
Citation: Yuan, Y.; Zhang, W.; Liu, C.;

He, Y.; Zhang, H.; Xu, L.; Yang, B.;

Zhao, Y.; Ma, Y.; Chu, M.; et al.

Genome-Wide Selective Analysis of

Boer Goat to Investigate the Dynamic

Heredity Evolution under Different

Stages. Animals 2022, 12, 1356.

https://doi.org/10.3390/

ani12111356

Academic Editors: Maria

Cristina Cozzi and Emilia Bagnicka

Received: 6 April 2022

Accepted: 23 May 2022

Published: 26 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

animals

Communication

Genome-Wide Selective Analysis of Boer Goat to Investigate
the Dynamic Heredity Evolution under Different Stages
Ying Yuan 1, Weiyi Zhang 1, Chengli Liu 1, Yongmeng He 1, Haoyuan Zhang 1, Lu Xu 1, Baigao Yang 1,
Yongju Zhao 2 , Yuehui Ma 3 , Mingxing Chu 3 , Zhongquan Zhao 2, Yongfu Huang 1, Yanguo Han 1, Yan Zeng 1,
Hangxing Ren 4, Gaofu Wang 4 and Guangxin E 1,*

1 College of Animal Science and Technology, Southwest University, Chongqing 400715, China;
15703001951@163.com (Y.Y.); lwing0829@163.com (W.Z.); lcl222333@outlook.com (C.L.);
yongmenghe123@163.com (Y.H.); swuzhanghy@163.com (H.Z.); lujiusym@163.com (L.X.);
yangbaigao915@163.com (B.Y.); h67738337@swu.edu.cn (Y.H.); hyglyp1987@163.com (Y.H.);
zengyan@swu.edu.cn (Y.Z.)

2 Chongqing Key Laboratory of Forage & Herbivore, Chongqing 400715, China; zyongju@163.com (Y.Z.);
zhongquanzhao@126.com (Z.Z.)

3 Institute of Animal Husbandry and Veterinary Medicine, Chinese Academy of Agricultural Sciences,
Beijing 100097, China; mayuehui@caas.cn (Y.M.); chumingxing@caas.cn (M.C.)

4 Chongqing Academy of Animal Sciences, Chongqing 402460, China; rhxe@163.com (H.R.);
20031216@163.com (G.W.)

* Correspondence: eguangxin@126.com; Tel.: +86-023-68250205; Fax: +86-023-68251196

Simple Summary: Boer goat is a world-famous meat-type goat breed that underwent long-term
artificial selection from African indigenous animals. The current study displayed the genome-wide
selection signature analyses of South African indigenous goat (AF), African Boer (BH), and Australian
Boer (AS), to investigate the hereditary basis of artificial selection in different stages. Moreover, the
θπ, FST, and XP-CLR methods were used to search for the candidate signatures of positive selection
in Boer goats. Ten genes (e.g., BMPR1B, DNER, ITGAL, and KIT) under selection in both groups were
identified and are potentially responsible for reproduction, metabolism, growth, and development.
This study provided a comprehensive overview of genomic variations in Boer goat, which may
provide a basis for further resource protection and improvement of this breed.

Abstract: Boer goats, as kemp in meat-type goats, are selected and bred from African indigenous
goats under a long period of artificial selection. Their advantages in multiple economic traits,
particularly their plump growth, have attracted worldwide attention. The current study displayed
the genome-wide selection signature analyses of South African indigenous goat (AF), African Boer
(BH), and Australian Boer (AS) to investigate the hereditary basis of artificial selection in different
stages. Four methods (principal component analysis, nucleotide diversity, linkage disequilibrium
decay, and neighbor-joining tree) implied the genomic diversity changes with different artificial
selection intensities in Boer goats. In addition, the θπ, FST, and XP-CLR methods were used to search
for the candidate signatures of positive selection in Boer goats. Consequently, 339 (BH vs. AF) and
295 (AS vs. BH) candidate genes were obtained from SNP data. Especially, 10 genes (e.g., BMPR1B,
DNER, ITGAL, and KIT) under selection in both groups were identified. Functional annotation
analysis revealed that these genes are potentially responsible for reproduction, metabolism, growth,
and development. This study used genome-wide sequencing data to identify inheritance by artificial
selection. The results of the current study are valuable for future molecular-assisted breeding and
genetic improvement of goats.
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1. Introduction

Following the advances of high-throughput sequencing technology, the scientific
community has widely explored relative heredity basis with adaptability and economic
phenotype of animals using genome wide selective analysis strategy (GWSA) [1–3]. In
particular, a series of candidate genes related to domestication and artificial selection of
domestic animal was determined. For example, the mutation genotype pattern located in
the promoter region of PDGFD may be the cause of fat deposition in the tail of sheep [4];
the AHR gene related to female reproduction is under strong positive selection during the
domestication of pigs [5]. An 8-kb sequence spanning the AMY2B locus showed signals of
selection of key roles in starch digestion and fat metabolism [6].

Furthermore, many studies displayed the GWSA to investigate the key genes of
environmental adaptability [7] and multiple economic traits [8,9] in goats, as well as
their population migration [10], phylogeny, and domestic history [11]. For instance, a
study found that MUC6 gene mutation in goats can improve the antiparasitic ability
of their gastrointestinal tract to ensure that they have more adaptability to the human
environment [12].

According to relevant reports, the indigenous goat accounted for more than 63% of
total stock in South Africa, and it displayed a remarkable contribution to local livestock
husbandry. Moreover, high-performance breeds under artificial selection appeared with the
transformation of small-scale production systems to large-scale commercial agriculture [13].
Boer goat is a world-famous meat-type goat breed that underwent long-term artificial
selection from African indigenous animals, and Australian Boer goats are introduced
from Africa and further artificially selected [14]. To date, many countries have introduced
Boer goats to improve local breeds and achieved excellent benefit. However, there is very
little research literature on genomic changes in Boer goats. Therefore, the genetic basis of
artificial selection in the improvement of economic traits can be elucidated by investigating
the genomic genetic divergence between Boer goats and African indigenous goats with
different stages.

In this study, we displayed the GWSA among African indigenous, South African Boer,
and Australian Boer goats to identify the inheritance shake by artificial selection. Results
were valuable for future molecular-assisted breeding and genetic improvement of goats.

2. Materials and Methods
2.1. Animals, Genome Sequencing, and Data Acquisition

The experiment was carried out in strict accordance with the guidelines of the Inter-
national Cooperation Committee of Animal Welfare on the care and use of experimental
animals.

Genomic DNA of 10 African Boer goats (BH) were supplied by Sokoine University
of Agriculture (SUA) of Tanzania. Sequencing libraries of all samples were constructed
by using NEBNext® MLtra DNA library preparation kit (Illumina®, 15,026,486 Rev. C,
San Diego, CA, US) and whole genome sequencing was performed by Illumina NovaSeq
6000 × Ten platform (BGI, Shenzhen, China), the sequencing depth, for BH animals, was
expected around 10×. The genome datasets of total 30 Australian Boer goats (AS) from our
previous study [15] and 30 African indigenous goats (AF) were obtained from NCBI SRA
database (PRJNA671542), respectively (Table S1).

2.2. Read Filtering, Alignment, and Variant Calling

The quality controlled and filtered raw sequencing reads (RSR) were obtained by
fastp (v0.20.1)”—w 15—cut—window—size 4—cut—mean—quality 15—5 3—3 3—length—
required 40”, which is a method used to filter out low quality reads (HQRs). The HQRs
were mapped to the Capra hircus reference genome of ARS1 (GCF_001704415.1) and the
MEM algorithm of Burrows–Wheeler Aligner (v.0.7) was selected with the minimum
mapping quality set to 20 and unmapped reads were filtered out using SAMtools (v.1.3).
Following this, read groups were added and PCR duplicates were marked using Picard
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(http://broadinstitute.github.io/picard/ (accessed on 1 June 2021)). Single nucleotide
polymorphism (SNP) variants were called by GATK (v.3.7) with HaplotypeCaller, Genotype
GVCFs, and Select Variants module. After SNP calling, we used the module “Variant
Filtration” of GATK to obtain high-quality SNPs with the parameters. Variants were
filtered based on “QD < 2.0 || FS > 200.0 || SOR > 10.0 || MQRankSum < −12.5 ||
ReadPosRankSum < −8.0”. After filtering, the SNPs were filtered out again by “—max-
missing 1—max-alleles 2—min-alleles 2—maf 0.05”.

2.3. Diversity, Phylogenetic, and Population Genetic Analyses

Distance matrix was calculated by VCF2D is (https://github.com/BGI-shenzhen/
VCF2Dis (accessed on 1 June 2021)) and Neighbor-joining phylogenetic network was
constructed by Phylip (https://github.com/topics/phylip (accessed on 1 June 2021)), and
visualization performed by iTOL online tool (https://itol.embl.de/ (accessed on 1 June
2021)). Principal component analysis (PCA) was estimated and graphics visualized by
GCTA (https://github.com/cooljeanius/gcta (accessed on 13 July 2021)) and R program
(ggplot2 package), respectively. Linkage disequilibrium (LD) was performed using Pop
LDdecay software (https://github.com/BGI-shenzhen/Pop LDdecay (accessed on 13 July
2021)).

2.4. Genome-Wide Selective Sweep Analysis and Gene Annotation

GWSA of SNPs were performed with two groups, as follows: (1) 10 African Boer goats
(case) versus 30 African indigenous individuals (control); and (2) 30 Australian Boer goat
(case) versus 10 African Boer goats (control). For the SNPs dataset, the pairwise fixation
index (FST) and π ratio (πcase/πcontrol) were calculated with 40 kb sliding windows and 20 kb
step size using vcftools [16]. The cross-population composite likelihood ratio (XP-CLR) is a
method for the determination of the selection signal, can avoid ascertainment biases and
successfully detect older signals and the selections on standing variation, which means
the allele frequency changed very rapidly due to random drift between two populations.
Non-overlapping sliding windows of 50 kb were used, and the maximum number of SNPs
within each window was 600 [17]. The top 5% was chosen as the significance threshold
for XP-CLR. The variants were annotated with ANNOVAR (ANNOate VARiation), which
can utilize annotation databases from annotation data set conforming to Generic Feature
Format version 3 (GFF3). Candidate genes were annotated by the intersection of the
common parameters with top 5% (FST, πratio, XP-CLR). We can estimate the fraction of
intronic, exonic, missense, stop-gained, etc. variants after annotated by Variant Effect
Predictor (VEP). Additionally, candidate genes were subjected to gene ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) with KOBAS 3.0 (http://kobas.cbi.
pku.edu.cn/ (accessed on 28 July 2021)) rely on human.

3. Results

Obtained from 70 animals were 18,321,865 SNPs. The frequency of most SNPs is
located in the intergenic (66.79%) and intron (26.66%) regions. The Ti/TvRatio is 2.38. On
the contrary, the least frequency of SNPs is distributed in the 3′ UTR (0.32%) and 5′ UTR
(0.07%; Table S2).

The phylogenetic network revealed that all populations were divided into single
linkage (Figure 1A), which corresponded to that of the PCA pattern (Figure 1B). Analysis
result of LD (r2) showed the highest mean LD and the slowest decay in the AS population.
In contrast, the lowest mean LD and the fastest decay in the AF population (Figure 1C)
are shown. Coincidentally, the highest genome-wide nucleic acid diversity (ND) is AF in
comparison with BH and AS (Figure 1D).

http://broadinstitute.github.io/picard/
https://github.com/BGI-shenzhen/VCF2Dis
https://github.com/BGI-shenzhen/VCF2Dis
https://github.com/topics/phylip
https://itol.embl.de/
https://github.com/cooljeanius/gcta
https://github.com/BGI-shenzhen/Pop
http://kobas.cbi.pku.edu.cn/
http://kobas.cbi.pku.edu.cn/
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Figure 1. Genomic characteristic of the three goat breeds. (A) Neighbor−joining (NJ) tree of the 70 
individuals based on the matrix of Hamming genetic distance. (B) Plot of the first and the second 
principal components for the 70 individuals. (C) Genome−wide average linkage disequilibrium de-
cay in each breed. (D) The boxplot indicates the distribution of nucleotide diversity (pi) of each 
breed. AF: African indigenous goat, BH: African Boer goat, AS: Australian Boer goat, PC: principal 
components, NJ: Neighbor−joining, LD: linkage disequilibrium. 

The GWSA result of group 1 (BH vs. AF) revealed that 339 candidate genes (Table 
S3) were extracted from intersected windows by the top 5% of common parameters of FST, 
θπ rate, and XP-CLR (Figure 2A). The GO analysis results (Table S4) showed that a high 
growth trait-related GO terms were identified, such as tissue development (GO:0009888), 
muscle fiber development (GO:0048747), and fibroblast growth factor binding 
(GO:0017134). In addition, several reproduction-related terms were also identified, such 
as positive regulation of intracellular estrogen receptor signaling pathway (GO:0033148), 
gonad development (GO:0008406), and sperm-egg recognition (GO:0035036). In addition, 
the KEGG analysis results (Table S4) showed that a significant number of genes are en-
riched in the top 10 (corrected p value < 0.01) pathways (i.e., transcriptional misregulation 
in cancer, pathways in cancer, glutamatergic synapse, oocyte meiosis, human T-cell leu-
kemia virus 1 infection, Rap1 signaling pathway, Ras signaling pathway, and progester-
one-mediated oocyte maturation). 

Figure 1. Genomic characteristic of the three goat breeds. (A) Neighbor−joining (NJ) tree of the 70
individuals based on the matrix of Hamming genetic distance. (B) Plot of the first and the second
principal components for the 70 individuals. (C) Genome−wide average linkage disequilibrium
decay in each breed. (D) The boxplot indicates the distribution of nucleotide diversity (pi) of each
breed. AF: African indigenous goat, BH: African Boer goat, AS: Australian Boer goat, PC: principal
components, NJ: Neighbor−joining, LD: linkage disequilibrium.

The GWSA result of group 1 (BH vs. AF) revealed that 339 candidate genes (Table S3)
were extracted from intersected windows by the top 5% of common parameters of FST, θπ
rate, and XP-CLR (Figure 2A). The GO analysis results (Table S4) showed that a high growth
trait-related GO terms were identified, such as tissue development (GO:0009888), muscle
fiber development (GO:0048747), and fibroblast growth factor binding (GO:0017134). In ad-
dition, several reproduction-related terms were also identified, such as positive regulation
of intracellular estrogen receptor signaling pathway (GO:0033148), gonad development
(GO:0008406), and sperm-egg recognition (GO:0035036). In addition, the KEGG analysis
results (Table S4) showed that a significant number of genes are enriched in the top 10
(corrected p value < 0.01) pathways (i.e., transcriptional misregulation in cancer, pathways
in cancer, glutamatergic synapse, oocyte meiosis, human T-cell leukemia virus 1 infec-
tion, Rap1 signaling pathway, Ras signaling pathway, and progesterone-mediated oocyte
maturation).

Subsequently, the result of GWAS in group 2 (AS vs. BH) using the SNP dataset re-
vealed that 295 candidate genes (Table S5) were obtained by the top 5% of three parameters
(Figure 2B) at the gene overlapping region. It was similar to the GO and KEGG (Table S6)
enrichment in the rich multiple categories of group 1, such as those with well-known
pathways (i.e., PI3K-Akt signaling pathway, Rap1 signaling pathway, MAPK signaling
pathway, and Ras signaling pathway). Numerous GO terms were related to growth devel-
opment (e.g., striated muscle tissue development, cardiac muscle contraction, and positive
regulation of smooth muscle cell proliferation), reproduction (e.g., intracellular estrogen
receptor signaling pathway, spermatogenesis, and male gonad development), immunity
(e.g., T cell costimulation, T cell migration, and B cell apoptotic process), and metabolism
(e.g., insulin secretion, glycogen catabolic process, and phosphate-containing compound
metabolic process).
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Figure 2. Wide-genome selective sweep analysis for SNPs in 70 goats using a π ratio of nucleotide
diversity (πcase/πcontrol), pairwise fixation index (FST), cross-population composite likelihood ratio
(XP-CLR). (Manhattan map of FST, Manhattan map of πcase/πcontrol, Manhattan map of XP-CLR.).
BH vs. AF (A), AS vs. BH (B).

Interestingly, outstanding visible divergence in digestion and metabolism-related
KEGG pathways was found according to the results of the gene functional enrichment of
selected genes at two different stages (Table 1). Notably, 10 genes (BMPR1B, DNER, EPHA6,
ERCC6L2, ITGAL, KIT, PROM1, RBFOX2, RFX3, and U6) under selection in both groups
were identified.

Table 1. The visible divergence of KEGG pathways related digestion and metabolism at two differ-
ent stages.

BH vs. AF AS vs. BH

Digestive system

Gastric acid secretion (ADCY6, ADCY7) Protein digestion and absorption (COL5A3, KCNN4, COL4A4)
Salivary secretion (LPO, ADCY6, ADCY7) Pancreatic secretion (SLC4A4, PRKACA, KCNQ1)

Pancreatic secretion (ADCY6, CPA1, ADCY7) Bile secretion (SLC4A4, ABCG2)
Bile secretion (ADCY6, ADCY7, LDLRAD4) Gastric acid secretion (PRKACA, KCNQ1)

Mineral absorption (SLC30A1) Vitamin digestion and absorption (SLC19A3)
Vitamin digestion and absorption (FOLH1) Salivary secretion (KCNN4, PRKACA)

Fat digestion and absorption (NPC1L1)
Cholesterol metabolism (LDLR)

Protein digestion and absorption (CPA1)

Amino acid metabolism

Lysine degradation (SETD7) Tryptophan metabolism (KMO, ECHS1)
Alanine, aspartate and glutamate metabolism (ASPA, FOLH1) Valine, leucine and isoleucine degradation (ECHS1, HMGCLL1)

Glycine, serine and threonine metabolism (GLDC) Lysine degradation (ECHS1, BBOX1)
Cysteine and methionine metabolism (DNMT1, MRI1)

Histidine metabolism (ASPA)
Valine, leucine and isoleucine degradation (MCCC1)

Metabolism of cofactors and
vitamins

Thiamine metabolism (DDX31) Pantothenate and CoA biosynthesis (ENPP3)
Pantothenate and CoA biosynthesis (DPYS) Riboflavin metabolism (ENPP3)

Folate biosynthesis (GPHN) Nicotinate and nicotinamide metabolism (ENPP3)
beta-Alanine metabolism (DPYS) Retinol metabolism (RPE65)

Lipid metabolism Steroid biosynthesis (MSMO1) Fatty acid degradation (ECHS1, ACOX1)
Ether lipid metabolism (PLD1) Synthesis and degradation of ketone bodies (HMGCLL1)

Steroid hormone biosynthesis (DHRS11) Glycerolipid metabolism (MBOAT2, AGK)
Glycerophospholipid metabolism (PLD1) Fatty acid biosynthesis (FASN)

alpha-Linolenic acid metabolism (ACOX1)
Biosynthesis of unsaturated fatty acids (ACOX1)

Fatty acid elongation (ECHS1)
Sphingolipid metabolism (SPHK1)

Steroid hormone biosynthesis (HSD17B3)

AF: African indigenous goat, BH: African Boer goat, AS: Australian Boer goat.
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4. Discussion

In this study, the ND of both Boer goat populations was lower than African indigenous
goats. The higher LD linkage within the AS population indicated that the frequency of
genotype may be gradually changed at different stages as humans expected during the
artificial selection process [18–20]. The phylogenetic and PCA pattern relationship of
the three populations was inconsistent with their geographic location, which implied
that artificial selection may contribute to the changes in animal genome diversity greatly
and rapidly.

Boer goat was initially selected and bred from AF goats and has a superior economic
phenotype and fecundity [14,21]. Interestingly, 10 genes were identified to undergo selec-
tion in both breeding stages of the Boer goat, which was widely confirmed to be involved
in various biological functions (e.g., reproduction, growth, and metabolism).

Despite a series of metabolism-related (MRD) genes found in the two stages of BH and
AS, the genes and their MRD pathways were different. For example, in terms of amino acid
metabolism, six pathways related to amino acid metabolism were enriched and involved in
the digestion and absorption of 17 essential and nonessential amino acids in the AF to BH
stages. In the BH to AS stage, only three MRD pathways were enriched including eight
kinds of amino acids. The AF feeding conditions are generally single and backward [22].
In addition, BH has undergone artificial selection and breeding in the commercial system
with improved living conditions and medical security. Corresponding changes have been
made in the environmental adaptation, metabolism, and other hereditary traits of Boer
goats. Furthermore, the differences in the ecological environment of the habitat, breeding
standards, and improved raising level in AS led to the rapid coevolution of the metabolism
and environment of Boer goats. This was also confirmed by a large number of candidate
genes related to the metabolism of fatty acids, minerals, and vitamins, as identified in AS
vs. BH. Thus, the coevolution between the metabolic inheritance and the integrated living
environment in animals has been universally confirmed [23–25].

Particularly, some candidate genes related to metabolism have been attracting at-
tention. Ectonucleotide pyrophosphatase/phosphodiesterase3 (ENPP3), as a regulator
of N-acetylglucosaminyltransferase GnT-IX (GnT-Vb), would have widespread and sig-
nificant impacts on glycosyltransferase activities [26]. Short-chain enoyl-CoA hydratase
(ECHS1) is involved in amino and fatty acid catabolism in mitochondria and its deficiency
results in Leigh syndrome or exercise-induced dystonia [27]. Niemann–Pick C1-Like 1
(NPC1L1) was widely verified to be a cholesterol import protein and mediated intestinal
cholesterol absorption [28]. It also participated in the intestinal absorption of fat-soluble
vitamins [29]. In addition, genes that have been continuously selected in terms of immune
resistance exist due to changes in the living environment. The integrin LFA-1 (also known
as ITGAL), also known as CD11a, is upregulated in metastatic melanoma, highly expressed
in most immune cell populations [30]. ITGAL is closely linked to the pathogenesis of
diverse immune-related diseases [31]. Therefore, the capture of these genes implied that
the metabolic and physiological functions of Boer goats are continuously affected by the
selective breeding process.

A series of reproduction-related genes were identified in different stages. For example,
many studies have shown that BMPR1B is associated with litter size in animals [32–34]. It
is the main gene that affects the ovulation rate and litter size in sheep [35–37]. In addition,
a series of studies have confirmed that the BMPR1B can affect follicular development,
ovulation [38], and cause ovarian insufficiency [39]. These genes may directly affect the
fertility of Boer goats under strong artificial selective pressure at different stages of Boer
goat. In addition, KIT is verified to be involved in mammalian oocyte growth and follicular
development [40]. A lack of KIT can lead to the loss of oocytes. In the ovaries of rodents,
KIT displayed an important role in the migration, proliferation, and survival of primordial
germ cells [41].

Among melanin-related genes, KIT is pivotal in the melanogenesis signaling pathway,
and mutations or deletion of KIT can cause different hair and skin colors in mammals [42,43].
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For example, a single A-G base missense mutation in exon 13 has been reported to cause
differential expression of KIT in Liaoning cashmere goats, resulting in different coat col-
ors [44]. This may be the genomic evidence for the changes in coat color in Boer goats at
different stages.

Subsequently, excellent growth performance is one of the important goals of Boer
goat breeding. Therefore, investigating the selective genes between different breeding
stages of Boer goats may help elucidate the genetic basis of muscle development [15].
Notably, some genes identified in this study attracted the attention of the authors. For
example, as an essential for maintaining skeletal muscle mass and protein homeostasis, the
RBFOX2 was confirmed to control the fusion of myoblasts in myogenesis by coordinating
the alternative splicing of Mef2d and Rock2 [45]. Notch activators (EDNR) are putatively
involved in the interconnected signaling networks that control satellite cell function [46].
Studies have shown that EDNR gene expression is closely related to marbling levels in
larger beef cattle populations [47]. In addition, it has also been shown that the delivery of a
negative estrogen receptor gene (EDNR) abrogates estrogen- and progesterone-regulated
gene expression [48].

Finally, the evolution process of animals started from a very distant era, some of the
inferior traits of these animals were eliminated, and the superior traits were improved by
humans to provide a stable breeding state according to their requirements [49]. Artificial
selection resulted in outstanding physiologically and phenotypically changes in these
animals [49,50]. This is powerful proof of the coevolution between animal hereditary and
feeding environment.

Of course, this study still has a limitation, e.g., the sample size of African Boer goats
(10) is observably less than other sample groups, which is also a common flaw in a large
number of previous related studies [51–53] due to the high sequencing cost. However,
high sequencing depth with tenfold genome coverage of each individual and strict quality
control conditions were performed in this study can ensure the detection rate of genetic
variation enrichment and genotype accuracy of the whole genome.

5. Conclusions

This study provided a comprehensive overview of genomic variations in Boer goat
genomes under different stages. The characterization of population structure and genomic
diversity will point out the direction for genetic assessment and the development for rea-
sonable breeding strategies of Boer goats. Moreover, a series of candidate genes that may
be important for the meat quality traits as well growth and fertility of this breed were iden-
tified. In addition, some genes also implied that the metabolic and physiological functions
of Boer goats are continuously affected by the selective breeding process. These results
provide a basis for further resource protection and breeding improvement of this breed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12111356/s1, Table S1: Basic information and data reads-
depth of 70 individuals; Table S2: SNP mutation types and numbers from 70 goats individuals; Table
S3: 339 candidate genes were extracted from top 5% of common parameters of FST, θπ rate and
XP-CLR from BH vs. AF; Table S4: Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analysis of 339 candidate genes from top 5% of common parameters of FST, θπ rate
and XP-CLR from BH vs. AF based on SNP datas; Table S5: 295 candidate genes were extracted from
top 5% of common parameters of FST, θπ rate and XP-CLR from AS vs. BH; Table S6: Gene Ontology
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