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Abstract

Three-dimensional neuronal culture systems such as spheroids, organoids, and assembloids constitute a
branch of neuronal tissue engineering that has improved our ability to model the human brain in the laboratory.
However, the more elaborate the brain model, the more difficult it becomes to study functional properties
such as electrical activity at the neuronal level, similar to the challenges of studying neurophysiology in vivo.
We describe a simple approach to generate self-assembled three-dimensional neuronal spheroid networks
with defined human cell composition on microelectrode arrays. Such spheroid networks develop a highly
three-dimensional morphology with cell clusters up to 60pum in thickness and are interconnected by pro-
nounced bundles of neuronal fibers and glial processes. We could reliably record from up to hundreds of neu-
rons simultaneously per culture for <90d. By quantifying the formation of these three-dimensional structures
over time, while regularly monitoring electrical activity, we were able to establish a strong link between sphe-
roid morphology and network activity. In particular, the formation of cell clusters accelerates formation and
maturation of correlated network activity. Astrocytes both influence electrophysiological network activity as
well as accelerate the transition from single cell layers to cluster formation. Higher concentrations of astrocytes
also have a strong effect of modulating synchronized network activity. This approach thus represents a practi-
cal alternative to often complex and heterogeneous organoids, providing easy access to activity within a
brain-like 3D environment.

Key words: 3D neuronal culture; astrocytes; induced pluripotent stem cells; microelectrode arrays; neuronal
networks

(s )

Neuronal “organoid” cultures with multiple cell types grown on elaborate three-dimensional scaffolds have
become popular tools to generate brain-like properties in vitro but bring with them similar problems con-
cerning access to physiological function as real brain tissue. Here, we developed a new approach to form
simple brain-like spheroid networks from human neurons, but using the normal supporting cells of the brain,
astrocytes, as the scaffold. By growing these cultures on conventional microelectrode arrays, we were able
to observe development of complex patterns of electrical activity for months. Our results highlight how for-
mation of three-dimensional structures accelerated the formation of synchronized neuronal network activity
and provide a promising new simple model system for studying interactions between known human cell

\types in vitro. /
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Introduction

Recent advancements toward better human brain in
vitro models hold much promise as the solution to a long
history of high failure rates for drug candidates in clinical
trials (Paul et al., 2010). Understanding the human brain in
health and disease has previously relied heavily on ani-
mal-based in vivo models and cell culture models, with
shortcomings that are partially the reason for the inef-
fective treatment of many diseases (Paul et al., 2010).
This has stimulated development in three-dimensional
(38D) in vitro model systems that are growing progres-
sively closer to capturing the complex physiological and
structural properties of the human brain (Centeno et al.,
2018; Zhuang et al., 2018). Among the wide repertoire of
3D neuronal culture systems, organoid cultures are one
promising approach with the potential to reduce the
need for animal testing and improve prediction of clini-
cal outcomes for novel drugs (Struzyna and Watt, 2021).
Organoids are typically derived from a pluripotent stem
cell source that is differentiated as cellular aggregates, form-
ing a tissue-like structure where a degree of cellular polariza-
tion and compartmentalization is seen (Lancaster, 2013). 3D
neuronal culture systems, including organoids, are currently,
but not exclusively, used for research into autism spectrum
disorders (Russo et al., 2019), Down syndrome (Sobol et al.,
2019), schizophrenia (Notaras et al., 2021), and Alzheimer’s
disease (Essayan-Perez et al., 2019).

An important consideration when developing a culture
model is which cell types are required for the model in
question. Many biological systems include complex in-
teraction among multiple cell types, and our ability to
model an emergent property of a multicellular tissue thus
depends on our representation of the cell populations
(Paschos et al., 2015). This perhaps holds especially true
when modeling the fast-acting neuronal signaling of the
human brain, containing a large number of cell types
(Molyneaux et al., 2007) with diverse electrophysiologi-
cal properties and connective characteristics (Thomson
and Lamy, 2007). That being said, it is also true that rela-
tively simple models, which do not take into account the
full complexity of the brain, can recapitulate behaviors of
mammalian cortex (Traub et al., 1992).

Microelectrode arrays (MEASs) are noninvasive extracel-
lular recording devices that, when integrated into culture
substrates, are ideal tools to passively monitor a neuronal
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culture for very long time periods (Obien et al., 2015).
MEAs typically have tens to hundreds of electrodes that
measure and amplify electric potentials, enabling the ob-
servation of action potentials as well as field potentials
over large areas, typically ~1 mm?. MEAs facilitate the
long-term tracking of change in neuronal network dynam-
ics, being very useful for the study of toxicological effects
of drugs (Tukker et al., 2018) or neuronal development
(Trujillo et al., 2019).

While 3D cultures and organoids have already been
used to create complex human brain models in vitro,
they present some challenges akin to that of working
with in vivo or ex vivo brain tissue, particularly for study-
ing electrophysiological interactions with good resolu-
tion in space or time. 3D cultures such as hydrogels may
require custom-made equipment to facilitate recording
(Soscia et al., 2020), or are otherwise dependent on using
imaging techniques such as calcium imaging, which suffer
from poor temporal resolution (Sevetson et al., 2021).
Many heterogeneous organoids pose their own challenges
in addition to those of 3D cultures by being highly diverse
in their cell compositions (Zafeiriou et al., 2020), thus mak-
ing them inappropriate for modeling a specific brain region
or a smaller subset of cell types.

Here, we present an alternative method for generating
self-assembled neuronal 3D cultures, comprised of high-
density co-cultures of astrocytes with mature glutamater-
gic and GABAergic neurons at ratios similar to those in
the cerebral cortex. By growing these directly on a stand-
ard planar microelectrode array, we could reliably record
from up to hundreds of neurons at a given moment for up
to 90d. These developed into spheroid networks with a
highly three-dimensional morphology comprised of thick
cell clusters, interconnected by pronounced bundles of
neuronal fibers and glial processes. We compared two
cell densities and two astrocyte densities in a two-by-two
experiment design and found that astrocytes are a key
driving factor in the self-assembly of spheroid networks.
Together with regular microscopic imaging, we were able
to demonstrate strong effects of cell cluster formation
with network activity and on the spike firing patterns of in-
dividual neurons in proximity to the cell clusters. Our ap-
proach overcomes some of the challenges of more
heterogenous 3D cell cultures and organoids by their de-
fined and controlled cell composition and the reliability of
electrophysiological assessment using widely available
equipment.

Materials and Methods

Chemicals and culture components

Polyethyleneimide 50%, borate buffer, N2 supple-
ment, PBS, 4',6'-diamidino-2-phenylindole dihydro-
chloride (DAPI), penicillin-streptomycin, paraformaldehyde
(PFA), and laminin were purchased from Sigma-Aldrich.
BrainPhys Neuronal Medium was purchased from
STEMCELL Technologies. Rabbit anti-GFAP (1:2000;
catalog #20334, Dako) with secondary antibody (1:200;
catalog #AB6800, Abcam); mouse anti-B-lll-tubulin (1:200;
o' T8660) with secondary antibody (1:200; catalog #21202,
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Table 1: Seeding densities immediately after seeding and
live count taken just before seeding

High cell Low cell

density density
Total number of neurons 75,000 37,500
Total number of astrocytes 75,000 37,500
Seeding cell density (cells/mm?) 5882 2941
Astrocyte live count before seeding 70% 2%
Neuron live count before seeding 62.5 69%

Only live cells were counted in total number of astrocytes and neurons, and
thus the seeding cell density and total number of neurons and astrocytes re-
flects the live cells as included by trypan blue staining.

Thermo Fisher Scientific); rabbit anti-synaptophysin
(1:100; catalog #ab32594, Abcam); and mouse anti-
PSD96 (1:200; catalog #ab2723, Abcam) used the same
secondary antibodies as above. Chicken anti-MAP2 (1:400;
catalog #AB5543, Abcam) with secondary (1:200; catalog
#A-16039, Thermo Fisher Scientific) and mouse anti-GAD65
(4 pg/ml; catalog #GAD-6-C, Developmental Studies
Hybridoma Bank) with secondary (1:200; catalog #21202,
Thermo Fisher Scientific) were used.

Cell cultures

All cell culture substrates (MEAs and glass slides) were
coated with polyethylenimine (PEI) 0.07% in borate buffer, fol-
lowed by 1 h of incubation at 37°C and drying overnight. iCell
Astrocytes (ASC-100-020-001-PT) and iCell GlutaNeurons
(X1005; FujiFilm Cellular Dynamics International) were thawed
according to the supplier instructions, and were counted and
tested for viability using trypan blue staining (Table 1).
Cultures were subsequently cultured in BrainPhys Neuronal
Medium, supplemented with Neural Supplement B and
Nervous System Supplement according to the specifications
of the suppliers (FUJIFILM Cellular Dynamics, Inc.). The
neurons were made up of 83% glutamatergic cells, as de-
termined by quantitative PCR by suppliers, while the re-
mainder were mostly GABAergic cells (supplier, personal
communications).

Cells were seeded onto their respective substrate by
application of a 10 ul droplet of cell suspension containing
~35,000 or 75,000 neurons, depending on the experi-
ment, and a corresponding number of astrocytes to add
up to 15% or 50% of astrocytes in total (Table 1). The
droplet was incubated for 1 h at 37°C at 95% relative hu-
midity and 5% CO,, after which 1 ml of medium was
added. Half of the medium volume was changed the fol-
lowing day, after which half of the medium volume was
changed three times per week. We performed two se-
quential seedings, one for low and one for high total cell
density. The number of MEAs for the two experiments
were 14 for low cell density and 13 for high cell density.

Electrophysiological recordings

MEAs and associated equipment were acquired from
Multi Channel Systems. We used a 60-channel MEA-1060-
Inv-BC ampilifier with MEAs that had 59 TiN electrodes with
30 um radius and 200 um spacing, and referenced re-
corded potentials against a larger internal reference
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electrode. Recordings were made at 37°C in room at-
mosphere. Before recording, cultures were allowed to
equilibrate at least 5min in room atmosphere after
being taken out of the incubator.

Spontaneous activity on MEAs (see Fig. 2) was recorded
for 10 min at a 32 kHz sampling frequency and 1200x gain.
We recorded from all cultures three times per week for the
first 48 d, where we changed to recording only twice every
week. Data acquisition was performed using MC Rack
(Multi Channel Systems), and files were then converted to
the HDF5 file format using MC Data Manager (Multi
Channel Systems). The exported files were opened in
MATLAB (MathWorks) using the third-party publicly avail-
able MATLAB plugin MCSMatlabDataTools (2022; Armin
Walter, McsMatlabDataTools) where all further analyses
were performed using custom-written software.

Experimental design and statistical analysis

Raw data were filtered using a bandpass (250-3000 Hz)
second-order Butterworth filter to filter out slow field po-
tentials, 50Hz noise, and high-frequency noise. Spikes
were detected using an initial double-sided threshold =5
SDs of estimated background noise. Spikes were sorted
into units by principal component analysis (PCA) of de-
tected waveforms. By using k-means clustering, we de-
signed a custom algorithm that finds the likely number of
units based on the deviation from the logarithmic de-
crease in mean cluster radius as a single cluster is divided
into increasing numbers of clusters. This is also known as
finding the “knee” in scanning k-means. We then applied
k-means clustering using the estimated number of units
(see Fig. 2).

Basic characteristics, burst detection, network burst (NB)
detection, entropy, and correlation analysis were performed
using custom algorithms designed in MATLAB. For basic
characterization, an active unit was defined as one exhibit-
ing >10 spikes/min, and the mean firing rate (MFR) was cal-
culated from the active units.

Burst detection was performed using the adaptive
threshold method, which is described in the study by
Pasquale et al. (2010), with minor modifications. To sum-
marize this method, interspike intervals (ISIs) were first
used to construct (base 10) log-ISI histograms for every
detected unit in each recording. Any existing bimodality
was detected according to the method described by
Pasquale et al. (2010). The valley separating two peaks of
a bimodal ISI distribution was used as a threshold for de-
tecting bursting spikes (i.e., long ISIs were assumed to be
associated with interburst periods). Any bursts that con-
tained fewer than three or a total number of spikes divided
by 3000 were excluded. If no threshold could be derived
from the ISI histogram because of a lack of clear bimodal-
ity, it was set to 0.1 s. If the threshold was >0.1 s, only
bursts that enclosed a burst detected by a threshold of
0.1 s were accepted.

Network bursts were detected using the temporal over-
lap of bursts between units on the same MEA. A vector of
equal number of samples as the raw recording was cre-
ated, where every element indicated the number of units
that were detected as undergoing a burst at that particular
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time. A threshold was set as one-third of the mean of the
top 10th percentile of this vector. Network bursts that
contained less than the total number of bursting spikes di-
vided by 300 or <10 spikes were excluded.

Correlation analysis was performed using the MATLAB
built-in cross-correlation functions. Correlation analysis
was performed between all units exhibiting >10 spikes/
min. The spike trains of each active unit were transformed
to log10 inverse ISI vectors, where the inverse ISI was cal-
culated and filled into the entire time span between the
two spikes which constitute the ISI. The covariance of
units was normalized to their autocorrelation, yielding a
correlation coefficient ranging from —1 to 1.

All confidence intervals were derived from bootstrap-
ping (Efron, 1979), where data were resampled with re-
placement 6000 times, and the means of the resampled
sets were used to find the 5th and 95th percentiles,
termed from here on confidence intervals.

Immunocytochemistry

Cells were fixed using 4% PFA in 0.1 m PBS for 2 h,
after which they were washed three times with PBS. The
cells were permeabilized by incubation overnight in 2%
Triton X-100 in PBS (PBST) at room temperature. The
cells were then kept in the refrigerator overnight in block-
ing buffer consisting of 1% Triton X-100 and 10% normal
goat serum (catalog #G9023, Sigma-Aldrich). Primary
antibody incubation was performed for 2 d in 4°C with
antibodies diluted at the fractions indicated in the subsec-
tion Chemicals and culture components, in 1% normal
goat serum and 0.2% Triton X-100. Next, cells were
washed three times with 0.1% Triton X-100 in PBS and
left overnight at 4°C. Secondary antibodies in 1% normal
goat serum and 0.2% Triton X-100 were applied and left
at 4°C for 1 d. Samples were once again washed three
times with blocking buffer and left at 4°C overnight.
Samples were stained with DAPI (1.5 ug/ml) for an hour
and then cleared with RapiClear 1.49 (SUNJin Lab) by in-
cubation at least overnight at 4°C. Samples were
mounted on slides and were sealed with nail polish and
kept at 4°C until further use. Confocal images were taken
using a microscope (model SP8 DLS, Leica) and captured
with a 20 x oil-immersion objective.

Image analysis

All phase contrast images were automatically stitched
using Fiji. We processed images (see Fig. 7A) to remove
electrodes from the images by locating black pixels (gray-
scale value, 0) and pixels with values <1 negative SD
from the mean. We applied a smooth mask to those pix-
els, effectively replacing electrode pixels with the values
of adjacent pixels for each color channel (see Fig. 7B).
Then, we divided the blue values of each pixel by the cor-
responding red value and applied a bandpass filter to re-
ject smaller features such as individual cells, and any
larger features such as variations in illumination. This “hue
map” (see Fig. 7C) provided us with an accurate indica-
tion of where cells had aggregated on the substrate to
form larger clusters. To quantify the degree of clustering,
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we then segmented this hue map by classifying pixels
that deviated above the mean by 1.4 SDs as belonging to
clusters (see Fig. 7D). The segmented image was further
processed by erosion to exclude small random pixels.
Finally, we calculated the ratio of the number of pixels be-
longing to identified clusters to the total number of pixels
in each given image (i.e., the relative area occupied by
large clusters for each image (range, 0-1)], hereafter
termed the “cluster ratio” for simplicity.

Results

Morphologic development of spheroid networks

In the first days after seeding, cells appear as a mostly
uniform single-cell layer, as seen in phase contrast mi-
croscopy (Fig. 1A), taking up an estimated average area
of 25.5 mm?, resulting in initial seeding densities as stated
in the Table 1. Over a period of weeks, however, the
cells migrate to form dense clusters, ranging up to
200 um in diameter (Fig. 1B). Cluster formation often
progress from several smaller and less pronounced clus-
ters, which then fuse gradually to create larger clusters.
Typically, clusters coincide with considerable clearing of
adjacent areas, leaving behind thin nerve-like strands that
interconnect the clusters, forming what we call “spheroid
networks.” Individual clusters remain highly mobile
throughout culture, and often move in and out from the ef-
fective recording range of electrodes. The rate of cluster
formation was not identical between and within the differ-
ent culture conditions, an observation that we discuss in
more detail below (see subsection Astrocyte density and
spheroid network formation).

To investigate whether the interior of the clusters con-
tained a necrotic core or cellular compartmentalization,
we used confocal imaging and tissue clearing to create
optical sections of immunolabeled clusters (Fig. 1C-J).
Staining for the neuronal marker B-lll-tubulin and the as-
trocyte marker GFAP, and DAPI staining of nuclei were
seen throughout these structures, thus revealing no evi-
dence of a necrotic core inside the clusters. On the con-
trary, optical sections show dense neuronal networks,
glial projections, and nuclei throughout the spheroid net-
work (Fig. 1D). We could also not find evidence of any
clear compartmentalization or vertical stratification of
neurons or astrocytes in any sample. Quite the opposite,
we found that astrocytes and neurons are highly inte-
grated, showing an almost identical distribution, differing
only in individual cell projections and somas (Fig. 1F). We
frequently observed clusters with a thickness >60um
(Fig. 1C). We estimated cell density in a small volume in-
side three clusters by manual counting of DAPI-stained
nuclei (Fig. 1D). Cell density was on average 447,000
cells/mm?®, higher but within the same order of magnitude
as estimates of cell density of human cortex (Cotter et al.,
2001; Rajkowska et al., 2001). Direct comparisons are,
however, difficult because of the heterogenicity in the cell
distribution in cortical tissue.

The cells often organize themselves into discrete clus-
ters, leaving behind bundles of neuronal and glial projec-
tions (Fig. 1H), which interconnect the clusters. These
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formation. At culture day 4, cells are spread out across the electrode area. B, At 88d, distinct clusters are formed, with distinct
processes interdigitating the clusters. C, Confocal maximum intensity projections (MIPs) of fluorescent immunolabeled B-IlI-tubulin,
a marker for neurons: top (top) and side (bottom) views of a representative cluster. Cluster width often exceeds 100 um and thick-
ness can be up to 60 um. D, Confocal cross section of a large cluster, showing that fluorescently labeled neuronal (B-lll-tubulin, yel-
low), astrocyte (GFAP, magenta), and nucleic (DAPI, cyan) markers are found throughout the volume of the clusters. E, Confocal
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continued

MIPs of fluorescently labeled neurons (B-llI-tubulin, yellow), astrocytes (GFAP, magenta), and nuclei (DAPI, cyan). F, Confocal MIP
of fluorescently stained neurons (B-IlI-tubulin, yellow), astrocytes (GFAP, magenta), and nuclei (DAPI, cyan) at the base of the pro-
jections that interdigitate the clusters. Neurons and glia are typically seen growing in very tight association both in projections and
in clusters. G, DIV 34 fluorescently stained postsynaptic and presynaptic markers PSD-95 (yellow) and synaptophysin (magenta) re-
spectively show rich expression of both markers. Inset, The two markers are occasionally observed a small distance apart from
each other, showing that putative NMDA receptors are forming at synapses. H, Confocal MIPs of fluorescently stained neurons (B-
Il-tubulin, yellow), astrocytes (GFAP, magenta), and nuclei (DAPI, cyan), showing how clusters organize with interdigitating projec-
tions. I, Confocal MIPs of fluorescently stained neurons growing in the absence of astrocytes at 14 DIV, showing no clustering. J,
Confocal MIPs of fluorescently stained neurons (B-llI-tubulin, yellow), astrocytes (GFAP, magenta), and nuclei (DAPI, cyan), showing
the base of the projections. It is clear that the projections are sparsely populated by nuclei, which mostly reside inside clusters. K,
Confocal MIPs of fluorescently stained DAPI (cyan), MAP-2 (yellow), and GAD-65 (magenta) showing two neurons; one indicated by
an arrow is expressing GAD-65, which was classified as a GABAergic neuron. L, Confocal MIPs of fluorescently stained DAPI
(cyan), MAP-2 (yellow), and GAD-65 (magenta) indicated by an arrow showing a band of GAD-65 puncta, possibly from a
GABAergic synapses. Scale bars: A, 200 um; B, 200 um; C, 100 um; D, 50 um; E, 100 um; F, 50 um; G; 20 um; inset. 2.3 um; H,

200 pum; 1, 150 pm; J, 50 um; K, 20 um; L, pm.

projections are sparse in cell nuclei, mostly consisting of
neuronal and glial projections (Fig. 1J), and so are analogous
to neuronal tracts that interconnect spatially unique brain re-
gions or neuronal ensembles that communicate through
long axonal projections. We never observed separate clus-
ters exhibiting dissociated or uncorrelated network activity
(see subsection Synchronized network bursts), but we
could show that this morphology has a strong effect on net-
work activity (see subsection Spheroid network formation
influences burst development).

To examine the formation of synapses, we used addi-
tional immunolabelling of synaptophysin, a synaptic vesi-
cle protein found in synaptic preterminals (Tarsa and
Goda, 2002), and PSD-95, a label for postsynaptic den-
sities associated with NMDA receptor regulation (Won et
al., 2016). We observed an abundance of both proteins
(Fig. 1G), with occasional colocalization of both presynap-
tic and postsynaptic markers (Fig. 1G, inset) when per-
forming immunofluorescent staining at 34 d in vitro.

To validate the presence and quantity of GABAergic
neurons, we stained for MAP-2, a general neuronal
marker, and GAD-65, which is specific for GABAergic
neurons. This way, we could validate the presence of
GABAergic neurons by the presence of double-express-
ing cells (Fig. 1K), but also an abundance of projections
and puncta, indicative of GABAergic synapses and axons
(Fig. 1L). We classified neurons based on the criteria of
expressing MAP-2, having a single nuclei, and by a clear
association with a projection. This excluded many cells
that were either too densely packed or too faint to meet
all criteria, but 36 neurons could be classified with confi-
dence. In turn, a subset of GABAergic neurons was classified
through the additional expression of GAD-65, throughout the
soma but also with some degree of visible projection, as
GAD-65 is expressed in synapses of GABAergic neurons.
This way, we could detect seven GABAergic neurons
giving a proportion of 19% GABAergic neurons, con-
sistent with the analysis of the supplier that the neurons
were an 83% glutamatergic population, with GABAergic
neurons forming the remainder (FUJIFILM Cellular Dynamics,
Inc., personal communications; see subsection Cell cul-
tures). Despite the small number of neurons counted, it is
clear that GABAergic neurons are present and forming
what appear to be synapses.

September/October 2022, 9(5) ENEURO.0143-22.2022

Development of burst firing

Some basic features of the development of electrical
activity were consistent across MEAs at ratios of both
the astrocyte and neuron densities tested. Spontaneous
spikes were already seen on many electrodes at 4 d after
seeding [i.e., days in vitro (DIV)], although note that in this
case the term “days in vitro” is relative to the seeding date
since these commercial cell lines were already prediffer-
entiated into specific cell type linages). This early activity
is characterized by low spontaneous firing rates, with
spikes that occur independently on each electrode but
often at very regular intervals, typically a few spikes per
second. As the cultures progress and mature, the spike
patterns become less regular while also showing higher
spike rates (Figs. 2, 3). Within 1-2 weeks after seeding,
the pattern changes to one where spikes tend to occur in
bursts—periods where the firing rate is sustained at, for
example, >10 spikes/s and of several seconds duration,
interspersed by longer periods of lower spike rate (“inter-
burst intervals”), often lasting up to 10 s. This bursting be-
comes more pronounced over time and eventually
transitions to a state where bursts occur synchronously
on all active channels of a given MEA, a feature we define
as “network bursts (NB).”

To quantify and characterize these changes in network
activity, we first detected individual event waveforms on
each electrode at a threshold of +5 SDs of estimated
background noise levels, set individually for every elec-
trode (Fig. 2A,B). Spikes were sorted into units using PCA
and a custom k-means-based unsupervised clustering
approach implemented in MATLAB (Fig. 2D,E) in an at-
tempt to discriminate spike trains from multiple neurons
on each electrode. Following unit assignment, we then
determined the occurrence of bursts for each unit using
an adaptive threshold based on the log interspike interval
histogram (Pasquale et al., 2010; see Materials and
Methods). Interspike intervals derived from all spikes for
each unit allowed construction of a histogram (LogISI his-
togram; Fig. 2F) representing the probability distribution
of the intervals. Bursting behavior is expected to yield bi-
modal distributions in LoglSI histograms, whereby the
lower mode (shorter intervals) is likely to represent spikes
that occur during a burst, while the larger mode repre-
sents spikes mainly from the interburst period, as is
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Figure 2. Principle for spike sorting and burst detection. A, Example of filtered data from one electrode in a 25-d-old culture.
Spontaneous activity in the form of spikes is seen throughout the recording. Two bursts of variable durations are visible in this seg-
ment. B, Sorted spike waveforms for two different units are colored by the unit of origin. C, Colored boxes showing periods identi-
fied as bursts for the two different units seen in A and B. D, PCA of spikes obtained from a filtered signal. Units appear as distinct
clusters in PCA space, and are potentially spikes from two different neurons. E, Aligned spike waveforms showing waveforms of
classified units, highlighting the difference in the shape of action potentials for the two units. F, Determination of threshold for burst
detection. A separation between two modes of a log ISI histogram is identified (vertical lines) and used as a threshold for burst

detection.

clearly the case for Unit A (green) in Figure 2F. The valley
separating the two modes (Fig. 2F, red line) is thus an ap-
propriate threshold to segregate these two spike subpo-
pulations. We detected this valley using an unsupervised
algorithm, as described in the study by Pasquale et al.
(2010), and then considered any spikes with an ISI below
this threshold for potential inclusion within a burst, allow-
ing us to then parse individual spike trains to define the
start and end of each burst (see Materials and Methods).
Figure 3 shows raster plots for short windows of the re-
corded activity of individual units from an example MEA at
four different time points over the 3 months of culture.
Very few burst periods meeting our criteria were identified
at day 4 (Fig. 3A, orange dots), while by day 84, the major-
ity of units are seen to generate distinct bursts (Fig. 3D).
The relative prevalence of these bursts was determined
by dividing the number of bursting spikes within these pe-
riods by the total number of spikes, a metric that we refer
to as “burstiness” from here on, such that a value of 1.0
would represent a unit where spikes only occurred in
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bursts. In Figure 4, we have quantified how this and other
metrics change over time across multiple MEAs for all
four culture conditions, using a bootstrapping method to
define the distributions and confidence intervals of values
for each time point. All four culture compositions show a
gradual increase in both MFR and burstiness (Fig. 4A,B)
with an apparent plateau to steady state after 30d.
Although all four culture conditions showed this same
basic pattern, bursts were in general more prevalent in
low-astrocyte ratio cultures with high density, and less so
in cultures with low cell density.

Synchronized network bursts

As cultures mature, bursts begin to occur strikingly
synchronized on nearly all active channels simultaneously
(Fig. 3). To quantify the onset and duration of these NBs,
we expanded on the burst detection algorithm described
above to identify co-occurring bursts on multiple chan-
nels (i.e., synchronized bursts). We first defined periods
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Figure 3. Raster plots from an example MEA recording showing detected spikes for all electrodes individually (black and red
dots) and summed spikes across all electrodes binned into 100 ms bins (green line). Spikes classified within bursts are high-
lighted in red. When bursts overlap sufficiently between units, they are classified as network bursts, shown here as green
boxes. A, Day 4 recording showing spontaneous asynchronous activity on many electrodes. B, At ~3 weeks, characteristic
busts are seen, which results in an increased spike rate on electrodes synchronously, giving rise to a peak in summed binned
spike rate. C, D, As cultures continue to mature, the dynamics of network bursts change, typically increasing in occurrence fre-

quency and decreasing in duration.

(Fig. 3, green bands) where most units on the MEA enter a
bursting phase, using an algorithm described in more de-
tail in Materials and Methods. Similar to our individual unit
burstiness metric, we then also defined the relative preva-
lence of NBs as the number of NB spikes divided by the
total number of spikes for every unit, giving us a “network
burstiness” metric.

Compared with individual neuron burstiness, network
burstiness does not appear as early in culture, with both
the network burstiness metric (Fig. 4C) and the total num-
ber of network bursts (Fig. 4D) increasing over time
throughout culture over all four conditions, with a less evi-
dent plateau after 30d. As with burstiness, high-density
cultures generally showed greater network burstiness
compared with low cell density, with low astrocyte ratio at
high cell density showing the highest network burstiness.
Corresponding to this general increase in network burst-
ing, the average duration of network bursts (Fig. 4E) tends
to decline over time, with the longest durations seen
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initially in the high-astrocyte, high-cell density condition,
but declining over all four culture conditions to <5 s after
70d in culture.

Entropy

As noted earlier, during the first few days of culture, be-
fore network bursting appears, we often observed individ-
ual neurons with near-constant firing rates (i.e., with a
single narrow mode in the ISI histograms). Once the net-
work develops to exhibit network bursts, however, the ISI
histograms typically become more complex, indicative of
the more structured spike-firing patterns associated with
burst and interburst periods described above. The appa-
rent complexity of spike patterns continued to increase at
later time points, however, with highly variable patterns of
spikes also occurring in the periods between network
burst events. As this feature would not be captured by our
burst or network burst metrics, we further asked whether
entropy could be a complementary metric to assess
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Figure 4. Network characteristics of neuronal cultures. All figures show confidence intervals obtained from bootstrapping. A,
Overall activity in spikes per second for active units and four different culture compositions. B, A burstiness metric (see Materials
and Methods) giving the ratio of spikes occurring during bursts to total number of spikes. C, Network burstiness metric giving the
fraction of total spikes occurring during network burst events. D, Number of network bursts per 10 min recording. E, Duration of net-
work bursts. F, Entropy of spike trains. G, Correlation coefficient in spike rates between units on the same MEA.
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network behavior. We calculated this using Shannon’s
approach to estimate entropy as follows:

N
Entropy = — Z log(pi) * pi, 1)

i=1

where p; is the binned discrete probability density function
of the loglISI histogram, normalized as follows:

ipi =1. @)
e

This way, entropy captures the randomness in spike fir-
ing: a neuron exhibiting only one ISI (i.e., if all spikes oc-
curred like the ticks of a clock at a steady and constant
rate) would yield the lowest possible entropy value, zero,
while neurons where the ISl is highly variable would show
a higher entropy. This is fundamentally different from a
simpler metric such as the SD of ISI; however, since it dis-
tinguishes neurons that might have two simple modes (e.
g., simple bursting, because of turning on or off a simple
excitatory synaptic input) from one where responses are
less clearly stereotyped, as might be expected when
there are more complex synaptic interactions. In the for-
mer case, all spikes would be at either a very low or very
large ISI, so entropy would remain low despite the large
spread in ISIs. Figure 4F shows this metric computed
across all culture conditions and day points. Entropy in-
creases in a pattern similar to that of burstiness, increas-
ing rapidly up to ~30d, where it begins to taper off. Like
burstiness, this metric is computed on a per-unit basis.
Unlike burstiness, however, entropy continues to increase
for as long as the experiment continued, reflecting a con-
tinuous increase in the firing complexity not evident from
simple burst analysis. Before day 30, this metric reveals a
clear distinction between high-density and low-density
cultures, which show high and low entropy, respectively.
This distinction is mostly gone by day 30, where cultures
appear to reach a similar but dynamic degree of entropy,
unlike burstiness where low astrocyte ratios in high-den-
sity cultures were more consistently bursty throughout
the course of culture. This shows that entropy analysis
can be a useful tool to detect features of network activity
that would otherwise not be detected by typical burst de-
tection algorithms.

Correlation analysis

The increase in network burstiness over time that we
observed is suggestive of an ongoing maturation of syn-
chronous activity mediated by extensive synaptic cou-
pling between neurons to generate a network. As cultures
developed beyond 2-3weeks, we observed correlated
spike rates between channels across entire MEAs (i.e.,
where, at least at burst onset, most neurons recorded
were simultaneously bursting; Fig. 3D). This phenomenon
is illustrated by Figure 5, which shows “heat maps” for
MEA neuronal activity before, during, and after a network
burst (Fig. 5A). In this example, there is no obvious focus
for the onset of activity that then spreads elsewhere (Fig.
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5B). Rather, individual electrodes at distant locations on
the MEA become simultaneously active within a few tens
of milliseconds. This is consistent with possible long-range
synaptic coupling mediated via the “nerve-like” bundles of
parallel fibers described in Figure 1, which may span clus-
ters located on electrodes that are hundreds of micrometers
apart.

Measuring neuronal correlation has often been interpreted
as an indicator of synaptic connectivity (Chiappalone et al.,
2006; Brewer et al., 2009). We quantified this correlation be-
tween neurons by first transforming spike trains for each
unit to instantaneous spike rate (inverse ISI) vectors sampled
onto a discrete time base where all samples between con-
secutive spikes were set to the inverse of the interspike in-
terval. This was then downsampled to a sample rate of
320 Hz. The logarithm of this vector was then used to calcu-
late the correlation coefficient between unit pairs on all elec-
trodes. We excluded unit pairs from the same electrodes to
ignore spurious negative correlations resulting from spike-
sorting artifacts. Figure 4G shows the distributions for this
correlation across the four culture conditions and all time
points. The first 2 weeks were dominated by weakly corre-
lated or uncorrelated activity in all culture types, where neu-
rons fire mostly independent of each other. After 3 weeks, at
the time when pronounced network bursts are first seen,
this is reflected by a rapid increase in average correlation
coefficients. Note that strong correlation is not only depend-
ent on bursts, but may also reflect correlated changes such
as the silent periods after network bursts (Fig. 3D). With this
is mind, it is interesting to note a clear discrepancy between
high-density and low-density cultures, with high cell den-
sities showing both earlier emergence of strong correlation
and sustained greater correlation even after several months.
This difference, less evident in our other quantified net-
work metrics, suggests an increased ability to form a
strongly connected network in high-cell density cul-
tures, and in particular when astrocyte ratios are lower.
Importantly, correlated activity is not confined to local
circuits, but span the entire active recording area, as
seen in Figure 5. We illustrate this for one MEA in Figure
6, where we show the clusters on the MEA (Fig. 6A) to-
gether with the correlation between pairs of active units
as colored lines linking electrodes (Fig. 6B). This shows
no obvious relationship between the strength of corre-
lation and proximity between active channels (with
mean firing rate shown as the diameter of the black
markers for each unit at each location), with many of the
best correlated electrode pairs having among the larg-
est physical separations on the active area of the MEA.

Astrocyte density and spheroid network formation

We observed that cultures with higher astrocyte ratios
seemed to develop clusters faster than those with low as-
trocyte ratios, but also that newer MEAs promoted cluster
formation, and we wanted to quantify this observation. To
quantify the degree at which cells formed clusters, we
processed images (see Materials and Methods) to take
advantage of a red shift in hue caused by light absorption
when cells migrate into dense clusters and to map areas
occupied by such clusters (Fig. 7A-E). This allowed us to

eNeuro.org



11 of 18

Research Article: New Research

18 19 20 21 22 23 24 25

eMeuro

A

FAAA
|

20.5 20.55 20.6 20.65 20.7 20.75 20.8
1
B [T

Figure 5. Activity maps for all channels of a MEA during a network burst. Colors show the amplitude envelope of the filtered signal
averaged across the time points indicated above each pictogram. A, The network burst typically includes a large subset of electro-
des and often shows some response on every electrode. B, The same network burst as in A, but at a finer temporal scale. This high-
lights the characteristic “fuzziness” of an electrode during a network burst event. Network burst events typically occur

simultaneously on almost all channels, with little to no obvious initiation site.

compute a “cluster ratio” (i.e., an estimate of the relative
area of the MEA occupied by large clusters). We then cal-
culated confidence intervals, as described previously
using the bootstrap method, for each time point and for
each culture condition (Fig. 7F,G). This way, it is evident
that astrocyte concentration has a strong impact on clus-
ter formation (Fig. 7F). For this analysis, we further subdi-
vided the data to quantify the effect of the prior culture

history for individual MEAs on the rate of cluster forma-
tion. Fresh MEAs are initially hydrophobic, and the MEA
manufacturer recommends a number of potential treat-
ments to promote cell adhesion, including growing and
discarding an initial cell culture, as well as the surface
treatments such as those that we applied (coating with
PEI and laminin). Even so, during long-term culture, it is
likely that surface properties continue to evolve because

Correlation Coefficient (Min - Max)

Figure 6. An example showing correlation between units on each electrode. A, A phase contrast image montage taken immediately
after the recording. B, Black circles represent individual neurons sorted from the electrodes, with diameter scaled to the relative ac-
tivity (in spikes per second). The curved line width and color are proportional to the correlation coefficient between each unit pair.
We see that strong correlations are not confined to local clusters of cells, but span long distances, which morphologically appear
only to be connected by the characteristic “strands” or “bundles” of glial and axonal projections.
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Figure 7. Quantifying cluster formation. A, Stitched montages from phase contrast images show that organoids have a brownish
tint. B, Dividing the red value of every pixel with the corresponding blue value gives a new image that indicates relative values of red
and blue. Electrodes were removed simply by finding very dark pixels and effectively applying pixel values of nearby pixels to elec-
trode pixels. C, The background light intensity sometimes varies across the full stitched image, so a bandpass filter was applied,
which also removes uninteresting small features. This bandpass-filtered image was used in two approaches. D, E, Simple segmen-
tation to acquire the degree of cluster formation over the entire electrode array (D), and estimating a per-electrode clusterness met-
ric or cluster score of the proximity of every electrode individually (E). The latter was obtained by multiplying a small Gaussian
kernel on the positions of the electrodes. F, Cluster ratio normalized to the cluster ratio of the first day. When comparing high astro-
cyte and low astrocyte ratios, we can see that high astrocyte ratios tend to cluster more and faster. G, Cluster ratio normalized to
the cluster ratio of the first day, showing that used MEAs develops faster in high astrocyte ratios than in low astrocyte ratios. The

difference is not seen on new MEAs, which show greater cluster formation than the low astrocyte ratio in used MEAs.

of prolonged interaction with cultured cells and medium.
On used MEAs, the astrocyte density had a strong posi-
tive impact on cluster formation (Fig. 7F), where cluster
ratio has been normalized for each MEA, based on their
initial cluster value.

Spheroid network formation influences burst
development

During the course of our experiment, we observed that
electrodes that recorded directly from large clusters
showed more pronounced bursting behavior, while elec-
trodes from more peripheral locations typically show a
more regular pattern of spiking even in mature cultures,
reminiscent of that seen at early day points. This suggests
that bursting is correlated with the development of sphe-
roid networks, presumably because of the emergence of
synaptic coupling that develops mainly within clusters.
We tested this hypothesis by using the images that we
segmented to identify electrode areas with large clusters
(Fig. 7) to also estimate the degree of cluster formation in
the immediate proximity of every individual electrode.
After identifying the position of every electrode from the
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original phase contrast images, we multiplied the hue
map for the pixels in the vicinity (31 x 31 um) of every
electrode with a Gaussian mask (1 SD) to obtain a per-
electrode “clusterness” metric (i.e., an electrode-centered
weighting for the degree of nearby large cluster formation
at each electrode; Fig. 7E).

We plotted pooled data (i.e., independent of age or as-
trocyte density) for our per-electrode clusterness metric
against time (Fig. 8). We divided our data into four groups
based on our earlier analysis of their degree of burstiness
(Fig. 4B) from the most bursty (top 5% burstiness) to least
bursty (1st to 3rd percentile of burstiness), plus an addi-
tional group for electrodes that were completely “non-
bursting” (i.e., where no per-unit bursts were identified).
For high cell density (Fig. 8A), these data show a clear
trend toward more bursty electrodes being associated
with higher cluster scores, with the 95% confidence inter-
vals for the top 5% most bursty electrodes being substan-
tially higher than for less bursty electrodes. This confirms
our observation that electrodes that record directly from a
large cluster typically exhibit more pronounced bursting
behavior. The relationship is particularly prominent after 1
month of culture, and generally less so in early and late

eNeuro.org



eMeuro
A High Cell Density

» .|‘J-. A \ L, 4 Ll

0 10 20 30 40 50 60 70 80
DIV

Low Cell Density

B Top 5% Bursty Electrodes
[T 67-94% Bursty Electrodes
I 33-66% Bursty Electrodes
0.8 - M 1-32%Bursty Electrodes
B Non-Bursting Active Electrodes

o |. | ) W

|.l.| |-||,

0 10 50
DIV
Figure 8. Relationship between cluster formation and bursti-
ness for all electrodes of all MEAs of high and low cell density.
A, At high cell density, we often see that the per-electrode clus-
terness is different depending on how bursty the electrodes are.
This effect appears after the third week and is sustained
through most of the full duration of the culture cycle. In general,
the most bursty electrodes from all MEAs show higher cluster
scores, meaning that the bursty electrodes are commonly
found where cell clusters are the largest and most pronounced.
B, This effect is only occasionally seen in low cell density, likely
because of the smaller sample size of this dataset, as low cell
density often shows a smaller number of active electrodes.

o o o
o N ®
T

o
w”
T

o o
N w
T T
-
.

Per-Electrode Clusterness
o
N

o
=
T

o

Per-Electrode Clusterness

stages of culture. In lower-cell density cultures, this effect
is less obvious (Fig. 8B), although again the nonbursting
electrodes at least were rarely associated with clusters.
The weaker effect here can at least in part be explained
by the smaller sample size of low-cell density cultures.

Relationship between cluster development and
correlated network activity

Our data are consistent with the hypothesis that neu-
rons that reside in highly populated areas receive more
synaptic inputs than neurons that reside in peripheral
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areas, leading to local feedback circuits capable of gen-
erating local bursts of spikes. These could in turn en-
train network bursts via the nerve-like interconnections
between clusters. Similar observations have been re-
ported when experimenters have compared 3D to 2D
neuronal cultures, where 3D cultures showed clearer
network bursts with long durations (Frega et al., 2014).
In our pilot experiments, we observed that cultures that
rapidly form clusters (particularly on fresh MEAs) also
tend to show accelerated development of correlated
network burst activity. We wondered whether this effect
could be quantified by our analyses of clustering and
the correlation between electrodes. We thus took the
MEA-wide cluster ratio, derived from segmented im-
ages (Fig. 7D), to estimate the degree of cluster forma-
tion for every individual MEA over time. We then divided
all MEAs from a given recording date into tertiles based
on the mean network burst duration (Fig. 94). From
these data, we can clearly see that the MEAs with the
shortest network bursts were significantly more clus-
tered, while longer network bursts were largely confined
to MEAs with less cluster formation. We further divided
MEAs into two quantiles based only on the mean corre-
lation coefficients between unit pairs and plotted them
against cluster ratio (Fig. 9B). We see a strong effect of
cluster formation on correlated activity, with the upper
higher correlations between electrodes showing a greater
degree of cluster formation (Fig. 9B), particularly in the
early days after culture, but persisting for at least the
first 2 months of culture. By the third month, clustering
is so ubiquitous (independent of the culture conditions)
that most MEAs showed strong average correlation be-
tween electrodes. This supports the notion that strongly
correlated network bursting is associated with the de-
velopment of spheroid networks.

Discussion

Summary

We have described the process of spontaneous cluster
formation of human induced pluripotent stem cell (iPSC)-
derived neurons and astrocyte co-cultures on MEAs, and
the corresponding development of network bursting ac-
tivity for different cell densities and astrocyte ratios. Our
data support an influence on the formation of cell clusters
by astrocyte ratio, as well as the surface properties of
the culture substrate as determined by prior use of the
MEAs. Astrocyte ratio also influences the development of
synchronized network activity, generally by suppressing
network bursts while prolonging their duration. We ob-
served an effect of cluster formation on network activity,
where cluster formation accelerates the development of
synchronized activity, shortens network bursts, and acts
locally by producing more pronounced bursts on electro-
des in proximity to large clusters. We observed that cell
density is positively correlated with many aspects of net-
work activity, most notably the correlation coefficients be-
tween units. It is worth pointing out that initial cell density
does not reflect the local cell densities after clusters have
formed.
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Figure 9. Effect of cluster formation on network burst durations
and correlation coefficient. The cluster ratio was derived from
the ratio between pixels segmented as being part of a cluster to
the total number of pixels and represents the extent that clusters
have formed on individual MEAs. A, Network bursts durations,
averaged across one recording for all MEAs, are influenced by the
extent to which the MEAs have formed clusters. The lower tertile
(0—33%) of burst durations are relatively more confined to MEAs,
which have formed pronounced cluster (i.e., cluster formation neg-
atively influences network burst durations). B, Correlation coeffi-
cient, again averaged for all unit pairs on individual MEAs, is also
influenced by cluster formation. Correlation coefficients above the
median of all MEAs are generally confined to MEAs with stronger
cluster score. This implies that cluster formation is positively cor-
related with the formation of strongly correlated networks of
neurons.

Role of astrocytes, cell density, and prior use of
substrates in network activity and cluster formation
We showed that astrocyte density and prior MEA cul-
ture use are both major contributors to cluster formation.
It is likely that multiple cycles of culture generate a more
hydrophilic surface, facilitating adhesion. Treating surfa-
ces with charged molecules is commonly used to reduce
cell clustering (Maeda et al., 1995). The role of astrocytes
in a formation of clusters suggests that the astrocytes ex-
hibit or facilitate migratory behavior, a phenomenon that
has been reported by others (Krencik et al.,, 2017). In
mammals, the migratory behavior of astrocytes is poorly
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understood (Molofsky and Deneen, 2015), but astrocyte
precursors are capable of migrating from their site of birth
to most areas of the CNS where they terminally differenti-
ate. Mature astrocytes can, in response to injury, become
reactivated into a more migratory phenotype (Tezel et al.,
2001), a behavior that underlies the formation of glial scars,
which are known for preventing axonal regrowth in CNS in-
jury and are a major target for potential therapy (Silver and
Miller, 2004). Although reactivation of astrocytes is attrib-
uted to promoting an inflammatory and antiregenerating
environment, several beneficial effects of astrocyte migra-
tion and reactivation have been uncovered (Renault-Mihara
et al., 2008). It is possible that our cultured astrocytes are
exhibiting reactivation, but the extent of which astrocytes in-
hibit or promote axonal regrowth or otherwise influence the
formation of neuronal networks is unknown at this point.

Astrocyte influence on network activity

Astrocytes are well known for their important homeo-
static role, but also for their intimate involvement with
neuronal synapses. The role of astrocytes in suppressing
network bursts was initially surprising to us, as astrocytes
are known to facilitate the formation of synapses in the
developing cortex (Stogsdill et al., 2017). Astrocytes are
essential for neuronal survival in vivo and are believed to
be important for synapse formation, since astrocyte matu-
ration coincides with a peak in synaptic formation in neona-
tal rats (Chung et al., 2015). Astrocytes are also important
regulators of synaptic transmission and are closely associ-
ated with the synaptic clefts where they modulate multiple
synaptic transmission systems (Tan et al., 2021). The im-
portance of astrocytes in synaptic development has been
demonstrated in in vitro settings similar to ours (Taga et al.,
2019), and it has been shown that astrocytes are crucial for
the generation of network bursts in vitro in the same cell line
as the ones used in our experiment (Tukker et al., 2018).
Because of the widely held view that astrocytes are key to
neuronal function, experimenters often use astrocyte-con-
ditioned medium to improve neuronal function (Fukushima
etal., 2016).

It seems paradoxical that synchronous network events
are more pronounced and more numerous at lower astro-
cyte densities. Astrocytes are essential for excitability
through their selective uptake of glutamate from the synap-
tic cleft and secretion of glutamine to provide the required
precursor for glutamate synthesis by neurons (Anderson
and Swanson, 2000). This likely explains the dramatic in-
crease in excitability when the same neuron types used
here are co-cultured with astrocytes compared with neuro-
nal monocultures (Tukker et al., 2018). It is possible then
that at high astrocyte densities, reuptake of glutamate by
more astrocytes leads to tighter regulation of extracellular
glutamate concentration.

However, as network bursts are likely influenced by
complex interactions of multiple systems (Masquelier and
Deco, 2013), no simple parallel can be drawn between a
single property of network bursts and synaptic strength or
a single neuronal or astrocytic uptake mechanism. At this
point, one can also not exclude the possibility that astro-
cytes are passively affecting the signal characteristics of
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the electrodes, either by insulation or by some other phys-
ical interaction. However, while individual spike detection
may be affected by insulation, network bursts are very ro-
bust events, and discerning their presence and temporal
dynamics seems unlikely to be hampered by passive
properties of astrocytes. To examine this is not a straight-
forward task, however, as no perfect substitute for astro-
cytes that have identical passive properties is available at
this point. One could imagine that merely the increased
cell density reduces available energy sources for neurons.
Future experiments that would elucidate the role of astro-
cytes would have to target specific systems, such as glu-
tamate reuptake. Furthermore, one could attempt to grow
the same proportions of astrocytes and neurons in close,
but not direct, proximity. This could give us a clue as to
whether the effect of astrocytes is by direct cell interac-
tions, such as glutamate reuptake, or by indirect interac-
tions through energy consumption or by secretion.

It is worth mentioning that, although neurons and astro-
cytes constitute a large portion of the cortical biomass,
studies have shown enhanced network development by
culturing primary rat neurons on surfaces coated with de-
cellularized brain tissue (Lam et al., 2019), suggesting that
some important aspects of brain extracellular matrix
(ECM) may not be fully represented in traditional neuronal
cultures, including ours.

Cluster formation effects network bursts

Our observations all suggest a strong link between the
morphology of the spheroid networks and the network ac-
tivity of cultured neurons, but the mechanisms underlying
this relationship are not directly discernible with our current
data. It has been suggested that the relative abundance of
nearby neurons could alter the dynamics of network be-
haviors (Frega et al., 2014). When clusters form, the relative
distance that axons have to grow to find new postsynaptic
contact candidates is shorter, thus accelerating the forma-
tion of strong synaptic circuits, which are presumed to
underlie correlated activity (Chiappalone et al., 2006). On
the other hand, the nerve-like bundles of parallel neuronal
and astrocytic processes, which interconnect clusters in
our cultures, are more sparsely populated by cell bodies,
suggesting that action potentials would have to travel long
distances in unmyelinated axons to reach postsynaptic
targets in other clusters. This might be expected to reduce
the correlation between distant electrodes, yet we ob-
served the opposite. Interestingly, we see shorter network
bursts in highly clustered networks, which is opposite to
the effects observed in prior work for 3D cultures com-
pared with an equivalent 2D culture (Frega et al., 2014). On
the other hand, our model represents multiple local 3D
structures interlinked by tract-like processes, whereas
these prior 3D cultures effectively represent a single large
cluster, with cells distributed uniformly throughout it. For
cultures like ours with pronounced local clusters, the paths
over which network bursts can travel is therefore more lim-
ited, making it impossible for them to reverberate through-
out the culture for longer periods of time. It could be that
less clustered cultures have, on average, greater distances
and more directions for the network burst to travel, leaving
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time for more neurons to become ready for recruitment
into the network burst again. It is also important to point
out that a longer network burst does not necessarily trans-
late directly into a stronger synaptic network. One could
imagine that when a network is strongly connected, a net-
work burst is quick to “exhaust” the network, while a more
sparsely connected network does not immediately recruit
all neurons into the burst. This idea is supported by our ob-
servation that burst durations generally decrease over
time, although it is likely that more synapses are formed
over time.

Implications of network bursts

Many different forms of neuronal cultures are observed
to develop synchronous bursting behavior, including in-
sect neurons such as locust (Greenbaum et al., 2009) and
mosquito (Gaburro et al., 2018), and mammalian neurons
such as rat (Lam et al., 2019) and human (Heikkila et al.,
2009). Although bursts are almost ubiquitous in neuronal
culture systems, human neurons have burst characteris-
tics that set them apart from, for example, rat neurons
(Hyvérinen et al., 2019). It seems to us that because net-
work bursts are found in almost all types of neuronal cell
cultures, the translational aspect should not be asserted
without sufficient mechanistic understanding. Network
bursts should perhaps be seen more as reporters of a
large set of dynamic neuronal systems, including syn-
apse formation (Brewer et al., 2009). This view is sup-
ported by the fact that network bursts can, depending
on the cell type used, be influenced by modulation of a
large set of receptor pathways, including glutamate sig-
naling (Heikkila et al., 2009), GABA signaling, cholinergic
signaling (Dias et al., 2021), serotonergic modulation
(Novellino et al., 2011), the actions of L-type and T-type
calcium channels (Plumbly et al., 2019), and many other
possible mechanisms.

Superficially, network bursts seen in our cultured neurons
resemble disinhibited cortical network bursts (Menendez De
La Prida et al., 2006) or induced epileptiform activity from
cortical sections (Rutecki and Yang, 1998). However, further
research needs to be conducted to elucidate the translation-
al value of these cultures. The mechanistic similarities be-
tween network bursts and epileptiform activity of the brain
can be investigated using antiepileptic drugs, substances
known to cause epileptiform seizures, or even antiepileptic
nutrient profiles such as those induced by ketogenic diets
given to epileptic patients (D’Andrea Meira et al., 2019).
Furthermore, it is possible to obtain iPSCs and subsequent
neurons from individuals with genetic predisposition to epi-
lepsy to investigate how these “epileptic” neurons differ in
terms of network burst dynamics.

We mentioned previously that conventional neuronal
organoids typically contain heterogeneous cell lineages in
various stages of differentiation, which complicates the
interpretation of treatments and culture conditions as so
many confounding and highly dynamic systems influence
network bursts. With the possible future experiments out-
lined above, this is perhaps especially relevant, as off-tar-
get effects and cascading or adaptive effects become
more likely the more dynamic systems and cell types are

eNeuro.org



eMeuro

involved. Using modern genetic approaches, such as
siRNA or genetic or optogenetic constructs, these limita-
tions can be overcome to some degree, but the simplicity
of growing defined cell types that recapitulate a smaller
set of dynamic systems and cell types is a more accessi-
ble approach.

Furthermore, network bursts share some similar fea-
tures with the developing immature brain (Ben-Ari, 2001).
In the developing neocortex, synchronized network activ-
ity influences many important aspects of cortical develop-
ment including neurogenesis, differentiation, apoptosis,
and development of functional neuronal networks (Kilb et
al., 2011). Again, the relevance of these similarities is un-
certain, but it is known that neuronal electrical activity influ-
ences a large range of neuronal physiological processes
(Zhang and Poo, 2001), and, expectedly, these network
bursts are likely having a strong influence on the behavior
of the neurons. It is also important to note that many in vivo
network activities display characteristic sinusoidal field po-
tentials, which are occasionally observed, but not yet stud-
ied in this model.

Potential pitfalls of spike sorting

We used sorted spike trains as the foundation of many
of our analyses, but PCA-based spike sorting relies on
neurons showing similar waveforms regardless of spike
rates or other extrinsic or intrinsic factors. Using PCA-
based sorting techniques is common practice, but there
is no perfect technique for unsupervised clustering of
spikes (Sukiban et al., 2019). This approach is perhaps
even more questionable when neurons exhibit network
bursts, as we expect an increase in overlapping spikes,
which could alter waveform shape and thus their position
in PCA space. To our knowledge, there is currently no es-
tablished technique for overcoming this issue, and further
research into spike sorting and assessing network dy-
namics in the presence of network bursts is needed.

Limitations to spheroid networks

Above, we have described some of the benefits of
using a defined differentiated population of neurons and
astrocytes over using heterogeneous stem cell-derived
organoids. While this limits the number of possible under-
lying mechanisms for any given observation, naturally,
this also limits the range of potential mechanisms that we
are able to study. Also, our use of predifferentiated neurons
precludes functional analysis of specific developmental
stages that could be observed by in situ differentiation of
stem cell-derived cell populations.

A characteristic feature of the cortex is its layered struc-
ture, a feature that can be somewhat reproduced in unat-
tached organoid cultures (Qian et al., 2020). We have not
observed layer formation in our spheroid networks, likely
as this formation relies on early morphogenic events, which
establishes a radial morphology around the ventricular
zones (Cadwell et al., 2019). The overall lack of comparable
cytoarchitecture between spheroid networks and the cor-
tex remains a challenge worth undertaking. Thankfully,
there exists a wealth of techniques to manipulate neuronal
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morphology and connective characteristics (Millet and
Gillette, 2012), and these techniques could provide effec-
tive means to improve neuronal in vitro models. In our
opinion, too little attention is drawn toward the use of
these techniques to model known neuronal circuits,
such as the thalamocortical circuit, known for its impor-
tance in consciousness, epilepsy, and sleep (Steriade, 2005).
Although capturing the full complexity of the human brain
fits a certain purpose, it is known from computer simula-
tions that relatively simple models can still exhibit, for exam-
ple, gamma oscillations (Traub et al., 1997), a phenomenon
that, to our knowledge, has only been reproduced in vitro on
exceedingly rare occasions (Samarasinghe et al., 2021).
This seems to suggest that the path toward a brain-on-a-
chip lies in achieving appropriate cytoarchitecture and con-
nective properties.

Concluding remarks

Recent advances in 3D neuronal cultures often use arti-
ficial substrates or highly heterogeneous cell populations,
whereas our model benefits from being sufficiently simple
in cell population and being composed only of living
material. The common approaches for 3D neuronal
cultures today are organoids and soft ECM or hydrogel
substrates. Although ECM-based and hydrogel-based
approaches have been successful, they rely on either
handcrafting hydrogels or obtaining ECM components
from living tissue with the risk of batch variations.
Generally, multiunit extracellular high-throughput re-
cordings are challenging in such contexts as cells are
not grown directly on electrodes, and solutions to this
are promising but still in an early developmental phase
(Soscia et al., 2020). While organoids are powerful in
reproducing complex electrophysiological behaviors
of the human brain (Yokoi et al., 2021), pluripotent cell-
derived organoids often show large heterogeneity,
posing a challenge for functional analysis in their sheer
complexity (van den Hurk and Bardy, 2019).

To conclude, we argue that our model provides an ideal
middle ground in complexity, between traditional 2D cul-
ture and more elaborate 3D organoids. Although it is a
simple model with only three cell types, it nevertheless re-
capitulates many morphologic and physiological features
observed in living brain tissue, while maintaining the con-
venience and physiological access to electrical activity
traditionally associated with 2D cultures. The features that
we describe, including long-range connections mediated
by nerve-like structures and the patterns of bursting that
resemble ex vivo models for epileptiform behavior, com-
bined with the possibilities offered by iPSC technology
suggest spheroid networks as a platform for further re-
search, and for modeling the human cortex.
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