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Over the past 20 years, numerous robust analyses have identified over 20 genes related

to familial Parkinson’s disease (PD), thereby uncovering its molecular underpinnings

and giving rise to more sophisticated approaches to investigate its pathogenesis. α-

Synuclein is a major component of Lewy bodies (LBs) and behaves in a prion-like manner.

The discovery of α-Synuclein enables an in-depth understanding of the pathology

behind the generation of LBs and dopaminergic neuronal loss. Understanding the

pathophysiological roles of genes identified from PD families is uncovering the molecular

mechanisms, such as defects in dopamine biosynthesis and metabolism, excessive

oxidative stress, dysfunction of mitochondrial maintenance, and abnormalities in the

autophagy–lysosome pathway, involved in PD pathogenesis. This review summarizes

the current knowledge on familial PD genes detected by both single-gene analyses

obeying the Mendelian inheritance and meta-analyses of genome-wide association

studies (GWAS) from genome libraries of PD. Studying the functional role of these

genes might potentially elucidate the pathological mechanisms underlying familial PD

and sporadic PD and stimulate future investigations to decipher the common pathways

between the diseases.

Keywords: familial Parkinson’s disease, genetics, GWAS, dopamine, alpha-synuclein, LRRK2

INTRODUCTION

The nature of Parkinson’s disease (PD) was initially described by James Parkinson in his “Essay on
the shaking palsy” in 1817. Since then, efforts have been made to understand the clinical symptoms
and pathophysiology of this disease. However, currently, only incomplete symptomatic treatments
are available. The common symptoms of PD are tremor, rigidity, akinesia, and unsteadiness. Age
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is an important prognostic factor that increases the prevalence
of PD, with 41 patients in their 40s, 107 patients in their 50s,
428 patients in their 60s, 1,087 patients in their 70s, and 1,903
patients older than 80 years being detected (all per 100,000)
(1, 2). PD is pathologically characterized by the degeneration of
dopamine neurons in the substantia nigra and the deposition of
Lewy bodies (LBs) or Lewy neurites, a pathological hallmark of
PD, which are often observed in the affected regions (3). The
major component of LBs is α-synuclein, encoded by the SNCA
gene located in 4q21-22 (4). α-Synuclein is thought to be the key
protein involved in the pathological mechanisms underlying PD
and other neurodegenerative disorders.

The development of molecular genetics technologies and
family tree analysis for PD have identified genes linked to PD
(5–9). Over 20 genes, namely PARK genes from PARK1 to
PARK23 from Online Mendelian Inheritance in Man (OMIM)
(https://www.omim.org), are associated with the development of
PD. However, the PARK genes include heterogeneous genes such
as Mendelian genes, candidate loci, or genes not confirmed to
mediate the disease pathogenicity (10). The PARK genes also
include genes confirmed as genes not associated with typical
PD (i.e., ATP13A2, associated with atypical parkinsonism) (11).
SNCA and LRRK2 have been identified using positional cloning
in families with PD (7, 12–14) and were also later detected as
major risk factors for PD using genome-wide association studies
(GWAS) (15–18). The autosomal recessive genes inherited in
families, PRKN (6) or PINK1 (9), were not identified through
the GWAS as common genetic risk variants probably due to
their low prevalence. There are several large studies that reported
a lack of association between heterozygous PRKN and PINK1
variants with PD (19–21), while PD risk might be increased with
heterozygous variants in these genes (22).

This review aimed to describe the clinical differences among
patients with various pathogenic genes associated with PD or
Parkinsonism to highlight potential underlying mechanisms
regulating these genes, with a particular focus on SNCA,
LRRK2, VPS13C, glucosylceramidase beta (GBA1), GCH1, and
microtubule-associated protein tau (MAPT). These genes have
been identified as PD causative or susceptible genes in PD
families and were found through meta-analyses of GWAS (15–
18). We aimed to identify the common pathological pathways
governed by these genes between familial and sporadic PD.

PARK GENES

Genes associated with familial PD were historically categorized
as PARK. To date, the genes belonging to the PARK category
range from PARK1 to PARK24 (Table 1) (OMIM: https://
www.ncbi.nlm.nih.gov/omim), with PARK1 being the same as
PARK4. The PARK category includes twelve autosomal dominant
inheritances, nine autosomal recessive inheritances, one X-
linked, and four unidentified genes. Although the PARK16 locus
(1q32) is a prominent risk locus associated with PD, responsible
genes have not been determined (15). Other genes excluded from
the PARK category, such asGBA1,GTP cyclohydrolase 1 (GCH1),

andMAPT, were also significantly linked to PD or parkinsonism
through meta-analyses of GWAS (17, 18, 23).

The prevalence of familial PD among all patients with PD is
∼10–20% (24), whereas the rest of the cases without any family
history are considered sporadic PD (80–90%). LRRK2 p.G2019S
is the most common mutation in specific populations, such as
in 30% cases of the Ashkenazi Jews or Arab Berbers. In other
populations, the prevalence of LRRK2 was estimated at 2–5%
(25). There are very few other pathogenic genes involved in
PD, showing a prevalence of 1–3% among familial PD (26–34).
Overall, the prevalence of pathogenic genes is extremely low
among both familial and sporadic PD.

GENOME-WIDE ASSOCIATION STUDIES

Several meta-analyses of GWAS have been performed to identify
the molecular mechanisms regulating PD (15–18, 23). Based on
the analyses from over a million patients and controls, common
genes associated with the PD cohort were PARK16,GBA1, SNCA,
LRRK2, GCH1, and VPS13C, with SNCA and LRRK2 showing a
significantly higher association with PD than other genes across
populations (15, 18). Moreover, another gene, MAPT, has been
identified to be associated with the PD cohort. In the European
cohort, SNCA, GBA1, and LRRK2 are significantly associated
with PD (17, 23). In the Asian cohort, SC2C, WBSCR17, and
BST1 showed a robust association with PD (15, 18). Intriguingly,
the fact that familial PD genes have been identified by GWAS
means that familial PD genes are involved in the pathogenesis of
sporadic PD, strongly suggesting common pathogenic pathways
between familial and sporadic PD, or that multiple concurrent
variants of familial PD genes may relate to the rapid motor
progression of sporadic PD (35).

In the next section, we have described the genetic evidence,
clinical and pathological features, and molecular backgrounds in
terms of PD-associated genes. The main clinical features are also
summarized in Table 2.

SYNUCLEIN ALPHA

Clinical Symptoms of Patients With SNCA

Variants
Synuclein alpha (SNCA) variants associated with PD are of
two types: one has missense mutations, such as p.A30G,
p.A30P, p.E46K, p.H50Q, p.G51D, p.A53T/E/G/V, and p.E83Q,
whereas the other has amplifications, including duplication and
triplication (5, 8, 12, 36–43). Patients with missense variants are
likely to develop parkinsonism in young- or middle-aged adults,
along with cognitive decline or psychosis (26, 44–46). Patients
with genetic amplifications showed young- or middle-aged
onset of parkinsonism, psychosis, and consciousness fluctuation,
resembling the symptoms of PD with dementia (PDD), along
with LBs (47, 48). The amplified genes contain two- or three-fold
tandem repeat replication of an SNCA locus (49). SNCA locus
amplification induces an increased expression of α-synuclein in
the brain or peripheral blood and accumulations of α-synuclein
in the detergent-insoluble fraction (50). The clinical severity
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TABLE 1 | PARK categories from the genes related to PD.

Locus (OMIM #) Location HUGO gene name Gene

symbol

Disease onset Inheritance LB pathology Genes

appeared

by GWAS

PARK1 (163890) 4q22.1 Synuclein alpha SNCA Young- or middle-aged

onset

AD +++ +

PARK2 (602544) 6q26 Parkin RBR E3

ubiquitin-protein ligase

PRKN Young- or juvenile-onset AR –

PARK3 (NA) 2p13 PARK3 Late-onset AD

PARK4 (163890) =

PARK1

4q22.1 Synuclein alpha SNCA Young- or middle-aged

onset

AD +++ +

PARK5 (191342) 4p13 Ubiquitin C-terminal hydrolase

L1

UCHL1 Young- or middle-aged

onset

AD

PARK6 (608309) 1p36 PTEN induced kinase 1 PINK1 Young-onset AR –

PARK7 (602533) 1p36.23 Parkinsonism associated

deglycase

PARK7 Young-onset AR

PARK8 (609007) 12q12 Leucine-rich repeat kinase 2 LRRK2 Late-onset AD –, + or +++ +

PARK9 (610513) 1p36.13 ATPase cation transporting

13A2

ATP13A2 Young-onset AR –

PARK10 (NA) 1p32 Parkinson disease 10

(susceptibility)

PARK10 Late-onset Unclear

PARK11 (612003) 2q37.1 GRB10 interacting GYF

protein 2

GIGYF2 Late-onset AD

PARK12 (NA) Xq21-q25 Parkinson disease 12

(susceptibility)

PARK12 Late-onset X-linked

PARK13 (606441) 2p13.1 HtrA serine peptidase 2 HTRA2 Young- and late-onset AD

PARK14 (603604) 22q13.1 Phospholipase A2 group VI PLA2G6 Young-onset AR

PARK15 (605648) 22q12.3 F-box protein 7 FBXO7 Young-onset AR

PARK16 (NA) 1q32 Parkinson disease 16

(susceptibility)

PARK16 Late-onset Unclear

PARK17 (601501) 16q11.2 VPS35 retromer complex

component

VPS35 Late-onset AD

PARK18 (600495) 3q27.1 Eukaryotic translation initiation

factor 4 gamma 1

EIF4G1 Late-onset AD

PARK19 (608375) 1p31.3 DnaJ heat shock protein

family (Hsp40) member C6

DNAJC6 Young-onset AR

PARK20 (604297) 21q22.1 Synaptojanin 1 SYNJ1 Young-onset AR

PARK21 (614334) 20p13 DnaJ heat shock protein

family (Hsp40) member C13

DNAJC13 Late-onset AD

PARK22 (616244) 7p11.2 Coiled-coil-helix-coiled-coil-

helix domain containing

2

CHCHD2 Late-onset AD +++

PARK23 (608879) 15q22.2 Vacuolar protein sorting 13

homolog C

VPS13C Young-onset AR +++ +

PARK24 (176801) 10q22.1 Prosaposin PSAP Middle- or late-onset AD

Non-categorized genes in PARK

(600225) 14q22.2 GTP cyclohydrolase 1 GCH1 Young-onset AD – +

(606463) 1q22 Glucosylceramidase beta GBA1 Young-onset AR +++ +

(NA) 5q34 ATPase phospholipid

transporting 10B (putative)

ATP10B Young-onset AR

OMIM, Online Mendelian Inheritance in Man; HUGO, human genome organization; AD, autosomal dominant; AR, autosomal recessive; NA, not applicable.
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TABLE 2 | Major clinical features for each gene.

Genes Clinical features

SNCA Young- or middle-aged onset of parkinsonism, cognitive decline, psychosis, consciousness fluctuation, resembling the symptoms of PDD or DLBs.

LRRK2 Middle- or late-onset of parkinsonism with an excellent response to levodopa, resembling the symptoms of sporadic PD.

VPS13C Early- or middle-age onset with severe cognitive decline.

GBA1 Young-onset with cognitive decline, resembling the symptoms of DLBs. short survival times.

GCH1 Juvenile- or young-onset with dopa-responsive dystonia.

of patients with SNCA multiplications obeys the gene-dosage-
dependent phenomenon (51). Patients with four copies of the
gene show a more severe PD onset at a younger age (the 20–
30s) than those with three copies (the 40–50s) (51). More copy
numbers of SNCAmay induce more severe symptoms, indicating
that the increased intracellular concentration of α-synuclein is
responsible for PD development.

The neuroimaging reports regarding familial PD are scarce.
Most of the analyses were from the cross-sectional study
without considering the duration between the disease onset
and examination time. However, these differences may suggest
that each variant has a different prognosis or a different
spread of α-synucleinopathy. SNCA amplifications may present
specific neuroimaging patterns related to dementia with LBs
(DLBs) or PDD (26, 48). The brain magnetic resonance imaging
(MRI) showed progressive atrophic changes in the hippocampus
(26, 48), whereas [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-
(4-iodophenyl) tropane (123I-FP-CIT) single-photon emission
computed tomography (SPECT) showed a reduced expression
of the dopamine transporter. [123I]metaiodobenzylguanidine
(MIBG) myocardial scintigraphy showed a reduced heart-to-
mediastinum ratio (52). The brain SPECT or positron emission
tomography (PET) revealed hypoperfusion in the bilateral
occipital lobes (48). Patients with a missense variant of SCNA,
p.A53T, showed atrophic changes in the hippocampus and
the temporal lobes in the brain MRI, a decreased heart-
to-mediastinum ratio in MIBG myocardial scintigraphy, and
hypoperfusion in the parieto-occipital lobe in the brain SPECT
(53, 54). The findings infer that SNCA variants cause the
widespread propagation of α-synuclein, with patients showing
symptoms similar to DLB.

Pathology of Patients With SNCA Variants
Patients with SNCA variants commonly show a severe neuronal
loss in the substantia nigra or the hippocampus and widespread
appearances of LBs and Lewy neurites (47, 55) with Braak’s stage
5 or 6 (46, 54). Braak’s staging is advocated to confirm the severity
of LB formation (56) localized in the medulla oblongata in stage
1, the pontine tegmentum in stage 2, the midbrain in stage 3, the
basal prosencephalon and mesocortex in stage 4, the neocortex
in sensory association areas of the neocortex and prefrontal
neocortex in stage 5, and the premotor and motor areas of the
neocortex in stage 6. The higher stages include the pre-stage
areas. The staging is based on the LB pathology that is widespread
from the medulla oblongata to neocortices and depends on
disease severity. Patients with SNCA variants commonly show

the higher Braak’s staging with DLB (57). Patients with SNCA
triplication showed higher expression levels of α-synuclein in the
blood and brain tissue (50). Moreover, disease onset correlates
with SNCA gene dosage (51). The findings support the hypothesis
that the expression levels of α-synuclein direct the clinical
severity of PD in patients with SNCAmultiplications.

α-Synuclein and Lysosomal Storage
Disorders
The abnormal expression and aggregation of α-synuclein are
critical factors for PD, PDD, or DLB. α-synuclein-positive
inclusions or LBs have been identified in several other
disorders, such as multiple system atrophy (MSA) or pure
autonomic failure, Alzheimer’s disease, Down’s syndrome,
Hallervorden–Spatz disease, and Gaucher’s disease (58–63). The
physiological function and accumulation of α-synuclein are only
partially understood. α-Synuclein is predominantly localized in
presynaptic termini of neurons and regulates neurotransmitter
release promoting sensitive factor attachment protein receptor
(SNARE)-complex assembly (64, 65). α-Synuclein is subjected
to lysosomal degradation by the autophagy–lysosomal systems
(66) and the chaperon-mediated autophagy (67). Lysosomes play
a central role in maintaining cellular metabolism, degradation,
and recycling of amino acids and lipids, eliminating damaged
proteins/organelles or proteins with pathogenic properties
(66, 68). The lysosomes collaborate with micro-autophagy
and macro-autophagy, chaperone-mediated autophagy, and
endosomes to conduct their functions (67). Impaired lysosomal
function induces the accumulation of aggregated α-synuclein
and the formation of LB. Thus, lysosomal dysfunction induces
dysfunctional protein and organelle accumulation, leading to
lysosomal storage disorders. Several genes, such as SNCA,
LRRK2, GBA1, ATP13A2, and VPS35, among the pathogenic
ones related to familial PD, are associated with lysosomal
storage disorders (68). Genetic screening for 54 genes related
to lysosomal storage disorders has identified PD-related genes,
such as GBA1, SMPD1, CTSD, SLC17A5, and ASAH1 (69). Most
patients with PD (56%), including 40% with familial and 60%
with sporadic PD, have at least one putative damaging variant
related to lysosomal storage disorders (69).

Formation of LBs and Propagation of
α-Synuclein Pathologies
It has been reported that a patient’s brain having DLB shows
a high accumulation of insoluble α-synuclein (70, 71). The
membrane unbound form of α-synuclein is natively unfolded,
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whereas the elevated protein levels or pathogenic mutations of
α-synuclein promote structural conversion to crossed β-sheets,
leading to the accumulation of insoluble α-synuclein fibrils
(72). Electron microscopy analysis reveals that the introduction
of α-synuclein p.A53T mutation accelerates fibril formation
with a twisted appearance (73). Other SNCA variants are also
likely to facilitate the structural conversion and subsequent LB
formation. The degrees of aggregation and fibril propagation by
α-synuclein in the central nervous system probably determine
the clinical severity of PD, PDD, or DLB obeying Braak’s
hypothesis rule (56). PD is now recognized as a systemic
disease (74). The accumulation of α-synuclein aggregates is
observed in the brain and the cardiac nerves, or Auerbach’s or
Meissner’s plexus (75, 76). Concurrently, patients with PD show
both motor symptoms and nonmotor symptoms (77). Motor
symptoms include gait disturbance, tremor, and rigidity, whereas
the nonmotor symptoms include persistent pain, insomnia,
constipation, urinary incontinence, and orthostatic hypotension
accompanied by syncope or faintness (77). The propagation and
expansion of α-synuclein aggregates may be essential factors in
determining the clinical severity and symptoms of PD.

Propagation of α-Synuclein and Prion-Like
Hypothesis
Animal models of α-synuclein propagation suggest that PD is a
prion-like disease. Inoculation of α-synuclein derived from PD
brain tissues with LBs replicates progressive nigral degeneration
and triggers the pathological conversion of endogenous α-
synuclein in mouse and monkey models (78). The inoculation
of insoluble α-synuclein from the DLB brains also causes
hyperphosphorylated α-synuclein pathology in mice (79). The
inoculation of α-synuclein fibrils in mice expressing pathological
human p.A53T mutant α-synuclein causes rapid propagation
(80). These previous studies support the “prion-like hypothesis,”
indicating how pathological α-synuclein derived from PD,
DLB, or MSA, as well as fibrils prepared from recombinant
protein, induces the cell-to-cell transmission, the spreading of
α-synuclein, and amyloid-like formation.

GENETIC EVIDENCE, CLINICAL AND
PATHOLOGICAL FEATURES, AND
MOLECULAR BACKGROUNDS OF OTHER
GENES ASSOCIATED WITH PD

Glucosylceramidase Beta
The GBA1 gene consists of 11 exons, 7.6 kb in length, and is
located on chromosome 1q21 (81). GBA1 pathogenic variants
cause Gaucher disease (82, 83), a lysosomal storage disorder
characterized by the deficiency of the enzyme glucocerebrosidase
(GCase) (84). It is categorized into three types: type 1, non-
neuropathic Gaucher disease with various types of symptoms
and courses; type 2, acute neuropathic Gaucher disease with an
infantile-onset and rapidly progressive neurological symptoms;
and type 3, chronic neurological symptoms (84). Patients with
type 2 and type 3 Gaucher disease commonly show neurological
symptoms (84), such as parkinsonism, hydrocephalus, eye

movement disorder, epilepsy, dementia, or ataxia. Pathologically,
type 1 Gaucher disease presented numerous α-synuclein-positive
inclusions similar to LBs in the hippocampus (60). Moreover,
GBA1 variants have a higher odds ratio, with approximately
five-fold OD between PD vs. controls (85). Patients with GBA1
pathogenic variants likely induce cognitive decline and short
survival times, whose symptoms resemble DLBs with no or
low levels of Alzheimer’s disease (86–88). GBA1 is involved in
the glucolipid metabolism and hydrolyzes glucosylceramide to
ceramide and glucose and glucosylsphingosine to sphingosine
and glucose (84). It has been proposed that lysosomal
impairment directly causes α-synuclein aggregation, leading to
the pathogenesis of synucleinopathies (66, 89).

LRRK2 Gene
The pathogenic variants in the LRRK2 gene are themost common
genetic cause of familial PD (90). The prevalence of LRRK2
p.G2019S is over 30% in the Ashkenazi Jews or Arab Berber.
Other populations essentially showed ∼0–4% prevalence among
sporadic and familial PD (25). LRRK2 is located on 12q12,
consists of 51 exons, and encodes a large protein with 2,527-
amino acids that belong to the ROCO protein family and
include seven domains: armadillo, ankyrin, leucine-rich repeat
(LRR), Ras in complex proteins (Roc), C-terminal of Roc (COR),
kinase, andWD40 (14). We originally mapped the region around
12p11.2–q13.1 from the Sagamihara family in Japan (7). Two
reports concurrently identified the causative gene and mutations
from Spanish, German–Canadian, and American families (13,
14). After numerous screening analyses, to date, seven missense
mutations (p.N1437H, p.R1441C/G/H, p.Y1699C, p.G2019S, and
p.I2020T) are thought to be pathogenic variants from the
pathological observations (91).

Patients with LRRK2 variants show middle- or late-onset
parkinsonism with an excellent response to levodopa (25, 90).
Their clinical course resembles that of sporadic PD. LRRK2
showed broad types of brain pathologies, including LB pathology,
tau pathology, TDP-43 pathology, or isolated nigral degeneration
(91, 92). LRRK2 p.G2019S, themost prevalent variant, commonly
showed LB pathology with broad severities of Braak’s stage from
3 to 6 and rarely involves tau pathology (91). On the other hand,
tau pathology is found in almost 100% of the p.G2019S carriers
(93). A Japanese PD family with LRRK2 p.I2020T also showed
a variety of pathological changes, including LB formation and
glial cytoplasmic inclusion (94). Moreover, patients with LRRK2
p.R1441G or p.R1441H showed isolated nigral degeneration in
the absence of LB pathology (92, 95, 96). Different domain
mutations may induce different pathologies.

Neuroimaging of patients with LRRK2 variants shows
heterogeneous results. Three of the six patients with p.G2019S
show a reduced heart-to-mediastinum ratio of MIBGmyocardial
scintigraphy (97), whereas patients with p.R1441G/H show no
reduction of heart-to-mediastinum ratio (90, 92). The brain MRI
commonly show no atrophic changes even over 10 years from
disease onset (90, 92).

Rab GTPase, a branch of the Ras superfamily, is a crucial
regulator of membrane trafficking (98). A subset of Rab proteins,
including Rab3, Rab8, Rab10, and Rab12, have been reported
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as physiological substrates of LRRK2 (99–101). Although most
pathogenic mutants of LRRK2 appear to have enhanced kinase
activity toward substrates, mutations in each domain could
determine the clinical phenotype and produce differential effects
in terms of neuropathology. p.R1441H/G/C localized in the
Rab-like ROC domain, which stimulates the LRRK2 kinase, is
thought to function as a molecular switch of LRRK2 (102).
The ROC domain mutant, p.R1441G, phosphorylates Rab10
more strongly than the kinase domain mutant, p.G2019S,
and appears to be a potent activator of these Rab proteins
(103). LRRK2 has been reported to be involved in various
organelle functions andmembrane dynamics in cells (104). These
include mitochondria, endo-lysosomes, trans-Golgi network,
microtubules, phagocytosis, endocytosis, and exocytosis of
synaptic vesicles (105–112). At present, these reports do not
provide a unified understanding of the molecular function of
LRRK2, and the critical molecular function involved in the
pathogenesis is expected to be analyzed in the future.

VPS13C Gene
The VPS13C gene belongs to the VPS13 family, consisting of
VPS13A, VPS13B, VPS13C, and VPS13D (113). The size of
each gene is considerably huge, including over 70–80 exons
and 200–800 kb of genomic DNA sequence (113). The VPS13
gene is conserved from yeasts and is evolutionarily divided into
four types in human. Lesage et al. (114) identified a truncated
variant in VPS13C from a large Turkish pedigree of PD via
linkage mapping and whole-exome sequencing (114). Patients
exhibited early- or middle-age onset of PD and severe cognitive
decline, with their brain pathology showing abundant expression
of LB pathology. The burden analysis proved the statistical
significance of variants in VPS13C among the Chinese early-
onset PD cohorts (115). Another meta-analysis report proved
the statistical significance of VPS13C among the Han Chinese
population (116). Conversely, there is no association between
VPS13C variants and late-onset PD (117). These findings strongly
suggested that the VPS13C variants possibly relate to the early-
onset PD and not late-onset.

The VPS13A variants are associated with chorea-
acanthocytosis of hyperkinetic involuntary movements and
abnormal morphology of erythrocytes (118). VPS13B variants
with Cohen disease of developmental delay, microcephaly,
retinal dystrophy, and intermittent neutropenia (119). VPS13D
variants induce heterogeneous neurodegenerative disorders
such as ataxia, developmental delay, spastic paraplegia, or
spinocerebellar ataxia (120, 121).

It has been reported that the loss of VPS13C causes oxidative
stress-mediated mitochondrial deterioration and upregulated
PINK1/PRKN-dependent mitophagy (114). VPA13A and
VPS13C are related to lipid transport between the endoplasmic
reticulum and other organelles (122). VPA13A is also involved
in the actin dynamics (123) and loss of VPA13A impaired
autophagy and phagocytosis (124). Mitochondrial dysfunction
is commonly observed in the loss-of-function of VPS13 genes
and is a major pathogenic cascade to induce dopaminergic cell
loss, which may be associated with the mitochondrial quality

control pathway regulated by PRKN and PINK1 (125, 126). Loss-
of-function of VPS13B induces dysfunction of Golgi-trafficking
(127). Loss-of-function of VPS13D induced peroxisome loss and
mitochondrial morphological abnormality (128).

The yeast VPS13 gene is thought to be involved in lipid
transport by forming contact sites between organelles. Like yeast
VPS13, the human VPS13 paralogue genes are thought to be
involved in lipid transport, but the details of their molecular
functions are still not clearly understood. VPS13A is associated
with the endoplasmic reticulum (ER)-mitochondria contacts
(122); VPS13B is mainly localized in the Golgi complex (127,
129); VPS13C is localized at ER-late endosome/lysosome contacts
(122); and VPS13D is localized at ER-mitochondria and ER-
peroxisome contact sites (130). They may be involved in lipid
transport at the different sites, and these differences may be
responsible for distinct pathophysiologies.

The neuroimaging reports of patients with VPS13C variants
are unavailable.

GCH1 Gene
The GCH1 gene was initially identified in a patient with dopa-
responsive dystonia (DRD), distinctively known as Segawa’s
disease or DYT5a (131). The patients show unique symptoms,
such as juvenile or young-age onset, dystonia initially in the
feet, and excellent response to a low levodopa dosage (132).
It was also reported that other symptoms include diurnal
fluctuations, cramps, dystonic tremors, and sleep benefits (133).
The characteristic symptoms resemble those of patients with
PRKN or PINK1 variants (6, 9). Patients with PRKN or PINK1
also manifested the juvenile- (under 20 years of age at onset)
or young-onset parkinsonism (under 40 years) with excellent
response to even the low doses of levodopa, which leads to the
brain pathology in the absence of LBs (6, 9).

A large population study showed a high frequency of GCH1
variants in patients with PD compared to controls (134). The
variants in GCH1 are related to an increased risk of PD. Some
GWAS also showed the association between the GCH1 locus
and PD (16, 17). In a large population study from China, GCH1
deletions or non-coding region variants were associated with
early-onset or familial PD (135). Although theGCH1 variants are
rare, they have been a proven risk factor for the onset of DRD
and PD. DRD and PD may involve a common pathway causing
abnormal dopamine metabolism (136).

Continuous monitoring for 32 years revealed that many
patients showed no alteration or mild progression of dystonia
(133), with a mild prognosis. The pedigrees primarily show
autosomal dominant inheritance and female predominance
(132). Some pedigrees harbor the complex appearance of
patients with DRD and PD (133, 137). Adult-onset patients
with GCH1 variants show upper-limb tremors or non-tremulous
parkinsonian syndrome (133). The brain pathologymostly shows
the absence of LB pathology, and none to minor changes of
morphological abnormalities, but only a few cases were reported
(138, 139). In brief, patients with DRD and GCH1 variants show
distinctive symptoms compared to PD. The patients with PD and
GCH1 variants may involve neuronal loss in the striatum or the
substantia nigra due to the reduction of dopamine transporter
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expression, although there are no brain pathology reports of
PD phenotype with GCH1 variants. It has been indicated in
reports that “age” may be a factor in distinguishing DRD from
PD. Patients with young-age onset likely belong to the DRD
phenotype, whereas those with older-age onset likely belong to
the PD phenotype (137). Both the disorders would be improved
by oral administration of levodopa.

Studies on GCH1 reported that half of the patients with PD
show a reduction in heart-to-mediastinum ratio (137). Patients
with DRD commonly showed normal values of dopamine
transporter uptake in 123I-FP-CIT SPECT (140). However,
patients with PD phenotype showed a reduction in dopamine
transporter expression (134).

The enzymatic deficiency of dopamine production is
the main pathogenesis of DRD (141). GCH1-encoded GTP
cyclohydrolase 1 functions upstream of the dopamine synthesis
(138) (Figure 1). The deficiency of GTP cyclohydrolase
1 reduces the production of tetrahydrobiopterin, an
essential co-factor in dopamine production by tyrosine
hydroxylase (142). The reduction in tyrosine hydroxylase
levels caused by GCH1 mutations also contributes to the
symptoms related to DRD (141). Thus, deleterious variants
of GCH1 are likely responsible for the decrease in dopamine
production more directly than other genes like SNCA, LRRK2,
orMAPT.

MAPT Gene
TheMAPT gene, which encodes tau protein, is not a PD causative
gene and is linked to frontotemporal dementia. However,MAPT
is a gene that should not be ignored as a basis for PD
pathology. Patients with MAPT, which was detected by GWAS,
are sometimes indistinguishable from patients with PD in terms
of clinical symptoms.Moreover, tauopathy is frequently observed
in LRRK2 pathology, and MAPT variants were reported to
correlate with the severity of PD (143, 144). Historically, the
region of chromosome 17q21–22 has been identified as a locus
related to familial frontotemporal dementia and parkinsonism
by the linkage analysis (145–148). In 1998, three missense

mutations and three mutations in the 5
′

-splice site of exon
10 in MAPT were identified in large Dutch kindred with
hereditary frontotemporal dementia (149). Tau is fundamentally
associated with multiple neurodegenerative disorders, such as
Alzheimer’s disease, progressive supranuclear palsy, corticobasal
degeneration, frontotemporal dementia, and prion disease (150).

Patients with MAPT mutations showed middle-aged onset
of progressive parkinsonism and cognitive decline with a high
penetrance ratio (151–153). Patients likely involve psychiatric
symptoms and rigid–akinesic parkinsonism (154) and show a
partial response to levodopa at early-onset PD (153, 155).

Tau maintains the stability of microtubules in neurons and
promotes axonal outgrowth (156). The brain pathology of

FIGURE 1 | Dopamine metabolism and GCH1. GCH1, GTP cyclohydrolase 1; PTS, 6-pyruvoyltetrahydropterin synthase; SR, sepiapterin reductase; TH, tyrosine

hydroxylase; AADC, aromatic L-amino acid decarboxylase; HVA, homovanillic acid.
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FIGURE 2 | Working hypothesis for LB formation and neuronal cell death in PD. Aging, oxidative stress, and mitochondrial dysfunction lead to dysregulation of the

trans-Golgi network (TGN) and endo-lysosomes in neurons, ultimately impairing the removal of the precursor of pathogenic α-synuclein (protofibrils) through

ubiquitin-proteasome pathway and autophagy, promoting LB formation, and propagating pathogenic α-synuclein to neighboring neurons. Mutations in PD causative

genes and risk-related genes (VPS13C, LRRK2, SNCA, and GBA1) accelerate oxidative stress, mitochondrial dysfunction, and dysregulation of the TGN and

endo-lysosomes.

patients with MAPT mutations shows hyperphosphorylated tau
inclusions, such as neurofibrillary tangles.

It has been highlighted that patients with MAPT mutations
or tauopathy-related disorders show no abnormalities of
MIBG myocardial scintigraphy. Patients with MAPT mutations
commonly show atrophic changes in the frontotemporal lobes in
the brain MRI within a few years from disease onset. 123I-FP-CIT
SPECT showed a severe reduction in dopamine transporter from
an early stage (153, 157). Thus, patients with MAPT mutations
may be diagnosed with PD and treated with levodopa at an
early clinical stage. Our research has identified patients with
MAPT N279K or p.K298_H299insQ from patients with middle-
aged onset of parkinsonism or those clinically diagnosed with
familial PD (153, 158). Tau imaging SPECT revealed a high tau
accumulation from the brain stem to the basal ganglia (153).
The distribution of tau pathology may relate to the onset of
parkinsonism and disease severity. In vivo, tau imaging analysis
will expand our understanding of tau-related disorders (159).

GENETIC INTERACTIONS AMONG
PATHOGENIC GENES

The brain pathology of patients with SNCA mutations, GBA1
variants, LRRK2 p.G2019S, or VPS13C variants shows LB

formation. Excessive α-synuclein or α-synuclein aggregation
is suggested to impair cellular vesicular transport, by which
the transport of newly synthesized lysosomal enzyme GCase,
encoded by GBA1, from the ER to the lysosomes may be
inhibited (89). On the other hand, the perturbation of transport
of GCase, involved in the metabolism of glycosphingolipids,
could also lead to a reduction in lysosomal function and inhibit
the lysosomal degradation of α-synuclein (89). This vicious
cycle of GBA1 variants has been proposed to be a risk factor for
theLB formation. The GBA1 pathogenic variants reportedly
accumulate glucosylceramide and glucosylsphingosine,
probably in lysosomes (160). These lipids could promote
the aggregation of α-synuclein (161, 162). Nevertheless, the
aforementioned considerations are speculative and await further
experimental validation.

The LRRK2 was reported to inhibit the GCase activity via
Rab10 phosphorylation in dopaminergic neurons differentiated
from iPS cells harboring LRRK2 pathogenic mutations (162).
Although the details of the inhibitory mechanism of GCase by
Rab10 remain unknown, the reduction of the GCase activity by
LRRK2 may be indirectly involved in α-synuclein accumulation
and aggregation. As mentioned above, the relationship between
LRRK2 and α-synuclein aggregation is complex because LRRK2
causes various pathologies, such as LB pathology, tau pathology,
and TDP-43 pathology. According to a recent systematic
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pathological analysis, α-synuclein pathology is observed in
63.6% of LRRK2 mutation carriers (144). On the other hand,
tau pathology is found in ∼100% of carriers. Most LRRK2
mutation carriers show comorbid AD pathology with amyloid-
β. These observations suggest that the pathology caused by
LRRK2 mutations is fundamental to neurodegenerative diseases.
An interesting observation is the high frequency of AD-
type phosphorylated tau accumulation (144). LRRK2 surrounds
microtubules and inhibits neuronal axonal transport (110,
112). Microtubule modification by LRRK2 may affect the
binding of tau to microtubules or tau phosphorylation after
dissociation (163–165).

The molecular relationship between VPS13C and α-synuclein
has not been elucidated so far. Because VPS13C is also localized
to the lysosomes, its variant may impair lysosomal function,
leading to the consequent accumulation of α-synuclein (166).
Alternatively, altered lipid transport and metabolism caused by
mutations in VPS13Cmay lead to the aggregation of α-synuclein.
These possibilities should be explored in the future. Since GCH1
is involved in dopamine synthesis, it is different from the
pathologies caused by the genes mentioned above. However, a
report shows decreased BH4 contents in the cerebrospinal fluids
of patients with LRRK2 p.N1437H and p.G2019S, and patients
with sporadic PD (136). This may result from dopaminergic
neurodegeneration, but it may also be possible that pathogenic
LRRK2 impairs the function of GCH1.

PERSPECTIVES

The GWAS has bridged the gap between molecular-based studies
of familial PD and sporadic PD. The multiple genes discovered
from the familial PD studies induce dopaminergic neuronal
loss and the formation of LB pathology or nigral degeneration
(Figure 2). The pathogenic genes yield symptoms related to
parkinsonism. Moreover, “aging” is the most critical factor for
the deterioration of mitochondrial maintenance or disturbance
of intracellular transports during neuronal activity. However,
there have been numerous unsolved questions regarding the
molecular mechanism of PD pathogenesis, such as how multiple
genes interact with each other to induce the dopaminergic
neuronal loss, how they yield a single phenotype, what is the
precise molecular model of sporadic PD, or how the genes cause
LB pathology.

The next generation of GWAS research will lead to analyzing
the interaction among multiple PD risk genes. As a leading

example, a GWAS for the LRRK2 modifier genes has found
that the WD40 protein CORO1C or DNM3 may modulate
the penetrance or age-of-onset of LRRK2 mutations (167, 168).
New advances in GWASs may come from other fields of
research. The loss-of-function of a preferred promoter has been
reported to release its partner enhancer, which loops to a
neighboring alternative promoter and activates it (169). This
target switching process has been termed “enhancer release and
retargeting” (169). This study shows that SNPs on the promoter
of PARK16 alter the balance of expression intensity of the genes,
NUCKS1 and RAB7L1, in PARK16 (169). This phenomenon
may explain the unresolved questions about PARK16-mediated
disease susceptibility. Thus, new concepts in genomic research
can lead to novel interpretations of the data from GWAS for
PD that remain mainly unexplored. On the other hand, it is
challenging to identify recessively inherited PD genes such as
PRKN and PINK1, which GWAS did not detect, and it is desirable
to develop new methods.

A more thorough identification of risk-associated
genes that cause PD will provide a clearer picture of
the molecular pathogenesis of PD, yielding better and
more sophisticated molecular-targeted therapies. These
would include oligonucleotide therapeutics (170), antibody
therapies against α-synuclein and tau (171, 172), or
replacement therapies of induced pluripotent stem cells
(173). Hence, a growing body of literature hints at
increasing expectations for future GWAS research to help
overcome PD.
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