameter.

For more validation, the predictions of the newly developed AI algorithm of ACOFIS are compared with the 
widely used algorithm of ANFIS. Table 4 explains this comparison. For similar iteration number, input number 
and clustering type, both methods achieve the highest values (around 1) of the correlation coefficient (R) and 
the coefficient of determination (R2) in their predictions. The RMSE of ACOFIS (~ 1.3) is a little more than that 
of ANFIS (~ 0.03). This is shown in Fig. 5 where a comparison has been made between the ACOFIS and the 
ANFIS predictions of pressure for all learned data. The CFD results have been also shown as a benchmark. The 
ACOFIS predictions are close to the ANFIS and CFD results with a little deviation.

The learning time and prediction time of the ANFIS (212.6 s and 0.5 s respectively) are a little bit more than 
those of the ACOFIS (198 s and 0.1 s respectively). Although the total time difference is not that much (less 
than 15 s), this could be significant in actual large-scale cases. Totally, the summation of the learning and the 
prediction times take just a few minutes (less than 4 min). This means the AI algorithms could be so fast and as a 
result, need a little computational requirement in comparison with challenging and expensive CFD computations.

Figure 6 describes the number of membership functions (MFs) for each input, the number of rules, and the 
number of MFs for the output. All these numbers are equal to 16.

Figure 7 illustrates the predicted pressure of the nanofluid at different nanoparticles volume fractions by both 
CFD and ACOFIS models. The red points are the pressures of the nodes predicted by the ACOFIS, while the 
blue ones are the data simulated by the CFD. The ACOFIS predictions are the same as the CFD. Both methods 
show the increase of the pressure by nanoparticles volume fraction increment. 8 nodes on the cross-section plate 
are randomly selected (as shown in Fig. 8). Figure 8 illustrates the pressure prediction of the selected nodes for 
some other nanoparticle volume fractions. According to Figs. 9 and 10, there is good compatibility between 
the predicted pressures of both methods specifically for higher nanoparticle fractions (i.e. more than 0.66%).

All the above-mentioned procedures are repeated for the temperature predictions of the nanofluid at different 
volume fractions. Figure 11 illustrates the temperature contour of the nanofluid. According to Fig. 11a,b, the 
temperature predictions by the ACOFIS are compatible with the CFD. A curved surface is fitted to temperature 
predictions of the ACOFIS. This surface could give the temperature in any random location on the domain. For 
example, several nodes randomly selected from the domain, as shown in Fig. 12. The pattern of changing tem-
perature in selected points by the nanoparticle fraction has been predicted and depicted in Fig. 13. This means 
there is no need for more CFD calculations for new nanoparticle fractions. The fast ACOFIS calculation could 
be replaced with the time-consuming method of CFD.

Conclusions
Although the CFD methods have a progressive trend in the precise prediction of the physical phenomena, there 
is not enough evidence for optimization of the CFD approach complexities. They might take more CPU time 
or require more computational hardware requirements especially in complex problems. So, another method is 
required for the CFD simplification. The machine learning (ML) of the artificial intelligence (AI) algorithms has 
shown the significant roles in finding the general patterns of the CFD results. In this case, the adaptive network 
(AN), as a data trainer, combining with the fuzzy inference system (FIS) has been commonly used. Each trainer 
has its own specific tuning parameters, and the accurate prediction of the AI algorithms are so dependent on 

Figure 10.   Selected area in Fig. 9.
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Figure 11.   (a) CFD simulation results. (b) ACOFIS temperature prediction. (c) ACOFIS prediction surface for 
predicting temperature in different points.
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the proper selection of these parameters. But there are no investigations available for the efficiency comparison 
between the AN and the other trainers.

So, this study was aimed to develop the combination of the ant colony optimization (ACO) algorithm with 
the fuzzy inference system (ACOFIS) for learning the CFD results. This integration of the ACOFIS and the CFD 
was used for pressure and temperature predictions of Al2O3/water nanofluid flow in a heated porous pipe. Firstly, 
the case was simulated by the ANSYS-FLUENT CFD package. Considering the effect of the Brownian motion, 
User Defined Function (UDF) codes have been developed for effective conductivity and viscosity. The UDF codes 
were added to the ANSYS-FLUENT commercial CFD codes. Then the ACOFIS learned the CFD results including 
the pressure and the temperature of the nanofluid on the cross-section plate at z equal to 0.3 m. The intelligence 
of the ACOFIS was investigated for different input numbers and pheromone effects. For two inputs (i.e. x, and y 

Figure 12.   Random selected points for prediction of temperature in different nanoparticle fractions.

Figure 13.   Pattern of predicted temperature in different nanoparticle fractions.
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coordinates of the nodes), the ACOFIS learned the CFD results of the case for the nanoparticles volume fraction 
of 0.5. For this condition, the ACOFIS intelligence conditions were not met and the regression number was 0.07. 
However, increasing the nanoparticles volume fractions as the third input, the number of data increased from 
547 to 2685 and as a result, the ACOFIS reached the intelligence with the R value of 0.98. Moreover, the testing 
different pheromone effect, the value of 0.1 showed the least of RMSE and the best intelligence. The validation 
test confirmed the high agreement between the CFD results and ACOFIS predictions. The ACOFIS also showed 
the ability of the accurate pressure and temperature predictions for any other nanoparticle fractions.

Comparing the ANFIS and the ACOFIS, it was shown that both methods could achieve the R and R2 of 1 for 3 
inputs and the same FIS parameters. The root mean square error of the ACOFIS (~ 1.3) was a little more than that 
of the ANFIS (~ 0.03), while the total process time of the ANFIS (~ 213 s) was a bit more than that of the ACOFIS 
(~ 198 s). Although the total time difference was not a lot (less than 15 s), this could increase significantly in real 
large-scale cases. Finally, it should be noted that the AI algorithms could be so quick prediction (less than 4 min).

This research area is at the beginning. It is recommended to continue the investigations on the other trainers 
such as neural network, genetic algorithm, bee algorithm, etc., and their tuning parameters for accurate predic-
tion of fluid flow parameters in more complex CFD cases.
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