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Tumor-targeting bacteria elicit anticancer effects by infiltrating hypoxic regions, releasing

toxic agents and inducing immune responses. Although current research has largely

focused on the influence of chemical and immunological aspects on the mechanisms

of bacterial therapy, the impact of physical effects is still elusive. Here, we propose a

mathematical model for the anti-tumor activity of bacteria in avascular tumors that takes

into account the relevant chemo-mechanical effects. We consider a time-dependent

administration of bacteria and analyze the impact of bacterial chemotaxis and killing rate.

We show that active bacterial migration toward tumor hypoxic regions provides optimal

infiltration and that high killing rates combined with high chemotactic values provide the

smallest tumor volumes at the end of the treatment.We highlight the emergence of steady

states in which a small population of bacteria is able to constrain tumor growth. Finally,

we show that bacteria treatment works best in the case of tumors with high cellular

proliferation and low oxygen consumption.

Keywords: cancer, bacterial therapy, mathematical modeling, chemotaxis, space competition

1. INTRODUCTION

Cancers display huge variability between different patients and even in the same patient.
Nonetheless, cancer cells share a finite set of hallmarks such as sustained proliferation, invasion and
metabolic reprogramming, which shape their behavior in solid tumors (Hanahan and Weinberg,
2011). Among other hallmarks, tumor cells are known to recruit new blood vessels to sustain their
proliferation, in a process known as tumor angiogenesis (Folkman, 1971). This neovasculature is
generally altered in terms of architecture and morphology of the vessels, leading to poor perfusion
of certain areas of the tumor (Carmeliet and Jain, 2000). Hypoxic regions are thus created and
maintained during tumor development, concurring to the progression of cancer cells toward
malignant phenotypes (Vaupel and Mayer, 2007). Moreover, low nutrient levels can lead to cell
quiescence, a situation in which tumor cells delay metabolic activities and become less sensitive
to standard chemotherapies (Challapalli et al., 2017). Such hypo-perfused areas are generally
associated with poor patient outcome but, on the other hand, could be exploited for tumor targeting
(Wilson and Hay, 2011). The same hypoxic areas provide indeed a niche for bacteria to colonize
the tumor and exert a therapeutic action (Forbes, 2010; Zhou et al., 2018). The use of bacteria
for cancer therapy dates back hundreds of years, with doctors reporting tumor regression in
several patients (Kramer et al., 2018). However, such treatments also caused some fatalities and
the limited understanding of the therapeutic mechanisms of action shifted research efforts toward
other strategies - especially radiotherapy (Kramer et al., 2018). In the last few years the use of live
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bacteria for cancer treatment has regained interest, and several
bacterial strains have been tested in animal models and even
advanced to clinical trials (Torres et al., 2018). Nevertheless,
clinical development of such therapies is still facing significant
issues due to infection-associated toxicities and incomplete
knowledge of infection dynamics (Kramer et al., 2018; Zhou et al.,
2018). As much research was focused on the immune responses
after bacteria administration, a clear picture of the interaction
between cancer and bacterial cells is still lacking.

Mathematical modeling emerges as a promising candidate to
assist the understanding of bacterial therapymechanism of action
in cancer. Mathematical models have been applied in the context
of cancer to elucidate its progression and treatment (Byrne, 2010;
Altrock et al., 2015). Recent examples combining experimental
and modeling work in bacterial therapies are given in Kasinskas
and Forbes (2006), Jean et al. (2014), Hatzikirou et al. (2017), and
Suh et al. (2018), featuring in vitro as well in vivo experiments.

Here we describe a mathematical model for bacteria-based
cancer therapy within avascular tumors, focusing on the
influence of physical effects on therapy outcomes. Such effects
are present in every biological system but are often concealed
by the complexity of the interactions between molecular and
cellular players. Here, we show through a simple mathematical
model that these effects take an important part in bacterial
therapies and are able to influence their outcomes. The model
is formulated in the context of mixture theory, a framework
with a long history of applications to biological problems—see
for example Ambrosi and Preziosi (2002); Breward et al. (2001,
2002, 2003); Byrne and Preziosi (2003); Chaplain et al. (2006);
Preziosi and Tosin (2009) and the recent reviews of Siddique
et al. (2017) and Pesavento et al. (2017). Our aim is to evaluate
the impact of bacterial chemotaxis and anti-tumor activity on
cancer cells, using spheroids as a prototype of avascular tumors.
We consider bacterial administration after full formation of the
spheroid, when hypoxic areas are present. We describe the effects
of the treatment on the behavior of the spheroid constituents, e.g.,
tumor cells and bacteria volume fractions, at different time points
and over the spheroid radius.

The remainder of the paper is organized as follows. In section
2, we describe the mathematical model and its derivation. In
section 3 we present model results, analyzing the impact of
different model parameters. Finally, in section 4 we discuss
the biological implications of the results and suggest new
research directions.

2. MATERIALS AND METHODS

We propose a mathematical model describing the impact of
bacterial cells on tumor spheroid growth. The model is based
on mixture theory, a continuum theory that allows to describe
the chemo-mechanical interactions between different tissue
components. We follow the approach discussed in Preziosi
(2003) and Byrne (2012) and, specifically, adapt the derivation
in Boemo and Byrne (2019) to our problem. In the following we
present the final form of the equations, leaving the full derivation
in the Supplementary Information.

We describe the tumor as being composed of three main
constituents (or phases in the language of mixture theory): tumor
cells (TCs), bacteria and extracellular material. The variables
referring to these quantities will be identified by the indexes
c, b, and f, respectively. We also consider the presence of
a nutrient, i.e., oxygen, diffusing over the spheroid domain.
The model equations are derived by applying conservation of
mass and linear momentum to each phase, and enforcing the
saturation constraint (i.e., all the space in the spheroid is occupied
by the phases, there are no voids). Then, we impose suitable
assumptions regarding the mechanical properties of the model
constituents and their interaction terms.

2.1. Model Equations
In the following we will be interested in the case of tumor
spheroids, for which the assumption of spherical symmetry
applies. The problem reduces to the set of Partial Differential
Equations (PDEs):
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Here, φc,φc, and n are the tumor cell and bacteria volume
fractions and normalized nutrient concentration, respectively.
These quantities depend on the radial coordinate r ∈ [0,R] and
time t ∈ [0, tf ]. In addition,Di are the phases motility coefficients
(i= c,b),Dn the nutrient diffusion coefficient, and χ the bacterial
chemotactic coefficient. The mass exchange terms Si (i = c,b,n),
regulating the transfer of mass between the different components,
will be detailed in the next subsection. Note that we do not solve
explicitly for φf (i.e., the volume fraction of extracellular material)
since this quantity can be obtained as φf = 1 − φc − φb due to
the saturation constraint (see the Supplementary Information).
We model growth of the spheroid as a free-boundary problem,
in which the outer tumor radius r = R(t) moves with the same
velocity as the TC phase,

dR
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(4)
Finally, we define a set of boundary and initial conditions to close
the differential problem in Equations (1)–(3). Due to the problem
symmetry no-flow boundary conditions are enforced at the
spheroid center, whereas we fix the values of TC volume fraction,
bacterial volume fraction and normalized nutrient concentration
on the spheroid boundary:

∂rφc = ∂rφb = ∂rn = 0, r = 0 (5)

φc = φc0, φb = φb0, n = 1, r = R(t). (6)
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FIGURE 1 | Schematic of the interactions between tumor cells (c), bacteria (b)

and oxygen (n). The arrows are drawn according to the biological hypotheses

detailed in the main text.

We assume a uniform initial tumor volume fraction φc0 = 0.8
across the spheroid (Byrne and Preziosi, 2003) and, to model
bacteria administration, we consider a time dependent value for
the bacterial volume fraction at the spheroid outer radius:

φb =











0, for 0 ≤ t < t0

φb0, for t0 ≤ t < ta

0, for ta ≤ t ≤ tf,

(7)

where φb0 is the administered volume fraction of bacteria, t0 is
the time of administration and ta its duration. Regarding the
initial conditions, we consider a spheroid devoid of bacteria
and displaying a uniform TC volume fraction and nutrient
concentration over its radius:

φc(r, 0) = φc0, φb = 0, n = 1. (8)

Finally, we prescribe an initial spheroid radius, i.e., R(0) =

90µm. The equations of the model are discretized through the
Finite ElementMethod and solved using the commercial software
COMSOL Multiphysics (COMSOL AB, 2019).

2.2. Choice of Mass Exchange Terms
To formulate the mass exchange terms in Equations (1)–(3) we
assume the following assumptions (see Figure 1):

A1 TCs proliferate when oxygen is available. As soon as the latter
decreases below a critical threshold, they stop proliferating
and start necrosis (Chaplain et al., 2006; Gerlee and Anderson,
2007; Agosti et al., 2018).

A2 Bacteria compete with TCs for space and exert an anti-tumor
effect by a variety of mechanisms (e.g., by realizing toxins
and therapeutic agents, or stimulating an immune response)
(Forbes, 2010; Osswald et al., 2015; Torres et al., 2018; Zhou
et al., 2018).

A3 Bacteria die when oxygen is above a critical threshold and
thrive in hypoxic conditions (anaerobic bacteria) (Toley and
Forbes, 2011; Osswald et al., 2015; Phaiboun et al., 2015).

TABLE 1 | Summary of the parameter values considered in the model simulations.

Parameter Range and/or

specific value

Description References

Dc [0.16, 0.5],

0.5mm2d−1

TC motility coefficient Colombo et al., 2015

γc 0.48 d−1 TC proliferation rate PBCF, 2012

δc 0.5 d−1 TC death rate Martínez-González

et al., 2012

Db [0.02, 0.05],

0.05mm2d−1

Bacterial motility

coefficient

Toley and Forbes, 2011

γb 15d−1 Bacterial proliferation

rate

Gibson et al., 2018

δb 0.24 d−1 Bacterial death rate Phaiboun et al., 2015

Dn 100mm2d−1 Oxygen diffusion

coefficient

Matzavinos et al., 2009

δn [0.46, 9.21]×

104, 8640d−1

Oxygen consumption

rate

Colombo et al., 2015

χ [0, 0.864]mm2d−1 Bacterial chemotactic

coefficient

estimated

κ [0, 5] d−1 Bacterial killing rate model specific

ncr 0.58 Critical oxygen

concentration

calibrated

The specific value used is listed after the range, when the latter is available.

A4 TCs consume oxygen provided by the culture medium
(Matzavinos et al., 2009; Grimes et al., 2014).

The resulting mass exchange terms read:

Sc = γcφc
φf

φf0
H

(

n

ncr
− 1

)

− δcφcH

(
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n

ncr

)

− κφcφb, (9)

Sb = γbφb
φf

φf0
H

(

1−
n

ncr

)

− δbφbH

(

n

ncr
− 1

)

, (10)

Sn = −δnφcn. (11)

Here γi and δi are the proliferation and death rate of the i-th phase
respectively (i = c, b), whereas δn is the oxygen consumption
rate. In addition, φf 0 is the initial volume fraction of extracellular
material and we indicate with H (·) a smooth version of the step
function, and with ncr the critical oxygen value below which
hypoxic conditions develop. Finally, we do not consider a specific
form for the anti-tumor effect of bacteria and introduce an
effective TC killing rate κ in the equation for Sc.

2.3. Model Parametrization
The parameters used in the model simulations are reported in
Table 1. In the following we will compare model results with
a set of published experiments on the U87 glioma cell line
(Mascheroni et al., 2016). Colombo and colleagues (Colombo
et al., 2015) estimated cell motility for glioma cells in the brain
to be in the range [0.16, 0.5] mm2d−1. Since we deal with
in vitro experiments where cells experience less constraints with
respect to tissues, we assume the largest value in the range for
the motility coefficient Dc. We take the TC proliferation rate
from the available data provided from the Bioresource Core
Facility of the Physical Sciences-Oncology Center (PBCF, 2012),
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where the cell duplication time for U87 cells cultured in vitro
is reported to be of 34 h. TC death rate in anoxic conditions
has been estimated in Martínez-González et al. (2012) to be on
average of about 48 h. In their work, Toley and Forbes (2011)
performed in vitro experiments for the migration of different
bacteria strains inside tumor tissues. They estimated the motility
of a Salmonella strain to be in the range [0.02, 0.05] mm2d−1

and its growth rate of about 6 h−1. Regarding bacteria death
rate under starvation, Phaiboun et al. (2015) quantified bacterial
death in a starving population of E. coli. They reported a mean
value of 0.018 h−1, which we rounded up to 0.24 d−1 in our
simulations. The oxygen diffusion coefficient has been quantified
in several in vitro experiments and we assume a value for Dn of
100 mm2d−1, according to the estimates in Schaller and Meyer-
Hermann (2005), Matzavinos et al. (2009), Grimes et al. (2014),
Colombo et al. (2015), and Alfonso et al. (2016). For the oxygen
consumption rate we make use of the arguments in Frieboes
et al. (2009), where the authors estimated δn in spheroids from
measuring the oxygen penetration length L and the diffusion
coefficient Dn through the relation δn = Dn/L

2. Since L was
found in the order of 100µm, they estimated δn = 8, 640 d−1,
a value that falls in the range reported in Alfonso et al. (2016) for
gliomas. In the case of bacteria, two parameters were difficult to
assess in tissues namely the chemotactic coefficient χ and the rate
of anti-tumor activity. For the first, this is generally calculated
for suspensions of bacteria that are stimulated from some kind
of attractant. Ford and colleagues reported the chemotactic and
random motility coefficients for bacteria solutions from different
strains (Ford et al., 1991; Lewus and Ford, 2001). They provided
values for Salmonella, which we used to estimate the range of
chemotaxis in spheroids.We considered the value for themotility
coefficient that they provided and divided it by the motility that
we found for Salmonella in tissues (Db). Then, we scaled their
chemotaxis coefficient with this value to obtain the chemotactic
coefficient χ for bacteria in spheroids. For the bacteria anti-
tumor activity rate, we were not able to find any estimate in the
literature. Therefore, we varied κ over the range [0, 5] d−1, which
includes processes that span multiple days to a few hours. Finally,
we fitted the parameter for the critical oxygen concentration ncr
from the spheroid experiments in Mascheroni et al. (2016). The
value that we found is similar to the one reported in Gerlee and
Anderson (2007); Agosti et al. (2018) for tumor aggregates, which
is in the range [0.15, 0.5].

3. RESULTS

3.1. Model Calibration on Spheroid
Experiments
We start the analysis by considering the growth of a spheroid
suspended in culture medium, in the absence of bacteria. We
compare the results of the model with the data for radial
growth of U87 tumor spheroids available from Mascheroni
et al. (2016). We use the model to fit the critical oxygen
concentration parameter ncr, keeping all the other quantities as
defined in Table 1.

Figure 2 shows a good agreement between the model and the
experiments, over all the growth curve. The model is able to

reproduce the two phases of spheroid growth usually described
in the literature (Conger and Ziskin, 1983; Sutherland, 1988;
Vinci et al., 2012). The spheroid radius (see Figure 2A) displays
a first stage of rapid increase, followed by a saturation phase.
This behavior is detailed in Figures 2B,C, showing the evolution
of the tumor volume fraction and oxygen concentration over
the spheroid radius at different time points. The tumor volume
fraction, i.e., φc, increases over the spheroid at early time
points (Figure 2B). Then, as TCs consume oxygen to proliferate,
its concentration decreases in the center of the aggregate
(Figure 2C). When the oxygen level drops below the critical
threshold ncr (dashed line in Figure 2C), TCs stop proliferating
and die. This results in a decrease of φc in the spheroid core,
displayed at longer times in Figure 2B. Close to saturation, the
amount of cells that proliferate is balanced by the number of
cells that die, turning into extracellular material. Therefore, even
if cell growth continues to take place in the outer rim of the
spheroid, it is not enough to advance the spheroid front, which
reaches a steady state. These results match qualitatively what is
observed in the experimental (Landry et al., 1982; Montel et al.,
2011; Grimes et al., 2014; Sarkar et al., 2018) andmodeling (Ward
and King, 1999; Byrne and Preziosi, 2003; Ambrosi and Mollica,
2004; Schaller and Meyer-Hermann, 2005; Mascheroni et al.,
2016; Boemo and Byrne, 2019) literature for tumor spheroids and
will serve as a basis for the discussion in the next sections.

3.2. Administration of Bacteria Leads to
Tumor Remission but Not Eradication
Figure 3 shows the influence of bacterial therapy on tumor
spheroid composition for an example case. We evaluate the
effects of adding bacteria to the culture medium after the
spheroid is fully formed, i.e., when hypoxic regions have
developed. In particular, we select an administration time of
t0 = 26d and a treatment duration of ta = 2d. We consider an
intermediate value for both the bacterial chemotactic coefficient
and killing rate (χ = 0.432 mm2d−1, κ = 2.5 d−1). As shown
by the low TC volume fraction in Figure 3A at later times,
bacteria administration leads to spheroids less populated by TCs.
This space is occupied by bacteria (Figure 3B), which thrive in
the hypoxic region located in the spheroid core. After bacterial
therapy the spheroid shrinks and is less populated by cancer cells.
This leads to higher values of oxygen concentration at the center
of the aggregate, as displayed in Figure 3C. Finally, Figure 3D
shows the evolution of TC (Vc) and bacteria (Vb) volumes over
time. These quantities are calculated as

Vi =

∫

Vsf

φi dV , (12)

where the integral is performed over the spheroid volume Vsf

(i = c,b). At early time points, Vc is in a phase of fast growth,
since the nutrient is available throughout the spheroid and no
bacteria are present. After administration, there is a fast increase
of bacteria volume together with a rapid decrease of TC volume.
At later time points the system evolves toward a steady state
in which both bacteria and TCs coexist in the tumor aggregate.
Even though the TCs are not completely removed, the spheroid
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FIGURE 2 | Calibration of the model on tumor spheroid data. (A) Fit of the mathematical model to the experimental data for the spheroid growth curve. The

experimental points are taken from Mascheroni et al. (2016) and represent the growth of U87 spheroids. Dots are mean values and bars standard deviation of the

measurements. Tumor volume fraction (B) and oxygen concentration (C) at different times of spheroid growth. The dashed line in the last plot displays the critical

oxygen concentration.

FIGURE 3 | Model results for bacteria administration to tumor spheroids.

Spatio-temporal evolution of tumor (A) and bacteria (B) volume fractions and

oxygen concentration (C). (D) Temporal evolution of tumor and bacteria

volumes in the spheroid. The lines for day 40 are behind those for day 50, as

the spheroid has reached a steady state.

persists in an equilibrium state, where an asymptotic size is kept
for long times.

3.3. High Chemotaxis Allows for Maximal
Reduction of Tumor Size
We investigated the impact of different bacterial chemotactic
and anti-tumor strengths on spheroid composition at the end
of the simulations, i.e., at day 50 (Figure 4). We found that

the highest reduction in tumor volume is obtained for the
highest values of the chemotactic coefficient and killing rate,
as shown in Figure 4A. On the other hand, highly chemotactic
bacteria without an anti-tumor activity lead to the highest tumor
volume. Interestingly, the tumor is never completely eradicated
over all the explored parameter sequence. A similar result is
obtained for the bacteria volume at the end of the simulations
(Figure 4). Here, no matter the strength of chemotaxis or anti-
tumor activity, bacterial cells are always present in the final
spheroid volume. High bacterial volumes are present for high
chemotactic coefficients, whereas high killing rates lead to small
bacterial volumes independent of the chemotactic strength.
Indeed, even though the tumor volume considerably varies over
the chemotactic space for high killing rates, the bacterial volume
is almost independent of this quantity (see Figure S1). Finally,
Figures 4C,D show the temporal variation of tumor and bacterial
volumes for two extreme cases occurring for high chemotaxis and
low (Case 1) or high (Case 2) killing rate. The first plot shows that
after the administration of bacteria the tumor volume is reduced,
even in the absence of anti-tumor activity. The two populations
in the spheroid reach an equilibrium at later times, with bacteria
representing a significant portion of the spheroid. In the second
case, the high anti-tumor activity of the bacteria is responsible
for a sharp decrease of the tumor population, leading also to
oscillations in the TC volume. Although bacteria now constitute
a small part of the overall spheroid volume, they are still able to
keep the tumor size under control.

3.4. Highly Proliferating and Low Oxygen
Consuming Tumors Are Mostly Benefited
From Bacterial Therapy
The results obtained in the previous subsection are insensitive of
the administration time t0, the duration of the administration ta
and the administered bacteria volume fraction φb0, even for large
variations of these parameters (see Figures S2–S4). This made us
investigate whether the steady states reached at the end of the
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FIGURE 4 | Influence of bacteria chemotactic coefficient and anti-tumor activity on tumor (A) and bacteria (B) volumes at the end of the simulations (day 50).

Temporal evolution of tumor and bacteria volumes for a high chemotactic coefficient and a low (Case 1, C) and high (Case 2, D) killing rate.

simulations and displayed in Figure 4 were therefore a function
of the mechanisms regulating the tumor/bacteria dynamics. To
check this hypothesis we simulated the behavior of TCs with a
lower or higher proliferation and oxygen consumption rates with
respect of the one shown in Figure 4. We report our findings in
Figures 5, 6.

We considered a variation of ±50% with respect to the
nominal value of the parameters in Table 1, and labeled the
cases using the plus or minus in the superscript accordingly.
All the other parameters keep the nominal values. We evaluated
the spheroid response in terms of relative tumor reduction by
introducing the quantity:

1Vc =
V0 − Vc

V0
, (13)

where Vc is the final tumor volume and V0 the tumor volume at
the time of bacteria administration. We also analyzed the relative
bacteria volume at the end of the simulation, plotting the ratio of
bacteria volume Vb to the total spheroid volume Vt.

Tumors in which cells proliferate at a higher rate display the
highest tumor reductions (Figures 5A–C). This is particularly
true for the treatment with bacteria characterized by high
chemotaxis and killing rate. Highly proliferative tumors are
the ones that also show higher colonization by bacteria, as
displayed in Figures 5D–F. Treatments with high chemotactic
bacteria with low killing rates provide the highest relative
bacteria volumes. Low oxygen consumption by TCs leads to
results similar to highly proliferative tumors (Figure 6). Again,
treatment using bacteria with high chemotaxis and high killing
rate produces the best results in terms of tumor reduction.
Regarding the final bacterial content, both high and low oxygen
consuming tumors show considerable bacteria colonization.
As before, the relative bacteria volume is higher for highly
chemotactic bacteria with low anti-tumor activity. Even though
highly proliferative and low oxygen consuming TCs originate
the highest final spheroid volumes (Figure S5), they benefit

the most from bacteria treatment and display the higher final
bacteria content.

4. DISCUSSION

We proposed a mathematical model to study the influence of
bacteria treatment on avascular tumor growth. We considered
anaerobic bacteria which thrive in hypoxic environments and
actively migrate toward nutrient deprived regions in solid
tumors. The model was calibrated to reproduce published tumor
spheroid data and then used to evaluate the impact of bacteria
chemotaxis and killing rate on spheroid response.

Model results show preferential bacteria accumulation in the
hypoxic spheroid core, with tumor cells more localized toward
the external spheroid surface. In general, highly chemotactic
bacteria possessing increased anti-tumor activity provide the
highest tumor reduction after treatment. On the other hand, high
chemotaxis but low anti-tumor activity lead to smaller tumor
reduction but higher bacteria colonization at the end of the
simulations. When varying the tumor parameters, we found that
bacteria treatment works best for highly proliferative and low
oxygen consuming tumors.

For simplicity, we considered a general effective anti-
tumor activity of TCs by bacteria without focusing on specific
mechanisms, e.g., cytotoxic agents, prodrug-converting enzymes,
etc. (Kramer et al., 2018; Torres et al., 2018; Zhou et al., 2018).
Such treatment modalities could be incorporated by extending
the model, to provide a more accurate description of the
therapeutic action. Moreover, we focused on tumor spheroids, an
in vitro approximation of avascular tumors. As such, they lack all
the interactions between the tumor and its immune environment.
On the one hand, this approach allows to investigate the mutual
dynamics of bacteria and tumor cells without external influences,
but on the other including the cross-talk between bacteria and
the components of the immune system would be a fundamental
step to address questions coming from in vivo tumors. Following
Boemo and Byrne (2019), we modeled the mechanical response
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FIGURE 5 | Impact of tumor proliferation rate on tumor and bacteria volumes at the end of the simulations (day 50). Relative tumor volume change and relative

bacteria volume for low (A,D), nominal (B,E) and high (C,F) tumor cell proliferation rate.

FIGURE 6 | Impact of tumor oxygen consumption rate on tumor and bacteria volumes at the end of the simulations (day 50). Relative tumor volume change and

relative bacteria volume for low (A,D), nominal (B,E) and high (C,F) tumor cell proliferation rate.

Frontiers in Microbiology | www.frontiersin.org 7 June 2020 | Volume 11 | Article 1083

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Mascheroni et al. Impact of Physical Effects in Bacterial Therapies

of cells and bacteria in the simplest way considering the phases
as inviscid fluids. Although this description is still able to
qualitatively describe the experimental results, more detailed
constitutive assumptions for the mechanical behavior of the
phases would lead to new insights into the interactions between
bacteria and TCs in the aggregate (Sciumè et al., 2013; Giverso
et al., 2015; Ambrosi et al., 2017; Fraldi and Carotenuto, 2018;
Mascheroni et al., 2018; Giverso and Preziosi, 2019). We also
considered ideal spherical spheroids to reduce the mathematical
problem to one dimension. Even if the qualitative results will be
maintained in a three-dimensional geometry, adopting the latter
will be crucial to translate the model to in vivo situations. Finally,
a note should be made about model parametrization. Generally,
mathematical models in the biological framework require several
parameters to be determined (Alber et al., 2019) and this work is
no exception. We listed the source of the parameters used in the
simulations and performed a sensitivity analysis on tumor and
bacterial parameters in Figures S6, S7, but a thorough analysis
on this topic has been not carried out for the sake of brevity. We
believe that a dedicated study on this aspect, particularly in terms
of the “Sloppy” model framework (White et al., 2016), could be
extremely interesting for this model and for all the biomedical
mixture model class.

In this modeling approach, space competition between
bacteria and tumor cells arises naturally from the conservation
of mass and momentum imposed by the governing equations.
As no void regions are allowed into the spheroid, when cells
move or die one of the model components automatically fills the
space. Bacteria and TCs compete for space in the spheroid and
the expansion of the tumor becomes limited, especially when the
anti-tumor activity of bacteria is strong. However, for increasing
values of the chemotactic coefficient and low values of the killing
rate, bacteria localize predominantly in the spheroid core and
displace TCs to the outer region of the spheroid. Both types of
cell can proliferate in each of the two spheroid areas (hypoxic for
spheroids, well-oxygenated for TCs), giving rise to high spheroid
volumes and considerable bacteria colonization.

As a matter of fact, chemotaxis could be a target for
bacteria-based anticancer therapies and diagnostic tools. For
example, TCs that become restricted to outer spheroid areas
after administration of highly chemotactic bacteria are more
oxygenated and could benefit from standard chemotherapeutic
or radiation treatments in the context of synergistic treatments
(Zhou et al., 2018). We highlight that this is an example showing
that mathematical models could help to identify situations when
TC sensitization to therapies might be possible - see also (Owen
et al., 2004; Kim et al., 2013; Michor and Beal, 2015; Mascheroni
et al., 2017). On the other hand, highly chemotactic bacteria
could be used as tracers to identify necrotic regions in spheroid,
exploiting their targeting efficiency. Moreover, the simulations
show the existence of steady states in which a small population
of bacteria is in dynamical equilibrium with cancer cells, leading
to tumor size control over time. All these mechanisms arise as
a pure physical effect from the competition for space between
cancer and bacteria cells and could be optimized to obtain
the highest tumor volume reduction or bacteria colonization.
Currently, even though researchers are aware of the benefits
coming from active bacteria migration toward hypoxic regions

in tumors (Forbes, 2010; Kramer et al., 2018), this knowledge has
not been efficiently exploited in the clinical trials carried out so
far (Torres et al., 2018).

Finally, we point out a few straightforward developments that
emerge from the findings of this work. Firstly, our theoretical
results advocate for experiments with tumor spheroids. With
such a simplified experimental setup, several bacterial strains
could be tested on different cancer cell lines to validate
model findings. Secondly, the model could be extended to
consider different synergistic treatments combined to bacterial
administration. Chemotherapy or radiation therapy could be
easily included in the model framework, exploiting the modular
nature of the equations. The action of the immune system (in a
co-culture in spheroids or for an in vivo situation) could be also
integrated in future model versions. Lastly, we believe that the
tight coupling between the dynamics of TCs and bacteria in terms
of regulating their reciprocal environment could be suitably
addressed via mathematical models, in order to control the
bacterial infection or identify the optimal timing of the therapy.
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