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Abstract: In this work, hybrid zinc oxide–iron oxide (ZnOFe) magnetic nanoparticles were synthe-
sized employing Olea europaea leaf aqueous extract as a reducing/chelating and capping medium.
The resulting magnetic nanoparticles were characterized by basic spectroscopic and microscopic tech-
niques, namely, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), fourier-transform
infrared (FTIR) and atomic force microscopy (AFM), exhibiting a spherical shape, average size of
15–17 nm, and a functionalized surface. Lipase from Thermomyces lanuginosus (TLL) was efficiently
immobilized on the surface of ZnOFe nanoparticles through physical absorption. The activity of
immobilized lipase was found to directly depend on the enzyme to support the mass ratio, and also
demonstrated improved pH and temperature activity range compared to free lipase. Furthermore,
the novel magnetic nanobiocatalyst (ZnOFe-TLL) was applied to the preparation of hydroxytyrosyl
fatty acid esters, including derivatives with omega-3 fatty acids, in non-aqueous media. Conver-
sion yields up to 90% were observed in non-polar solvents, including hydrophobic ionic liquids.
Different factors affecting the biocatalyst performance were studied. ZnOFe-TLL was reutilized for
eight subsequent cycles, exhibiting 90% remaining esterification activity (720 h of total operation at
50 ◦C). The green synthesized magnetic nanoparticles, reported here for the first time, are excellent
candidates as nanosupports for the immobilization of enzymes with industrial interest, giving rise to
nanobiocatalysts with elevated features.

Keywords: green synthesis; Olea europaea; magnetic nanoparticles; lipase; immobilization; biocataly-
sis; bioactive lipophenols; hydroxytyrosol

1. Introduction

With the advent of nanobiotechnology, immobilization of enzymes on nanomaterials
has been presented as a promising concept, giving rise to remarkable potentialities [1].
Diverse nano-scale materials (from 1 to 100 nm) have been tailored to meet the requirements
as host platforms for enzymes. More specifically, nanomaterials have flourished over
the past few years, ascribed to their high specific surface areas, extraordinary stability,
controlled functional surfaces, intrinsic shapes and high enzyme loading [2–4]. As a
consequence, well-designed nanobiocatalytic systems (NBSs) have been fabricated and
have demonstrated essential features for scale-up exploitation; namely, elevated enzyme
activity, enhanced stability over a range of parameters (temperature, pH, solvents, and
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storage) and remarkable reusability due to the cooperative interactions of biocatalysts with
the supports. Some of them have also been efficiently applied to specific biotransformations
of high added-value products. However, the production, functionalization, and purification
methodologies of chemically-synthesized nanomaterials provoke major concerns regarding
safety, cost-effectiveness, environmental impact and, primarily, long-term effects on human
health that possibly hinder their commercialization [1,5].

Current research endeavors to introduce and exploit “green synthesis” approaches
for the preparation of nanoparticles in order to tackle and compensate the inadequacies
of conventional techniques such as procedure costs, insufficient yields, use of perilous
reagents, generation of noxious wastes, and high energy supplies. Bio-inspired strategies
have attracted great attention for the fabrication of nanomaterials, especially metal or metal
oxides [5]. Natural sources such as microorganisms, plants, or even household by-products
can act as a driving force for the arrangement of nano-scale materials with peculiar shapes
and sizes. Biological entities are endowed with macromolecules and intriguing secondary
metabolites, which can efficiently reduce metal salts to zero-valent nanoparticles (NPs)
using water as the reaction medium in solely mild conditions (bottom-up approach) [5,6].
Size, shape, dispersion, yield and stability of the resulting NPs are strictly defined by
physical and chemical parameters during synthesis [5,7].

Interestingly, extracts from different plant parts have proven to be more effective as
reducing agents due to their potent phytochemicals, ambient and rapid protocols/synthesis,
excessive production yields, and absence of cultivation or purification phases compared
to microbial-derived NPs [8,9]. Plant-mediated NPs are also considered as more safe and
stable formations [5,10]. Overall, phytonanotechnology can contribute to the management
of bio-wastes, reinforcing sustainability and bioeconomy [9].

Furthermore, biological constituents of extracts coat the surfaces and subsequently
stabilize the formulated nanomaterials, enriching them with functional groups and pre-
venting agglomeration [8,10]. For instance, olive leaf extracts (OLEs) encompass high levels
of polyphenol compounds with proven antioxidant and anti-inflammatory activities [11].
Interestingly, it has been reported that polyphenols, besides bioreduction, can chelate metal
ions such as Fe2+, Zn2+, and Cu2+ [5,9]. Consequently, nanomaterials stemming from
polyphenol-rich extracts are covered with exceptional bioactive compounds, which could
enhance their potential favorable effect [5,9,12,13]. Nevertheless, the exact mechanism of
bioreduction/biofrabrication has yet to be fully elucidated, but general points have been
determined [5,10].

To date, certain green nanomaterials (silver, zinc oxides, copper oxides, cerium) have
stood out as antimicrobial agents [10], and others (gold, ferric, platinum) have paved the
way for biomedical applications [5,14,15]. On the contrary, there are scarce references of
green nanomaterials used as support matrices for enzymes. Among nano-scale materials,
ZnO has been recognized as safe formulations with intrinsic properties for biological ap-
plications and enzyme immobilization [16,17]. Magnetic nanoparticles (MNPs) are also
nano-scale materials of utmost importance. More specifically, magnetic nanomaterials
enable simple and non-laborious recovery of nanobiocatalytic systems, reinforcing recy-
clability [4]. Chai et al. [18] referred to the green synthesis of ZnOFe NPs as a more stable
complex that also appeared to enhance antimicrobial and magnetic capacities. Due to the
fact that pharmaceutical and food-related industries are now inclining to greener biosyn-
thetic routes, plant-derived nanomaterials with elevated features could have a prominent
role as immobilizing nanosupports for versatile biocatalysts of commercial interest.

Lipases (triacylglycerol acyl hydrolase, EC 3.1.1.3), which belong in the broad enzyme
family of hydrolases, are significant biocatalysts, which function both in conventional
and non-conventional media with high selectivity and stability, engaging in versatile ap-
plications from pharmaceuticals to biofuels. These enzymes possess a prominent role in
the global market due to the ability to catalyze determinate ester synthesis in ambient
conditions without unwanted by-products [19,20]. For instance, lipophenols (or phenol
lipids) are biologically active compounds, consisting of a lipidic and a phenolic moiety
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joined with an ester bond, which have attracted marked interest among nutraceutical
and pharmaceutical industries due to their beneficial cumulative or synergistic activi-
ties. Lipase-mediated production of novel lipophilic derivatives of natural phenols and
polyphenols with fatty acids has received great attention over the past few years [21–26].
Hydroxytyrosol is a naturally occurring phenolic compound that derives foremost from
olive tree and displays significant health benefits, especially high antioxidant activity and
cardiovascular protection [11,27]. However, as a result of its high hydrophilic nature and
insufficient pharmacokinetic profile, its utilization for many cosmetic to biomedical appli-
cations has been impeded [27]. The bioconjunction of hydroxytyrosol with different acyl
donors, especially mono- and polyunsaturated fatty acids, increases its lipophilicity and
bioavailability, whereas its antioxidant, anti-cancer, anti-inflammatory and anti-microbial
activities can be also improved [23,24,26,28,29]. To date, the biosynthesis of lipophenols has
been mostly attempted with commercial dispensable immobilized biocatalysts [23,28,29].

Herein, we report the green synthesis of stable magnetic ZnOFe nanoparticles from
aqueous olive leaf extract, as a novel hybrid enzyme immobilizing support matrix with
magnetic capabilities, a spherical shape, and functionalized surface. The newly-synthesized
nanosupport was characterized by FTIR, XRD, XPS, AFM and scanning electron microscopy
with energy dispersive spectroscopy (SEM/EDS) and used as an immobilizing carrier for
TLL, a stereoselective lipase with numerous applications. The nanoconjugate, ZnOFe-TLL,
was efficiently applied to the synthesis of hydroxytyrosyl–oleate, a biologically significant
lipophenol, and other saturated or polyunsaturated fatty acid esters of hydroxytyrosol.
The effect of different reaction media, the conversion rates, and the recyclability upon
hydroxytyrosyl–oleate synthesis was evaluated. Moreover, the biochemical characteriza-
tion of ZnOFe-TLL was conducted. To the best of our knowledge, this is the first report of
an enzyme immobilized on green synthesized ZnOFe nanoparticles that effectively applied
the synthesis of lipophilic derivatives of hydroxytyrosol in non-aqueous media.

2. Materials and Methods
2.1. Materials

Lipase from Thermomyces lanuginosus (TLL) was kindly provided from Novozymes
A/S (Denmark) and was used without further purification. p-nitrophenol (p-NP), p-
nitrophenyl butyrate (p-NPB), (+/−)-α-lipoic acid, myristic acid, palmitic acid, linoleic
acid, methyl palmitate, methyl linoleate, dimethyl sulfoxide (DMSO) were purchased
from Sigma–Aldrich (St. Louis, MO, USA); ferrous (II) sulfate heptahydrate, oleic acid,
methyl oleate from Fluka, zinc acetate dihydrate from Merck (KGaA, Darmstadt, Germany);
eicosapentaenoic acid (EPA) from Larodan (Solna, Sweden); and hydroxytyrosol from Car-
bosynth (Suzhou, China). The ionic liquids (ILs): 1-butyl-3-methylimidazolium hexafluo-
rophsphate ([bmim][PF6]), 1-butyl-3-methylimidazolium tetraflfluoroborate ([bmim][BF4])
and methyltrioctylammonium bis(trifluoromethylsulfonyl)imide ([mtoa][NTf2]) were of
analytical grade and purchased from Alfa-Aesar (Kandel, Germany), Fluka and Sigma–
Aldrich (St. Louis, MO, USA). All organic solvents used were of analytical grade.

2.2. Preparation of Olive Leaf Extract

Olea europaea leaves, which were collected from Serres (region of Macedonia), Greece,
were washed thoroughly with deionized water and shade-dried at room temperature. Then,
grounded Olea europaea leaves in double distilled water (100 g L−1) were heated at 90 ◦C
and constantly stirred for 20 min in the dark. After that period, the aqueous extract was
cooled, filtrated through Whatman filter paper, and centrifuged three times at 8500 rpm for
10 min. The supernatant was stored at 4 ◦C under nitrogen and utilized for nanoparticles
biosynthesis. Phytochemical analysis and determination of the total phenolic content of
the olive leaf extract (OLE) were carried out according to standard assays [13,30–32].
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2.3. Synthesis of ZnOFe Nanoparticles

Olea europaea leaf extract was used for the biosynthesis of ZnOFe nanoparticles as
the reduction and capping medium. Biosynthesis of nanoparticles was based on previous
reports with minor modifications [7,17]. An equimolar ratio of zinc acetate and ferrous
sulphate (0.1 M) was dissolved in 50 mL double distilled water. Then, 1 mL of OLE was
added drop wise to the mixture and constantly stirred for 1 h at 90 ◦C in the dark. The pH
of the reaction mixture was adjusted to 12 using appropriate amounts of 2 M NaOH drop
by drop. Color change of the solution from orange to dark green-brownish indicated the
formation of nanoparticles. Finally, the resulting suspension was cooled and centrifuged at
8500 rpm for 20 min. The precipitate was washed twice with double distilled water and the
purified green-brownish pellet was dried overnight at 37 ◦C. UV–Vis spectra adsorption
at 350–400 nm, XRD, XPS and FTIR studies demonstrated the complete formation of
ZnOFe nanoparticles.

2.4. Characterization of ZnOFe Nanoparticles

UV–Vis absorption spectra of ZnOFe samples were recorded on an Agilent Cary
60 UV–Vis spectrophotometer (Agilent, Santa Clara, CA, USA) in the wavelength range
200–800 nm. Samples were diluted and dispersed in double-distilled water at room temperature.

The powder X-ray diffraction patterns were collected on a D8 Advanced Bruker
diffractometer (Bruker, Billerica, MA, USA) using CuKα (40 kV, 40 mA) radiation and a
secondary beam graphite monochromator. The patterns were recorded in a 2-theta (2θ)
range 2 to 80◦, in steps of 0.02◦ and counting time 2 s per step.

Atomic force microscopy (AFM) images were obtained in tapping mode with a Bruker
Multimode 3D Nanoscope (Ted Pella Inc., Redding, CA, USA) using a microfabricated
silicon cantilever type TAP-300G, with a tip radius of <10 nm and a force constant of
approximately 20–75 N m−1.

X-ray photoelectron spectroscopy (XPS) measurements were performed in an ultra-
high vacuum at a base pressure of 4 × 10−10 mbar with a SPECS GmbH spectrometer
equipped with a monochromatic MgKa source (hv = 1253.6 eV) and a Phoibos-100 hemi-
spherical analyzer (Berlin, Germany). The spectra were collected in normal emission
and energy resolution was set to 1.16 eV to minimize measuring time. Spectral analysis
included a Shirley background subtraction and a peak deconvolution employing mixed
Gaussian–Lorentian functions, in a least squares curve-fitting program (WinSpec) devel-
oped at the Laboratoire Interdisciplinaire de Spectroscopie Electronique, University of
Namur, Belgium.

Fourier-transform infrared (FTIR) spectra was carried out in order to investigate the
functionalized surface of green ZnOFe NPs and further to confirm lipase immobilization,
using an FT/IR 4700 spectrometer (Jasco, Tokyo, Japan) equipped with a Peltier stabilizer
DLaTGS detector. Samples were prepared in potassium bromide (KBr) pellets. All FTIR
spectra were acquired in the range 400–4000 cm−1, at 4 cm−1 resolution and an average of
32 scans.

Scanning electron microscopy (SEM) images were obtained using a JEOL JSM-6510
LV SEM Microscope (Ltd., Tokyo, Japan) equipped with an X–Act EDS-detector by Oxford
Instruments, Abingdon, Oxfordshire, UK (10 kV).

Transmission electron microscopy (TEM) images were obtained using an FEI Tecnai
12 BioTwin microscope. The nanoparticles were dispersed in ethanol and drop-cast on a
lacy copper grid and dried for 1 h prior to the analysis.

2.5. Immobilization of Lipase from Thermomyces lanuginosus on ZnOFe

Immobilization of TLL was accomplished via physical adsorption onto the surface
of ZnOFe nanoparticles. Briefly, 2 mg of ZnOFe NPs were dispersed in 2 mL phosphate
buffer (0.025 M, pH 7.5) and sonicated for 15 min. After that, different concentrations of
soluble TLL (0.5–7.5 mg mL−1) were added to the solution and incubated for 1 h at 30 ◦C,
under stirring. ZnOFe-TLL nanoconjugates were recovered from the solution by applying



Nanomaterials 2021, 11, 458 5 of 20

an external magnetic field (grade N42), then washed three times with phosphate buffer
(0.025 M, pH 7.5) and placed into a speed-vacuum concentrator to dry. The enzyme–NP
nanocomposites were stored at 4 ◦C for further use. Immobilization yield was calculated
according to Equation (1).

Immobilization yield = [ Ci − Cs/Ci ] × 100 (1)

where Ci and Cs are enzyme concentrations in the supernatant before and after immobi-
lization that are estimated according to Bradfords’ assay [33]. Lipase immobilization was
further demonstrated by XPS, FTIR, and AFM analysis. The nanobiocatalyst is referred to
as ZnOFe-TLL.

2.6. Enzymatic Activity of ZnOFe-TLL

The enzymatic activity of free and immobilized TLL was assayed using p-nitrophenyl
butyrate (p-NPB) as the substrate. Briefly, 25 µg ZnOFe-TLL or a suitable amount of soluble
TLL was added to 1 mL phosphate buffer (0.025 M, pH 7.5). The reaction was initiated with
the addition of 0.5 mM p-NPB (diluted in DMSO). p-NP release was monitored at 405 nm
using a UV–Vis spectrophotometer equipped with a Peltier temperature controller that
maintained a constant temperature of 40 ◦C (Agilent, Santa Clara, CA, USA). Absorption
values were taken every minute for a total time of ten minutes, and p-NP concentration
was calculated based on a standard curve. Regarding this work, one unit of enzymatic
activity (U) was defined as the amount of lipase that liberates 1 µmol of p-NP per minute
per mL of reaction at 40 ◦C. Blank samples without enzymes were also prepared and no
product was detected.

2.7. Effect of Temperature and pH on Activity of Free and Immobilized TLL

The effect of reaction pH on the activity of free and immobilized TLL was determined
over the pH range of 6 to 8.5 and at a constant temperature of 40 ◦C. The following buffers
(25 mM) were used: potassium phosphate (pH 6.0–8.0) and Tris–HCl (pH 8.5). Enzyme
activity was measured as described in Section 2.6. The effect of reaction temperature on
the activity of free and immobilized TLL was carried out over the temperature range of
20 to 70 ◦C, with increments of 10 ◦C. Enzyme activity was measured based on the assay
described in Section 2.6, in phosphate buffer pH 7.5, 0.025 M. The activity of free TLL at
the optimal reaction pH and temperature was assigned as the 100%.

2.8. Enzymatic Synthesis of Hydroxytyrosyl–Fatty Acid Esters

The esterification and transesterification performance of ZnOFe-TLL nanoconjugates
was evaluated on their ability to synthesize different hydroxytyrosyl–fatty acid esters.
The conjunction of hydroxytyrosol with oleic acid was used as the reaction model in
different anhydrous solvents (organic, ionic liquids). In a typical procedure, 0.02 mmol
of hydroxytyrosol and 0.1 mmol of oleic acid were dissolved in 1 mL dehydrated sol-
vent (n-hexane, DIPE, MTBE, acetonitrile, 2-methyl-2-butanol, t-butanol, [mtoa][NTf2],
[bmim][PF6], [bmim][BF4]) in screw-capped flasks. After the addition of 10 mg mL−1

ZnOFe-TLL, the reaction mixtures were placed in an orbital shaker at 50 ◦C and 180 rpm.
Aliquots were withdrawn at appropriate time intervals (24, 72, 120 h) to monitor the rate of
each reaction. At the end of the reaction, the nanobiocatalyst was recovered using magnetic
force (grade N42).

2.9. High Performance Liquid Chromatography (HPLC) Analysis

All reaction aliquots were analyzed and quantified by high performance liquid chro-
matography (HPLC), equipped with a µBondapack C18 reversed-phase column (particle
size 10 µm, length 300 mm, diameter 3.9 mm) and a diode array UV detector. The column
temperature was set at 35 ◦C and the flow rate and injection volume were 1 mL min−1 and
20 µL, respectively. The mobile phase consisted of methanol (A) and water (B, with 0.1%
acetic acid) with a gradient elution of 40–60% A at 0–4 min, 20–80% A at 4–8 min, 0–100%
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A at 8–25 min, and reset at initial conditions. Hydroxytyrosol and hydroxytyrosyl–fatty
acids esters were detected at 280 nm using a photodiode array (PDA) detector. Conversion
yields were determined according to Equation (2).

Conversion yield (%) =
Total Area o f product area

Total Area o f substrate area+Total Area o f product peak × 100 (2)

Synthesis reactions were repeated twice, while experiments in the absence of nanobio-
catalyst were also conducted and hydroxytyrosyl–esters were not detected. The product of
reaction model (hydroxytyrosyl–oleate) was isolated by semi-preparative HPLC, equipped
with a Luna C18(2) reversed-phase column (pore size 100 Å, particle size 10 µm, length
250 mm, diameter 10 mm). The flow rate and injection volume were 5 mL min−1 and 2 mL,
respectively. All other parameters were as described above.

2.10. Nuclear Magnetic Resonance (NMR) Analysis

For the characterization of the hydroxytyrosyl–oleate that was used as the reaction
model, 1H-13C HSQC-HMBC NMR experiments were employed. The isolated product was
dissolved in 500 µL of DMSO-d6, and the sample was transferred to a 5 mm NMR tube. All
NMR experiments were performed on a Bruker 500 MHz AV spectrometer, equipped with
a broadband inverse probe (Bruker Biospin, Rheinstetten, Germany), at 25 ◦C. The NMR
system was controlled by the software TopSpin 3.2. The pulse sequences for 1H-13C HSQC,
1H-13C HMBC were standard Bruker library sequences, acquired with 2 K data points over
a 14 ppm spectral width.

Chemical shifts of 1H and 13C NMR (δ, ppm) of hydroxytyrosyl–oleate: 1H-NMR
(500 MHz, DMSO-d6, 25 ◦C): δ = 0.88 (t, 3JH,H = 7 Hz, 3H, 26c-H), 1.28 (s, 16H, 12-14c-H
and 21-25c-H), 1.32 (s, 4H, 15c-H and 20c-H), 2.01 (q, 3JH,H = 6 Hz, 4H, 16c-H and 19c-H),
2.27 (t, 3JH,H = 8 Hz, 2H, 10c-H), 2.71 (t, 3JH,H = 8 Hz, 2H, 7c-H), 4.13 (t, 3JH,H = 8 Hz, 2H,
8c-H), 5.34 (t, 3JH,H = 6 Hz, 4H, 17c-H and 18c-H), 6.47 (d, 3JH,H = 8 Hz, 1H, 6-H), 6.63 (d,
4JH,H = 2 Hz, 1H, 2-H), 6.66 (d, 3JH,H = 8 Hz, 1H, 5-H), 8.65 (s,1H, 4-OH), 8.75 (s,1H, 3-OH)
ppm; 13C-NMR (500 MHz, DMSO-d6, 25 ◦C): δ = 14.52 (C26), 25.15 (C11), 27.4 (C16,19),
29.41 (C12,13,14,21,22,23,24,25), 29.82 (C15, 20), 34.11 (C10), 34.52 (C7), 65.27 (C8), 116.11
(C5), 116,75 (C2), 119.98 (C6), 129,31 (C1), 130.31 (C17,18), 144.77 (C4), 146.05 (C3), 173.61
(C9) ppm.

2.11. Reusability of the Bioconjugate ZnOFe-TLL

The magnetic NBS, ZnOFe-TLL, was utilized for the constant production of hydroxytyrosyl–
oleate in MTBE. Synthesis parameters are described in Section 2.8. After each cycle, the
nanobiocatalytic system was reclaimed using a magnetic force (grade N42), washed with
an appropriate amount of MTBE, and subsequently applied to a fresh reaction solution
for ten repeated catalytic cycles (720 h of total operation). The relative activity (%) was
calculated as the ratio of the remaining activity to the initial activity (first cycle).

3. Results and Discussion

In the present study, aqueous extract of Olea europaea leaves was used as the reducing
and capping medium for the biofabrication of ZnOFe NPs (Scheme 1), which were further
utilized as a support matrix for the immobilization of lipase from Thermomyces lanuginosus
via physical absorption. Pristine nanoparticles and nanoparticles with the incorporation
of TLL were characterized by spectroscopic and microscopic techniques. ZnOFe-TLL
nanocomposites are a result of non-covalent interactions between enzyme molecules and
functional groups of nanoparticles, including hydrophobic, van der Waals, electrostatic
forces and hydrogen bonds [1,34]. Physical absorption is considered as a one-pot, safe, and
inexpensive approach avoiding noxious linkers and preserving the enzyme microenviron-
ment intact [1]. The novel nanobiocatalytic system was applied to synthetic reactions of
compounds with biological interest in non-conventional media.
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3.1. Characterization of ZnOFe and ZnOFe-TLL Nanoparticles

Preliminary phytochemical screening of OLE revealed the presence of saponins, phe-
nols (112 mg g−1 crude extract), flavonoids, glycosides, steroids, terpenoids, and tannins.
Specific functional groups of these phytoconstituents were further confirmed by FTIR and
XPS studies on the surface of ZnOFe.

ZnOFe nanoparticles were prepared and characterized by spectroscopic and micro-
scopic techniques to investigate the morphology and the surface functionalization of the
synthesized nanomaterial. UV–Vis spectra analysis revealed the characteristic absorption
peak of zinc oxide at 370 nm, which is in reliance with the results in the literature and serves
as an indicator for the successful formation of ZnO nanoparticles [13]. The simultaneous
incorporation of ferrous sulphate to generate hybrid magnetic nanomaterials broadened the
aforementioned peak. Moreover, absorption peaks at 240–250nm and 290 nm in both OLE
and ZnOFe samples indicated the presence of phenolics and flavonoids (Figures S1 and S2
in the Supplementary Materials).

Powder XRD was carried out on obtained ZnOFe particles, as shown in Figure 1. The
peaks observed at 2θ values of 31.7◦, 34.4◦, 36.2◦, 47.5◦ 56.5◦, 62.9◦, 66.4◦, 67.9◦ 69.1◦ and
77.1◦ indicated the presence of ZnO nanoparticles. These peaks can be assigned to (100),
(002), (101), (102), (110), (103), (200), (112), (201) and (202) crystal planes and hexagonal
crystal geometry according to ICDD card no. 00-036-1451 [35–37]. The peaks which
appeared at 29.8◦, 40◦, 42.4◦ can be attributed to the presence of Zn(OH)2 (or hydroxylated
ZnO NPs) phase [38,39], while the peak centered at 34.9◦ is assigned to the (311) Miller
plane of iron oxide nanoparticles [40].

The structure and the morphology of the ZnOFe nanoparticles as well as the ZnOFe-
TLL nanoparticles were revealed by atomic force microscopy (AFM). Representative AFM
images of both systems deposited on Si-wafers by drop-casting from aqueous dispersions
are presented in Figures 2 and 3, respectively, confirming the presence of nanoparticles. In
addition, the depiction of cross section analysis image of the ZnOFe nanoparticles is shown
in Figure 2b and revealed nanoparticles with an average size of 15–17 nm. On the other
hand, AFM height images of ZnOFe-TLL nanoparticles are presented in Figure 3a,b. From
these images, it is clear that after the incorporation of the enzyme, the spherical shape is
slightly disrupted. Moreover, from the cross-sectional analysis AFM images (Figure 3c,d)
the average size of the nanoparticles has been increased due to the binding of the enzyme
with a value in the range of 20–24 nm. These findings are in totally accordance with the
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TEM study. TEM portraits also revealed a slightly disrupted circular nanostructure due to
the immobilization of the enzyme (Figure S3).
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Scanning electron microscopy and energy-dispersive X-ray spectroscopy were em-
ployed to confirm the composition of ZnOFe nanoparticles and the effective metal loadings
in the hybrid materials. Figure 4 shows representative SEM/EDS mapping images and the
elemental analysis of ZnOFe nanoparticles. Images depict the EDS elemental analysis with
colors, including zinc, iron, oxygen, and carbon elements, which was also ascertained by
the XPS survey (Figure S4). The composition of the hybrid magnetic nanoparticles was
estimated to 40.3 wt.% Zn, 25.8 wt.% Fe, 16.2 wt.% O, and 17.7 wt.% C.
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XPS of ZnOFe revealed the different oxygen states of Fe and Zn. More specifically,
after fitting in the Fe2p3/2 high resolution photoelectron spectrum presented in Figure 5a,
Fe2+ states were observed in lower binding energy due to octahedral formations and
Fe3+ states in higher binding energies owing to octahedral and tetrahedral formation.
Furthermore, zinc exists in two oxidation states (Figure 5b). The high energy peak at
1022.6 eV is attributed to Zn2+ in the form of Zn(OH)2 [41,42], as revealed in the Zn2p3/2
photoelectron spectrum, while the fitted peak at lower energy (1021.6 eV) is ascribed
to the ZnO chemical state [43]. Accordingly, in order to attain additional information
for the functional groups of the resulting nanoparticles, the C1s photoelectron peak was
evaluated. The peak is deconvoluted into four fitted peaks (Figure 5c) [44], creating in
such way a highly functional material. In detail at 285.0 eV, the presence of C–C and
C–H bonds represents 32.8% of the whole carbon amount, while a highly intense peak at
285.7 eV is due to C–O functionalities. Two additional peaks at 287.1 and 289.3 eV arise
due to C–O–C and C(O)O functionalities, representing 9.2% and 14.4% of the whole carbon
amount, respectively.
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Based on the XRD pattern, there is no sign of the presence of Fe-doped ZnO nanopar-
ticles due to the coexistence of the diffraction peaks of both phases and without any shift of
the reflections of the ZnO phase (that could be an indication of a doped material). Hence,
this is a hybrid material where zinc and iron coexist as oxide nanoparticles. Moreover,
the magnetic properties of these materials were proved by simply applying a commercial
magnet (Figure S5).

From the comparative C1s photoelectron spectrum of ZnOFe nanoparticles before and
after the enzyme incorporation, the existence of C–O–C (approximately 286.9 eV) as well
as amide bonds (approximately 288.0 eV, Figure 5d) reveals the successful immobilization
of lipase on the nanoparticles surface.

To further ascertain the immobilization of TLL, FTIR spectra of ZnOFe-TLL were
investigated in the range of 400–4000 cm−1 and compared with those of soluble TLL and
pristine nanoparticles from OLE (Figure 6). The FTIR spectrum of ZnOFe showed several
peaks, implying the presence of functional groups from OLE, at 2928, 2845, 1632, 1571, 1478,
1119, 608, 558 and 460 cm−1. The weak bands located at 2928 and 2845 could be assigned to
asymmetric and symmetric stretching vibrations of alkyl groups [45,46]. The peak observed
at 1632 cm−1 corresponds to stretching vibrations of C=O groups, and the peaks located
at 1571, 1487 and 1413 cm−1 could be assigned to stretching vibrations of C=C and C–C
aromatic groups [18,46]. The peak obtained at 1120 cm−1 indicates the presence of C–O–C
epoxy groups and those at 608, 558, and 460 cm−1 represent typical absorption peaks
of metal oxides owing to Zn–O and Fe–O bonds [18,47,48]. The incorporation of lipase
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generated characteristic peaks which confirm the immobilization of TLL on the surface
of ZnOFe NPs. Specifically, the peak at 1651 cm−1 clearly indicates stretching vibrations
of C=O group of the peptide bond, and the weak peak at 1543 cm−1 refers to bending
vibrations of N–H groups. The broad peak in the range 950–1250 cm−1 corresponds to
stretching vibrations of C–N, C–O (primary and secondary alcohols), and strong bending
vibrations of C-H groups [18,46,48]. The detection of the aforementioned peaks in the
ZnOFe-TLL spectrum correlates with those of TLL and pristine ZnOFe nanoparticles and
demonstrates that OLE acted as a chelating and capping medium, and TLL was successfully
anchored on the surface of ZnOFe. Certain typical peaks of phytochemicals were not
detected or shifted on the ZnOFe-TLL spectrum due to the non-covalent interactions
developed between the functional groups of the nanocarrier and the biocatalyst.
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3.2. Immobilization Yield and Biocatalytic Characteristics of Immobilized TLL

The biochemical characteristics of immobilized lipase were evaluated based on the
hydrolytic activity of the enzyme. Figure 7 illustrates the immobilization yield and the
hydrolytic activity of immobilized TLL in correlation with the enzyme to support the
(E/S) mass ratio. The amount of ZnOFe NPs (2 mg) used for immobilization was constant
in the overall process. It was observed that the immobilization yield was decreased
almost proportionally with the increase in the E/S mass ratio. Sarno et al. [49] also
exhibited that the amount of TLL during immobilization on Fe3O4 NPs had a profound
effect on the immobilization efficiency, presenting a similar pattern with the present work.
Dantas et al. [50], who reported the immobilization of TLL on nonporous polystyrene
particles through physical absorption, achieved immobilization yields that did not exceed
62%. The immobilization yield of TLL on ZnOFe surfaces reached 69%, when the enzyme to
support mass ratio was 1:4. The aforementioned results confirm a dependency between E/S
mass ratio and immobilization yield, which is commonly observed [51]. When lower E/S
proportions were used, higher immobilization yields were accomplished, and vice versa.

Increase in the initial protein content (or E/S ratio) led to increased lipase adsorption
(loading enzyme) on the surface of ZnOFe nanoparticles (Table S1). Lage et al. also
pointed out that initial TLL content affected several features, including immobilization
yield, total loaded protein, and hydrolytic activity, in a similar manner with this study [52].
Regarding the activity of immobilized TLL, a positive linear relationship with E/S mass
ratio increase was observed. The hydrolytic activity of immobilized TLL was proportionally
enhanced due to higher amounts of bound enzyme on the surface of ZnOFe NPs, which
is in accordance to that observed for the immobilization of other enzymes onto various
nanomaterials [45,51,53].



Nanomaterials 2021, 11, 458 13 of 20

Nanomaterials 2021, 11, x FOR PEER REVIEW 13 of 21 
 

 

physical absorption, achieved immobilization yields that did not exceed 62%. The immo-
bilization yield of TLL on ZnOFe surfaces reached 69%, when the enzyme to support mass 
ratio was 1:4. The aforementioned results confirm a dependency between E/S mass ratio 
and immobilization yield, which is commonly observed [51]. When lower E/S proportions 
were used, higher immobilization yields were accomplished, and vice versa.  

Increase in the initial protein content (or E/S ratio) led to increased lipase adsorption 
(loading enzyme) on the surface of ZnOFe nanoparticles (Table S1). Lage et al. also 
pointed out that initial TLL content affected several features, including immobilization 
yield, total loaded protein, and hydrolytic activity, in a similar manner with this study 
[52]. Regarding the activity of immobilized TLL, a positive linear relationship with E/S 
mass ratio increase was observed. The hydrolytic activity of immobilized TLL was pro-
portionally enhanced due to higher amounts of bound enzyme on the surface of ZnOFe 
NPs, which is in accordance to that observed for the immobilization of other enzymes onto 
various nanomaterials [45,51,53]. 

 
Figure 7. Effect of enzyme to nanosupport mass ratio on immobilized TLL activity (●) and immo-
bilization yield (▪). One unit of enzymatic activity (U) was defined as the amount of lipase that 
liberates 1 μmol of p-NP per minute per mL of reaction at 40 °C. 

3.3. Effect of Reaction Temperature and pH on the Activity of Free and Immobilized TLL 
The hydrolytic activity of free and immobilized TLL was determined at various tem-

peratures, ranging from 20 to 70 °C in phosphate buffer 25 mM, pH 7.5. Figure 8a shows 
that both free and immobilized biocatalyst exhibited a similar temperature pattern, while 
the temperature optimum (40 °C) of TLL was not shifted due to enzyme immobilization. 
At low incubation temperature (20 °C), the relative hydrolytic activity of the free TLL was 
slightly higher than the activity of the immobilized enzyme. Above 50 °C, the relative 
activity of free enzyme dramatically declined, whereas the relative activity of ZnOFe-TLL 
was three-fold higher at 60 °C and 18-fold at 70 °C compared to the free enzyme, indicat-
ing that TLL immobilization on ZnOFe nanoparticles stabilized the enzyme. Improved 
activity of immobilized lipase at elevated temperatures is considered as a major advantage 
for large scale applications, indicating better temperature adaptability. Studies have re-
ported a similar pattern regarding the immobilization of TLL on different nanomaterials, 
such as magnetic [54] and ZnO-coated nanoparticles [55]. 

The impact of pH on the hydrolytic activity of free and immobilized TLL was also 
examined. Figure 8b shows that the optimum operating pH of lipase was 7.5 in both cases. 
Furthermore, immobilized TLL exhibited significantly higher relative activity in acidic 
and neutral pH, whereas free TLL showed better performance in alkaline solutions. The 
decrease in the relative activity of ZnOFe-TLL in alkaline solution could be attributed to 
the specific microenvironment (charge effects) that the functionalized nanocarrier forms 

Figure 7. Effect of enzyme to nanosupport mass ratio on immobilized TLL activity (•) and immo-
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3.3. Effect of Reaction Temperature and pH on the Activity of Free and Immobilized TLL

The hydrolytic activity of free and immobilized TLL was determined at various
temperatures, ranging from 20 to 70 ◦C in phosphate buffer 25 mM, pH 7.5. Figure 8a shows
that both free and immobilized biocatalyst exhibited a similar temperature pattern, while
the temperature optimum (40 ◦C) of TLL was not shifted due to enzyme immobilization.
At low incubation temperature (20 ◦C), the relative hydrolytic activity of the free TLL was
slightly higher than the activity of the immobilized enzyme. Above 50 ◦C, the relative
activity of free enzyme dramatically declined, whereas the relative activity of ZnOFe-TLL
was three-fold higher at 60 ◦C and 18-fold at 70 ◦C compared to the free enzyme, indicating
that TLL immobilization on ZnOFe nanoparticles stabilized the enzyme. Improved activity
of immobilized lipase at elevated temperatures is considered as a major advantage for
large scale applications, indicating better temperature adaptability. Studies have reported
a similar pattern regarding the immobilization of TLL on different nanomaterials, such as
magnetic [54] and ZnO-coated nanoparticles [55].
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The impact of pH on the hydrolytic activity of free and immobilized TLL was also
examined. Figure 8b shows that the optimum operating pH of lipase was 7.5 in both cases.
Furthermore, immobilized TLL exhibited significantly higher relative activity in acidic
and neutral pH, whereas free TLL showed better performance in alkaline solutions. The
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decrease in the relative activity of ZnOFe-TLL in alkaline solution could be attributed to the
specific microenvironment (charge effects) that the functionalized nanocarrier forms around
enzyme’s active center [56,57]. However, it is obvious that soluble TLL is more susceptible
to pH fluctuations displaying a narrow activity range, whereas the immobilization of lipase
substantially improved its performance.

Hence, it is obvious that physical absorption of TLL on the ZnOFe surface enhances
the operational activity of lipase, expanding its temperature and pH action amplitude
which can be attributed to the stabilization of enzyme conformation on the surface of
magnetic nanoparticles in a similar manner to that reported by Sarno et al. [49] for the
immobilization of TLL on magnetic nanoparticles. Moreover, the stabilization of TLL
observed after its immobilization on green synthesized ZnOFe is in accordance with the
increased stabilization reported for other enzymes immobilized on nanoparticles [45,58,59].

3.4. Acylation of Hydroxytyrosol with Fatty Acids Catalyzed by ZnOFe-TLL

TLL is considered as a useful biocatalyst of industrial interest because it has been
utilized for the preparation of various esters for pharmaceutical and nutraceutical ap-
plications [49,50,52]. In this work, immobilized TLL on ZnOFe NPs was applied to the
synthesis of lipophilic derivatives of hydroxytyrosol through its esterification or transester-
ification reaction with various fatty acids or fatty acid methyl esters (FAMEs), respectively.
Table 1 summarizes the conversion yields of the enzymatic modification of hydroxyty-
rosol catalyzed by ZnOFe-TLL in MTBE. Generally, the acyl chain length of fatty acids
has been reported to affect the conversion yield of the esterification reaction. Moreover,
saturated and unsaturated fatty acids differ in their spatial configuration, affecting their
bio-modification [28]. In the present work, it was observed that as the acyl chain length of
fatty acids was increased, the conversion yield slightly decreased, which is in accordance
with previous work [25,60]. A similar pattern was also noticed in the case of fatty acids
with increased number of double bonds. Moreover, when FAMEs were introduced as acyl
donors, conversion yields were slightly lower compared to free forms of fatty acids that
were used as acyl donors. Methanol, generated as a by-product of the transesterification
reaction, could act as inhibitor, slightly impairing enzyme performance or competing with
the substrates for the active center of lipase [61–63].

Table 1. Effect of different acyl donors on the conversion yield of hydroxytyrosol acylation catalyzed
by ZnOFe-TLL after 72 h of incubation in MTBE.

Acyl Donor Conversion Yield (%)

Lipoic acid (C8:0) 63.7 ± 2.3
Myristic acid (C14:0) 64.3 ± 1.4
Palmitic acid (C16:0) 57.1 ± 3.1

Oleic acid (C18:1) 55.0 ± 1.9
Linoleic acid (C18:2) 50.4 ± 1.1

Methyl palmitate 52.2 ± 0.8
Methyl oleate 43.1 ± 4.5

Methyl linoleate 48.3 ± 0.4
Eicosapentaenoic acid (C20:5) 12.1 ± 2.6

In order to investigate the ability of ZnOFe-TLL to catalyze lipophilization reactions in
various non aqueous media, the conjunction of hydroxytyrosol with oleic acid was used as
the reaction model. Synthesis of hydroxytyrosyl–oleate (Scheme S1) was confirmed by 2D
1H–13C HSQC and 1H–13C HMBC NMR analyses. The 1H and 13C chemical shift assign-
ments of the product hydroxytyrosyl–oleate are presented in Section 2.10. of the Materials
and Methods. Various hydrophilic or hydrophobic organic solvents and ionic liquids were
tested as reaction media. Furthermore, the production rate of hydroxytyrosyl–oleate was
monitored on each solvent and the results are presented in Table 2. All experiments were
conducted at 50 ◦C with vigorous stirring which led to reduced mass transfer limitations.
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As shown in Figure 9, the conversion yields of hydroxytyrosol, catalyzed by ZnOFe-TLL,
was up to 90% in the case of non-polar solvent mediated reactions, namely in n-hexane,
DIPE and MTBE. Specifically, the conversion yield achieved in n-hexane was 89% in 72 h.
Among ethers, it was observed that the rate and yield of esterification reaction was higher in
DIPE. In contrast, immobilized TLL-mediated synthesis in polar solvents led to low yields
of esterification. Among them, the conversion yield in acetonitrile reached a maximum
of 20%. Reaction rates were also significantly higher in non-polar media (Table 2). More
specifically, the rate of reaction in n-hexane was 34-fold higher compared to the more polar
acetonitrile. Generally, non-polar/hydrophobic solvents tend to shift lipase conformation
from closed to open, which has a major impact on their activity [64]. Furthermore, essential
water molecules covering enzyme surface are not disrupted in non-polar media, whereas
in polar solvents, this water layer is interrupted, destabilizing lipases conformation [64–66].
More specifically, it has been reported that polar solvents displace water molecules at the
more polar regions of enzymes [65]. As a consequence, the structural characteristics and
dynamic properties of biocatalysts are significantly affected. Moreover, Kumar et al. has
reported that thermostable lipases, such as TLL, are more susceptible to be inactivated in
water miscible organic solvents [64]. It is also interesting to note that the higher conversion
yields observed in hydrophobic solvents (n-Hexane, DIPE or [mtoa][NTf2],) could be ex-
plained by solvent effects on solvation of hydrophilic hydroxytyrosol in a similar manner
as described for other enzymatic transformations [67,68].

Table 2. Reaction rates (mM h−1 g−1 nanobiocatalyst) of hydroxytyrosol acylation with oleic acid
catalyzed by ZnOFe-TLL in various non-aqueous media.

Solvents Rate (mM h−1 g−1 Nanobiocatalyst)

2-Methyl-2-butanol 0.75
Acetonitrile 3.44
n-Hexane 25.31

MTBE 15.45
DIPE 24.33

t-Butanol 1.54
[bmim][PF6] 3.33
[bmim][BF4] 1.25
[mtoa][NTf2] 23.27
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The ability of ZnOFe-TLL to catalyze the lipophilization of hydroxytyrosol was also
investigated in ionic liquids that are frequently used as “green” solvents [66]. The highest
conversion yield and reaction rate was observed in [mtoa][NTf2] (Figure 9, Table 2), a water
immiscible IL, in which hydroxytyrosol solubility was the lowest among tested ILs [69].
Interestingly, [mtoa][NTf2] was proved considerably effective as a reaction medium for
the lipophilization of hydroxytyrosol, despite the fact that it is a more viscous IL (574cP)
than [bmim][PF6] (460cP) and [bmim][BF4] (219cP). Generally, high viscosity leads to mass
transfer limitations; however, it has been reported that proteins could be stabilized in
such media [66]. It was also proposed that low solubility of a substrate in ILs is related
to weak interactions between substrate and solvent that could increase the availability of
the substrate to the enzyme microenvironment, and, thus, increase the effectiveness of
the biocatalytic process [70]. The successful employment of ZnOFe-TLL in [mtoa][NTf2]
confirms that this nanobiocatalyst could successfully carry out synthetic reactions not only
in organic but also in ionic solvents.

Furthermore, the ability of ZnOFe-TLL to catalyze the synthesis of high value hybrid
bioactive compounds, such as esters of hydroxytyrosol with omega-3 fatty acids, was
also investigated. For that reason, esterification of eicosapentaenoic acid (EPA) with
hydroxytysosol was tested in organic solvents such as MTBE, DIPE and n-hexane. As
shown in Table 3, the highest conversion yield was observed for the conjunction of EPA
with hydroxytyrosol (80% after 72 h) in the less polar solvent (n-hexane), which is in
accordance with that observed for the conjugation of hydroxytyrosol with oleic acid, as has
been described before. However, conversion yields with the polyunsaturated fatty acid
as acyl donor were slightly lower. As has been reported, unsaturated FAs tend to bend
(Table S2), hampering the advance of reaction, due to steric hindrance effects [25,60]. The
number of double bonds has a direct correlation with the molecular structure of the fatty
acid which, as a consequence, affects the advance of acylation reaction.

Table 3. Effect of reaction medium on the esterification of eicosapentaenoic acid (EPA) with hydroxy-
tyrosol in 50 ◦C and 72 h of incubation.

Solvent Acyl Donor Conversion Yield (%)

MTBE EPA 12.1 ± 2.6
DIPE EPA 44.5 ± 1.6

n-Hexane EPA 80 ± 0.9

3.5. Reusability of the Nanobiocatalytic System ZnOFe-TLL

The cost of soluble lipases and, more importantly, the inability of their recovery, has
impeded their deployment for many scale-up applications. These bottlenecks have been
overcome by the emergence of immobilization. More specifically, enzymes immobilized
on nanoparticles with magnetic capabilities can easily be recovered by magnetization,
avoiding laborious isolation. Furthermore, the lipase-mediated synthesis of attractive
compounds requires not only the reutilization of the nanobiocatalytic system, but also
sufficient catalytic performance for a number of cycles. Hence, ZnOFe-TLL recovery and
reusability upon hydroxytyrosyl–oleate synthesis in MTBE was investigated. After its cycle,
the nanobiocatalyst was retrieved by magnetization (grade N42, Figure S5), washed with
a proper amount of solvent, and applied to a new reaction mixture, avoiding laborious
isolation by magnetization. As shown in Figure 10, immobilized lipase retained almost
90% of its initial activity after eight subsequent cycles, whereas it operated for 720 h at
50 ◦C displaying significantly high remaining activity. Bonazza et al. also reutilized TLL
immobilized on modified chitosan support (50 mg mL−1) for five successful reaction
cycles with a minimal loss of activity for the production of ethyl oleate [71]. The high
operational stability of ZnOFe-TLL in anhydrous media, observed here, indicates that
this novel nanobiocatalyst could be successfully used in various continuous biocatalytic
processes of industrial interest.
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4. Conclusions

Green synthesized hybrid magnetic ZnOFe nanoparticles were proven excellent can-
didates as support matrices for the immobilization of a lipase with numerous industrial
applications. An eco-friendly and inexpensive methodology was employed both for
the benign fabrication of hybrid magnetic nanoparticles and their conjugation with TLL.
ZnOFe exhibited sufficient magnetic capabilities with simple recovery, a functionalized
surface, and an average size of 15–17 nm. The exploitation of the nanobiocatalytic sys-
tem, ZnOFe-TLL, for the synthesis of bioactive hydroxytyrosyl fatty acid esters, such as
hydroxytyrosyl–oleate or eicosapentaenoate, led to high production yields in different
non-conventional media, including ionic liquids. Furthermore, the operational activity and
stability of lipase was substantially enhanced upon immobilization. These results indicate
that ZnOFe-TLL is a robust candidate for many biocatalytic processes in aqueous and
non-aqueous media. To the best of our knowledge, this is the first time that green ZnOFe
NPs have been synthesized from olive leaf extract and used as an enzyme immobilization
carrier. This captivating concept of bio-synthesized nanomaterials, along with biocatalysis,
is a key solution for industrial operations, fulfilling the fundamental requisites of more
environmentally friendly and safer processes. The development of green nanosupport ma-
trices for enzyme immobilization purposes is a nascent and economically viable approach,
conforming to the new era of green biotechnology.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-4
991/11/2/458/s1. Figure S1. UV–Vis absorption spectrum of aqueous OLE, ZnOFe nanoparticles
and metal ions solution without extract (RT, 15 µg mL−1); Figure S2. UV–Vis absorption spectrum of
aqueous ZnOFe nanoparticles and ZnOFe-TLL (RT, 15 µg mL−1); Figure S3. Representative TEM
images of ZnOFe nanoparticles with the incorporation of the enzyme, TLL; Figure S4. XPS survey of
ZnOFe hybrid nanoparticles; Figure S5. Magnetization of the ZnOFe NPs in (a) aqueous solution and
(b) powder phase by a N42 magnet; Table S1. Enzyme loading per mg support and enzyme activity of
the nanobiocatalytic system at 40 ◦C and pH 7.5, using p-NPB as the substrate; Scheme S1. Enzymatic
synthesis of hydroxytyrosyl–oleate catalyzed by ZnOFe-TLL in MTBE, 50 ◦C and 72 h of incubation.
The product was characterized by 1H-13C HSQC and 1H-13C HMBC NMR; Table S2. Structures of
saturated and unsaturated fatty acids utilized as acyl donors for hydroxytyrosol bioconversion by
ZnOFe-TLL. The number of double bonds and the effect on the molecular structure are depicted in
the table.
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