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Abstract
This review focuses on the role of Toll-like receptors (TLRs) in
lupus and on possibilities to treat lupus using TLR modulating
inhibitory oligodeoxynucleotides (INH-ODNs). TLRs bridge innate
and adaptive immune responses and may play an important role in
the pathogenesis of systemic lupus erythematosus. Of particular
interest are TLR3, -7, -8, and -9, which are localized intracellularly.
These TLRs recognize single-stranded or double-stranded RNA or
hypomethylated CpG-DNA. Exposure to higher order CpG-DNA
ligands or to immune complexed self-RNA triggers activation of
autoreactive B cells and plasmacytoid dendritic cells. INH-ODNs
were recently developed that block all downstream signaling
events in TLR9-responsive cells. Some of these INH-ODNs can
also target TLR7 signaling pathways. Based on their preferential
cell reactivity, we classify INH-ODNs into class B and class R.
Class B (‘broadly reactive’) INH-ODNs target a broad range of
TLR-expressing cells. Class R (‘restricted’) INH-ODNs easily form
DNA duplexes or higher order structures, and are preferentially
recognized by autoreactive B cells and plasmacytoid dendritic
cells, rather than by non-DNA specific follicular B cells. Both
classes of INH-ODNs can block animal lupus. Hence, therapeutic
application of these novel INH-ODNs in human lupus, particularly
class R INH-ODNs, may result in more selective and disease-
specific immunosuppression.

Introduction
Innate immunity (natural resistance) is recognized as the first
echelon in the battle against ‘microbial terror’. Microbial
recognition is a complex process that depends on the
integrity of the complement system and requires specialized
receptors on natural killer cells and nucleotide-binding
oligomerization domain (NOD) proteins [1].

An important role in innate immunity has been recently
ascribed to the Toll-like receptor (TLR) family. TLRs were first
identified in Drosophila as receptors that mediate protection
against fungal infections [2,3]. TLRs are surprisingly of very

limited heterogeneity [4] but they have potent capacity to
sense micro-organisms and alert body defense system about
the presence of infectious danger. This is achieved through
recognition of conserved microbial patterns such as
unmethylated CpG motifs in bacterial DNA [5], single-
stranded or double-stranded (ds) viral RNA, lipopoly-
saccharide, peptidoglycan, and bacterial flagellin (for review,
see [6]). However, the role of TLRs extends beyond microbial
recognition because recent evidence places them at the
interface between innate and adaptive immunity [7]. This
function is accomplished through coordinated upregulation of
major histocompatibility complex class II and costimulatory
molecules (e.g. CD40 and B7 family), resulting in much more
efficient antigen presentation [8]. Furthermore, TLR-induced
secretion of type I IFNs IL-6, tumor necrosis factor-α, and IL-
12 directs maturation and sublineage commitment of immune
cells that participate in the adaptive immune response [9,10].
For example, type I IFNs augment antigen-specific CD4+ and
CD8+ T cell responses and, in an autocrine manner,
upregulate costimulatory molecule expression on dendritic
cells [11-14]. When combined with IL-12, type I IFNs
increase natural killer cell mediated cytotoxicity and, together
with IL-6, they drive B cell differentiation and immunoglobulin
secretion [15-19].

In this review we discuss recent evidence that suggests a
role for TLRs in the pathogenesis of systemic autoimmunity.

Do Toll-like receptors contribute to systemic
autoimmunity?
Infections frequently precede the occurrence of either organ-
specific or systemic autoimmune diseases. Traditionally, this
was thought to occur because of the structural cross-
reactivity between the pathogenic micro-organisms and self-
antigens (theory of molecular mimicry) [20]. Alternatively,
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microbial products may induce autoimmunity by triggering the
bystander activation of the immune system, which, if not
regulated, can break the anergic state, leading to the expansion
of dormant autoreactive clones.

Because the innate response to microbial products primarily
depends on TLRs, it is not surprising that recent studies have
implicated these receptors in the pathogenesis of auto-
immunity, particularly TLR3, -7, -8, and -9 [21-28]. In contrast
to other TLRs, which are primarily localized at the outer cell
membrane, this subgroup of TLRs is localized intracellularly.
Even more importantly, these TLRs recognize nucleic acid
motifs or their synthetic analogs (e.g. ds or single-stranded
viral or host RNA [TLR3 and TLR7/8] or hypomethylated
bacterial CpG-DNA [TLR9]). Macromolecular complexes of
RNA or DNA associated with proteins, such as in chromatin,
Ku autoantigen, topoisomerase, Sm/snRNP complexes,
ribosomes, or in Ro/La (SS-A/SS-B) antigens, are well known
targets of autoimmunity in systemic autoimmune diseases
(mixed connective tissue disease, systemic lupus erythema-
tosus [SLE], Sjögren’s syndrome, and scleroderma) [29-35].
Another distinctive feature of this subfamily of TLRs is that, in
humans, TLR7/8 and TLR9 exhibit a very limited cellular
distribution and are detectable only in B cells and plasma-
cytoid dendritic cells (pDCs) [36]. In mice, in addition to B
cells and pDCs, myeloid dendritic cells and macrophages
also express TLR7 and TLR9 receptors and can respond to
poly I:C – a synthetic ligand for TLR3 [37]. Mouse B cells,
but not human B cells, also proliferate and differentiate into
antibody-secreting cells when stimulated with lipopoly-
saccharide. This requires full assembly of the multireceptor
signaling complex containing TLR4 and other accessory
molecules (for review, see [2,7]).

The question remains regarding whether TLR activation can
bypass tolerance and induce autoimmunity, such that
autoimmunity is a natural and recurring consequence of
systemic infection. Before attempting to answer this question,
one must distinguish between normal transient low-affinity
autoimmune responses and self-destructive autoimmune
diseases. In a normal individual short exposure to microbial
products will induce only a transient activation of TLR-
expressing cells, including low-affinity self-reactive B cell
clones and pDCs, because these cells are under tight
regulation by SOCS (suppressors of cytokine stimulation)
proteins [38] and regulatory cytokines [39-41]. However, one
can postulate a number a ways in which this normal low-
affinity autoimmune response could progress to autoimmune
disease, given the right circumstances or host factors. For
example, one might suspect that TLR expression or its
subcellular distribution is abnormal in mouse strains with
autoimmune diseases. Whereas a loss-of-function mutation in
TLR results in increased susceptibility to infections [42], at
the opposite end of the spectrum, productive mutations in
TLR might result in increased receptor avidity for otherwise
low-affinity foreign or even unrelated self TLR ligands. Another

possibility is that the inducibility or the function of SOCS
proteins may be inadequate in autoimmune cells. Finally, the
endogenous supply of self TLR ligands may be increased
either because of the abnormal apoptotic cell death or
because of the inefficient clearance of apoptotic material.

What all these possibilities have in common is the paradigm
that TLR can respond to endogenous ligands (e.g. to self-
DNA, heat shock proteins, minimally oxidized low density
lipoprotein, and saturated fatty acids, to name but a few)
[28,43,44] (for review, see [45]). Alternatively, presumed
endogenous TLR ligands might need to undergo some type
of modification before they can gain the capacity to stimulate
TLRs. With respect to chromatin complexes, aberrant DNA
methylation, oxidative DNA damage, differential cleavage of
DNA, and histone phosphorylation are just a few
modifications that may result in increased TLR stimulation
and ‘adjuvanticity’.

Toll-like receptors and interferons in lupus
Although at this time we cannot confirm or rule out any of the
above possibilities, we know that some of the downstream
events that follow TLR activation (e.g. type I and type II IFN
secretion) play a well established role in the pathogenesis of
systemic autoimmunity [19,46,47]. IFN-γ has long been
considered the core cytokine in the pathogenesis of SLE
[47]. Even more abundant evidence supports a role for type I
IFNs. For example, similarly to IFN-γ, type I IFNs can promote
isotype switching to T-helper-1-like isotypes (IgG2a, IgG2b,
and IgG3 in mice) that are capable of activating the
complement system [48]. This may explain the predominance
of these isotypes in animal models of lupus and the well
known contribution of complement-mediated activation to the
tissue injury in lupus. Increased concentrations of IFN-α
correlate directly with disease activity and severity in human
SLE [49-52], and there are well documented case reports of
patients who developed SLE-like clinical manifestations after
treatment with IFN-α [53,54]. Furthermore, IFN genetic
signatures are found in SLE patients [55,56]. Moreover,
IFN-α in sera of lupus patients mediated differentiation of
monocytes into potent antigen-presenting cells [13], whereas
DNAse-sensitive immune complexes stimulated the FcγR-
dependent production of IFN-α by pDCs [57]. A similar
requirement for FcγR and TLR9 was seen in murine myeloid
dendritic cells stimulated with chromatin immune complexes
[58]. Finally, in vivo treatment of NZB mice with type A(D)
CpG oligodeoxynucleotides (ODNs) induced abnormally high
serum levels of IFN-α [59].

Where is this IFN-α coming from? Accumulating evidence
suggests that pDCs (also known as natural IFN-α-producing
cells) are the major, but not exclusive, producers of type I
IFNs following infections with DNA viruses (e.g. mouse
cytomegalovirus, herpes simplex viruses types 2 and 1)
[60,61], and following stimulation with certain types of
CpG-ODNs (types A and C [62,63]). In all of these
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instances, IFN-α production required TLR9. However, even
though the above evidence suggests a primary role for TLR9,
this is not the exclusive innate receptor that can trigger high
IFN-α production in lupus mice. Indeed, in a study conducted
almost 4 decades ago, injection of poly I:C into NZB/W F1
mice accelerated lupus nephritis [64]. Poly I:C closely
resembles dsRNA viruses and requires a TLR3 receptor in
order to induce high IFN-α secretion. A recent study
conducted by Braun and coworkers [65] provided additional
evidence that poly I:C can aggravate renal disease in B6lpr

mice, simultaneously causing polyclonal B cell activation and
autoantibody secretion. In concordance with these results,
NZB mice lacking the α-chain of the IFN-α/β receptor
produced fewer autoantibodies and exhibited reduced renal
pathology. More importantly, these mice survived longer [66].
Similar results were observed in B6lpr mice, in which type I
IFNs appeared to be responsible for both lymphoproliferation
and for immune complex deposition in kidneys [65]. However,
opposing results were observed in a recent study by Hron
and Peng [67], in which MRL-Faslpr/lpr mice lacking IFN
receptor 1 exhibited worsened lymphoproliferation, auto-
antibody production and end-organ disease, suggesting that
type I IFNs may play a protective role, at least in some animal
models of autoimmunity.

Curiously, immature pDCs and human B cells do not express
TLR3 [36]. A recent study by Pawar and coworkers [68]
showed that treatment with the TLR7/8 agonist R-848
worsened immune complex glomerulonephritis in MRL-
Faslpr/lpr lupus mice, but it remains to be determined whether
such effect required type I IFN.

Diversity of Toll-like receptor 9 ligands and
their role in the pathogenesis of lupus
TLR9 is a receptor for microbial CpG-DNA [5,69]. It
recognizes a single-stranded ‘CpG motif’, consisting of
unmethylated CpG dinucleotides flanked by particular bases
[70,71]. The GACGTT hexamer is the most stimulatory CpG
motif in rodents, whereas GTCGTT motif works best in
primates. However, recent studies have identified additional
requirements for optimal TLR9 stimulation (e.g. the need for
the 5′ T and additional bases 3′ to the CpG hexamer)
[72-74]. Stimulation with bacterial CpG-DNA can be
mimicked both in vitro and in vivo with synthetic CpG-ODNs.
Based on cell type preferences and the ability to form
duplexes or complex structures, CpG-ODNs can be divided
into three major types. Type A(D) CpG-ODNs contain poly-G
rich tails and a central palindromic CpG sequence with the
natural phosphodiester (PO) backbone. These ODNs easily
form secondary structures (e.g. G4 strands), or even larger
aggregates [75], and preferentially stimulate pDCs in humans
and in mice [62,63]. Type B(K) CpG-ODNs have linear
nonpalindromic CpG-ODN sequences, and are typically
made with the nuclease-resistant phosphorothioate (PS)
backbone. These ODNs are very good stimulators of both
human and mouse B cells [62,63,71]. Finally, type C CpG-

ODNs contain a 5′ TCG motif and CpG-containing
palindromes, allowing them to form secondary structures.
These ODNs stimulate both B cells and pDCs in the human
system. Interestingly, the length of the palindrome correlates
well with the ability of these ODNs to activate pDCs but not
B cells [76-78].

Even though stimulation with microbial CpG-DNA can induce
anti-dsDNA antibodies in animal models of lupus [79,80], and
TLR9-deficient lupus mice fail to produce anti-chromatin
(dsDNA) antibodies [81], it is still difficult to establish a direct
link between exposure to microbial CpG-DNA and induction
of lupus. Rather, microbial DNA may be involved in triggering
lupus flares. Endogenous retroviruses were once considered
to be etiologic factors in lupus, but strong evidence
supporting this possibility is lacking [82]. Interestingly, some
mainly circumstantial evidence suggests a role for chronic
Epstein–Barr virus infection in the pathogenesis of SLE [83].
However, instead of considering lupus a model for the
‘chronic silent infection’, one must seek alternative
(endogenous) ligands for the TLR9. Clearly, the prime
candidate would be mammalian DNA itself. Indeed, unbound
and immune-complexed host dsDNA was identified in lupus
sera several decades ago [84]. However, in contrast to
bacterial DNA, freshly purified unmodified mammalian DNA is
not immune stimulatory. There are several possible
explanations for this [85]:
• CpG suppression: mammalian DNA has reduced

numbers of stimulatory CpG motifs (one-seventh of the
expected frequency) [71,85].

• CpG methylation: the majority of CpG motifs in
mammalian DNA are methylated; however, even after
complete demethylation, mammalian DNA is still poorly
stimulatory.

• Inefficient uptake: uptake of mammalian DNA into
immune cells mediated via receptor-mediated endocy-
tosis is saturable but highly inefficient, failing to deliver
high enough intracytoplasmic concentrations.

• Inhibitory DNA motifs: mammalian DNA, in contrast to
bacterial DNA, contains a higher frequency of inhibitory
DNA motifs, like those found in telomeric DNA
(TTAGGGn) [86] or in several other regions of the
mammalian genome (e.g. immunoglobulin switch
regions). These motifs can block TLR9-induced activation
in both a cis and trans manner.

Surprisingly, chromatin-containing immune complexes in
lupus sera were capable of inducing proliferation of
rheumatoid factor-specific B cells (AM14-transgenic B cells)
and DNA-specific B cells (3H9-transgenic B cells) [24,87].
This proliferation was sensitive to treatment with DNAse and
required unmethylated CpG sequences. It also required a
synergy between the TLR9/MyD88 pathway and B cell
receptor for antigen (BCR)-mediated signaling. For example,
blocking the calcineurin pathway with cyclosporine A
diminished BCR-dependent proliferation, whereas treatment
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with either inhibitory ODNs or chloroquine blocked TLR9-
mediated signaling. Although CpG-DNA fails to induce
extracellular signal-regulated kinase (ERK) phosphorylation in
B cells, immune complexes containing chromatin were
capable of inducing ERK activation in B cells. They also
stimulated IFN-α production by pDCs [58].

Taken together these data suggest that circulating DNA in
lupus sera is either enriched in immunostimulatory CpG
sequences, or is epigenetically modified to ensure more avid
interaction between the DNA and TLR9. Indeed, DNA
isolated from serum immune complexes in lupus contains
disproportionably more guanosine/cytosine nucleotides than
adenine/thymine residues [88]. Some data suggest that such
circulating DNA may be derived from activated T cells
[89,90]. CpG islands [91] or sequestered Alu or LINE-1
sequences [92] are particularly good candidates for serving
as endogenous TLR9 ligands in lupus. Another possibility is
that the ratio between inhibitory DNA sequences and
stimulatory CpG motifs is changed in lupus in favor of the
later. Abnormal telomerase activity may be responsible for
this imbalance. Finally, because BCR-mediated uptake of
CpG-DNA is much more efficient than passive uptake, DNA-
reactive B cells should have much higher intracellular
concentrations of CpG-DNA.

IFN priming may further decrease the threshold for TLR9-
mediated (and TLR7-mediated [93]) activation, allowing
lower affinity TLR9 ligands to promote downstream signaling
(Brummel and coworkers, unpublished data). This may be the
case with dsCpG-DNA ligands because they bind to TLR9
with much lower affinity compared with single-stranded CpG-
DNA [94]. Thus, complex TLR9 ligands may need prior
processing by DNA-specific enzymes (e.g. helicases and/or
topoisomerases) in order to bind more avidly to the TLR9 and
to initiate downstream signaling. Interestingly, unprimed
follicular B cells, in contrast to marginal zone (MZ)-B cells,
are very poor responders to bacterial DNA and to other
‘natural’ TLR9 ligands. However, IFN priming may result in
more efficient TLR9 signalosome formation and DNA
processing, even in follicular B cells (Brummel and
coworkers, unpublished data).

Toll-like receptor 9, B cell ontogeny, and the
innate model of lupus
During ontogeny, B cells progress through several develop-
mental stages, during which they appear extremely sensitive
to microenvironmental influences and/or self-antigens, resulting
in either positive or negative selection of B cells [95-97]. A
negative selection of B cells, similarly to T cells, depends on
the overall affinity of clonotypic BCR for the self-antigen.
Immature B cells are enriched in self-reactive specificities,
including those against DNA, and are particularly vulnerable
to strong BCR signals [98]. The encounter with self-BCR
ligands will typically result in clonal deletion, but a few clones
may be rescued by receptor editing or by clonal anergy. A

question is whether exposure to self-TLR ligands during
development can rescue potentially self-reactive clones from
negative selection. Under normal circumstances, the balance
between the inhibitory DNA motifs and stimulatory CpG
sequences in self-DNA will probably favor apoptosis in
immature B cells specific for self-DNA, because the TLR9-
mediated cosignal will not be generated. Although single-
stranded CpG-ODNs can rescue immature non-DNA-reactive
WEHI-231 cells from BCR-induced apoptotic cell death [99],
similar studies performed with natural TLR9 ligands (e.g. with
ds bacterial DNA) suggest the opposite (Lenert P,
unpublished data). However, anti-DNA specificity of at least
some B cells in 3H9 mice transgenic for the heavy chain of
an anti-DNA antibody [100] suggests that exposure to self-
DNA may not always result in clonal deletion, and that some
DNA-specific clones may escape tolerance.

The next question is toward which differentiation pathway will
surviving self-reactive B cell clones be directed – MZ/B1-B
pathway or follicular B cell pathway? Some studies suggest
that low-affinity autoreactive B cells will likely be diverted
toward the MZ-B cell pathway [101-106]. However, despite
the block in MZ-B cell development, male BXSB mice
develop a systemic autoimmune disease, suggesting that
under some conditions low-affinity autoreactive B cells may
be redirected toward the follicular B cell pathway [107].
Although more studies are needed to better understand the
role of self-TLR ligands in the rescue of self-reactive
immature/transitional B cells, recent studies have revealed
substantial differences in responsiveness to natural and
complex CpG-DNA ligands at the level of mature B cells. For
example, MZ-B cells responded vigorously to bacterial DNA
and dsCpG-ODNs, as well as to G4-DNA forming type A(D)
CpG-ODNs; however, highly purified follicular B cells failed
to respond to any of the above ligands [108] (Brummel and
coworkers, unpublished data). Enhanced responsiveness of
MZ-B cells was due to the combination of increased numbers
of MZ-B cells in lupus mice and their hypersensitivity to
bacterial DNA and complex CpG-DNA ligands (Brummel and
coworkers, unpublished data). Notably, follicular B cells from
lupus mice stimulated with single-stranded type B(K) CpG-
ODNs responded similarly to follicular B cells from normal
mice, suggesting a normal reactive pattern of TLR9-
dependent activation. Although an explanation for this
differential TLR responsiveness between follicular and MZ-B
cells is missing, it cannot be attributed to TLR9 expression
because both cell types express TLR9 similarly [108]. We
hypothesize that this lack of responsiveness may be an
important safety feature of follicular B cells, protecting them
from the bystander activation induced with exogenous or self-
derived dsCpG-DNA.

Priming with IFNs, or BCR-mediated delivery of CpG-antigen
complexes may allow antigen-specific follicular B cells to
become responsive to complex TLR9 ligands, boosting B cell
proliferation and promoting immunoglobulin secretion and
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isotype switching. Interestingly, both IFN priming and CD40-
mediated activation, together with autocrine IL-6 (IL-10 in the
human system [109]) secretion and BAFF-initiated signaling,
are required for CpG-DNA mediated isotype switching
toward complement-fixing IgG isotypes (e.g. IgG2a, IgG2b and
IgG3 in mice; IgG1 and IgG3 in humans). This suggests that T
cells and BAFF-producing antigen-presenting cells may play
an indispensable role in lupus pathogenesis. Interestingly, IFN
priming induces higher IL-6 and IL-10 secretion from CpG-
DNA stimulated MZ-B cells [110]. Although MZ-B cells, at
least in murine lupus, may play an important role as self-
antigen processing/presenting cells for T cell activation, there
is some controversy about the role of these B cells in humans
and whether they may have a distinct origin. For example, a
recent study showed that human splenic MZ-B cells do not
express activation-induced deaminase, which is a key enzyme
necessary for isotype switching, thus questioning the
relationship between splenic MZ-B cells and circulating
hypermutated IgM+CD27+ memory B cells [111]. Although
additional studies are needed to resolve this controversy in
humans, there is a clear evidence that, in mice, MZ-B cells
are a distinct B cell lineage likely derived from nondividing
CD21highCD23+ transitional B cells [112], which are capable
of undergoing isotype switching [113].

The existence of low-affinity anti-DNA or rheumatoid factor
producing B cell clones within the MZ-B cell compartment
may be beneficial because these antibodies induce more
efficient removal of cellular debris by phagocytes. Transient
appearance of low affinity anti-single-stranded or dsDNA anti-
bodies, preferentially of IgM and IgG3 isotypes, will probably
accompany any systemic exposure to bacteria. At the same
time, MZ-B cell derived IL-10 secretion may be important for
downregulating the endotoxin-induced inflammatory cytokine
storm that characterizes early stages of bacterial sepsis. In
addition, IL-10 may also finely modulate the activity of
antigen-presenting cells, including pDCs, for example by
suppressing the IFN-α production.

In normal circumstances the TLR9-mediated (and TLR7-
mediated) activation of splenic autoreactive B cells will be
self-limiting and will probably cause only minimal tissue
damage. We propose a different scenario in the patho-
genesis of lupus (Fig. 1). Although exogenous TLR9 (and
TLR7) ligands (such as microbial DNA) may trigger lupus
flares through formation of phlogogenic CpG-DNA (or RNP)/
anti-DNA (anti-RNP) immune complexes and simultaneous
activation of pDCs [19], it is the continuous (or repetitive)
exposure to modified self-CpG-DNA that probably drives the
survival and expansion of self-DNA-reactive B cell clones.
Exposure to self-hypomethylated DNA will induce secretion of
low-affinity anti-DNA antibodies initially. These antibodies are
likely to derive from either MZ or B1 B cells, and not from the
follicular B cells. Resulting immune complexes will activate
pDCs to induce type I IFN secretion. Through the positive
feedback loop, this will further decrease the threshold for B

cell activation, promoting survival and expansion of
transitional B cell precursors with antichromatin and
rheumatoid factor specificity, diverting some of these cells
toward the follicular B cell pathway. Help from autoantigen
(histone, Ku autoantigen, among others), activated T cells in
germinal centers will further promote affinity maturation and
isotype switching in autoreactive B cells. Productive
rearrangement of immunoglobulin genes will eventually result
in the generation of higher affinity anti-dsDNA specific B cell
clones. Likewise, continuous exposure to RNA/protein
complexes may favor expansion of Sm/RNP, SS-A/SS-B or
anti-ribosomal clones, dependent on either TLR3 or TLR7/8.
Indeed, recent studies have shown that RNA-associated
autoantigens can activate autoreactive lupus B cells through
BCR/TLR7 co-engagement [93]. They can also stimulate
IFN-α secretion from human pDCs [114].

Exposure to ultraviolet light and hormonal (estrogenic)
influences may further increase the availability of self-TLR
ligands, generating the characteristic lupus autoantibody
profile [115]. Not surprisingly, inappropriate release of self-
DNA from damaged tissues, such as skin, has long been
suspected to underlie SLE pathogenesis [84]. Nucleosomes
released from apoptotic cells in lupus are somehow enriched
in self-TLR9-binding DNA sequences, possibly related to
decreased DNA methyltransferase activity [89] secondary to
cellular activation [116]. Interestingly, medications that can
cause drug-induced lupus (e.g. hydralazine and pro-
cainamide) are capable of blocking methyltransferase activity
[117], and some stimulatory effects of DNA may not require
TLR9 receptor at all, as recently noticed in TLR9-deficient
cells [118]. Thus, although MZ-B cells may play a crucial role
in the initiation of animal lupus, it is the interaction between
autoreactive T cells and IFN-primed follicular B cells that is
critically important for the amplification of the autoimmune
circuit, generating high affinity complement-fixing auto-
antibodies. Therefore, attempts to block CD40L/CD40 or
CD28/B7 interactions, or type I IFNs may be promising
therapeutic options for lupus.

Targeting Toll-like receptor activation of
autoreactive B cells and plasmacytoid
dendritic cells with inhibitory DNA sequences
Halpern and Pisetsky made the original observation that
certain poly-G ODNs containing the nuclease-resistant PS
backbone, but not those synthesized with the PO backbone,
could block the production of IFN-γ induced by mitogens
(concanavalin A), bacterial DNA, or PMA/ionomycin. In
macrophages, these ODNs also blocked IL-12 secretion
induced by bacterial DNA [119,120]. However, these effects
occurred at high micromolar concentrations and were not
specific for the TLR9 pathway [121].

Several years later, while studying the role of CpG motifs in
the immunogenicity of adenoviral vectors, Krieg and co-
workers [122] discovered that certain CpG motifs,
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particularly those preceded by C and followed by G (e.g. the
CCGG motif), were not only nonstimulatory but also could
specifically block CpG-induced immune activation. It was
subsequently shown that methylated CpG motifs in
mammalian DNA, and ODNs containing GC flips were also
capable of suppressing bacterial DNA-induced immune
activation when used at high-enough concentrations [85,120,
123,124]. Interestingly, mammalian DNA, in addition to being
heavily methylated, also contains telomeric sequences not
found in bacterial DNA. Synthetic ODNs containing repetitive
telomeric repeats (TTAGGGn) were capable of blocking
CpG-DNA induced activation in vitro [86] and, most
importantly, reduced morbidity and mortality when
administered to lupus prone NZB/NZW mice [125]. Inhibitory
action of telomeric repeats heavily depended on the ability of
G repeats to form stable secondary structures [86] but,
interestingly, purified G tetrad containing aggregates, in

contrast to monomers, failed to inhibit CpG-DNA induced
IL-6 by human B cells [126]. Similarly to poly-G sequences,
ODNs containing repetitive TTAGGG motifs could directly
block murine IFN-γ or IL-12 induced STAT (signal transducer
and activator of transcription) phosphorylation, T-bet
induction, and T-helper-1 differentiation [121].

Our major contribution to the field was to demonstrate the
existence of short (10–15 bases long) single-stranded DNA
sequences that could inhibit the action of stimulatory CpG
sequences with high potency (50% inhibition at 10–20 nmol/l
concentrations) [127–130]. We determined that the exact
specificity requirements were located in three regions of the
sequence [129,131]. The optimal sequence contains a 5′
CCT, a C-free linker four to five bases long, and a GGG(G)
tail, with the order also being critical [129,131]. Despite the
differing sequence preferences for stimulation between cell
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Figure 1

The innate model of lupus pathogenesis: central role of TLR-activated MZ-B cells and pDCs. Presented is a schematic overview of innate activation
of MZ-B cells and pDCs with hypomethylated CpG-DNA or microbial DNA. Exposure to self CpG-DNA derived from apoptotic cells initially
engages anti-dsDNA reactive low-affinity MZ-B cells. Endosomal delivery of CpG-DNA leads to TLR9-dependent and TLR9-independent activation
of MZ-B cells, resulting in enhanced MHC class II, CD40, and CD86 upregulation and more efficient antigen processing/peptide presentation to
histone-specific autoreactive T cells. Maturation of MZ-B cells drives secretion of anti-dsDNA antibodies, which then combine with freely circulating
dsDNA to promote FcγR-dependent endogenous IFN-α secretion by pDCs (as well as activation of RF-specific B cells). IFN-α produced by pDCs,
through a positive feedback loop, further enhances MZ-B cell activation and autoantibody secretion. IFN-α additionally diverts some autoreactive
B cell precursors toward the follicular B cell pathway, activates T cells, and promotes development of myeloid dendritic cells (mDCs). Activated
T cells direct isotype switching and affinity maturation in autoreactive B cells dependent on CD40/CD40L interaction and IFN-γ secretion.
Independently of T cells, pDC-derived IFN-α can additionally help CpG-DNA activated B cells to express T-bet, a key transcription factor that
induces isotype switch to complement fixing IgG2a in mice. Myeloid dendritic cell derived BAFF may further promote survival and differentiation of
autoreactive B cells. Higher affinity microbial CpG-DNA released during infections directly triggers MZ-B cells and pDC activation, causing flares of
lupus. ds, double stranded; IFN, interferon; MHC, major histocompatibility complex; MZ, marginal zone; pDC, plasmacytoid dendritic cell; TCR,
T-cell receptor; TLR, Toll-like receptor.



types and species, the most potent inhibitory sequences for all
human and mouse cell types tested were as follows:
TCCTGGAGGGGAAGT (2114); TCCTGGCGGGGAAGT
(2088); TCCTGGATGGGAAGT (4024); and CCTGGA-
TGGGAAGT (4084). All of these were made with the
nuclease-resistant PS backbones. Natural PO versions of the
most potent inhibitory oligodeoxynucleotides (INH-ODNs)
were still inhibitory, although with about 10- to 100-fold lower
potency, in contrast to simple poly-G strings, which were
noninhibitory [85]. We now call these inhibitors class B INH-
ODNs (B for ‘broadly reactive’), because they block TLR9-
mediated activation in all TLR9-expressing cells. In B cells,
class B INH-ODNs only block TLR9-mediated activation, and
do not block proliferation, apoptosis protection, or cytokine
secretion induced by anti-CD40, lipopolysaccharide, or anti-
IgM+IL-4 [127].

All downstream signaling and gene induction triggered by
CpG-DNA tested to date is blocked by INH-ODNs. The
inhibition is competitive and reversible, suggesting avidity-
driven competition for binding to a common receptor
structure, probably TLR9. Indeed, one particular INH-ODN,
named 2114, binds to recombinant TLR9–immunoglobulin
fusion protein (Ashman RF, personal communication), and
similar INH-ODNs block colocalization of CpG-DNA with
TLR9 [124]. However, it remains to be determined whether
higher affinity for TLR9 translates into higher potency for
inhibition of TLR9-mediated signaling. Like telomeric repeats,
INH-ODN 2114, when administered twice weekly, success-
fully prevented renal disease in lupus-prone MRL-Faslpr/lpr

mice [132]. Interestingly, some INH-ODNs were capable of
blocking both TLR7- and TLR9-induced activation of auto-
reactive B cells [93], whereas the others exhibited
preferential specificity for the TLR7 pathway [114].

A new classification
We propose a model classifying cell subsets by the
structures they require for CpG stimulation. The first category
(type I TLR9-expressing cells) includes myeloid and pDCs,
macrophages and MZ-B cells in mice, and pDCs, MZ-B cells
and memory B cells in humans, which can respond directly
and without priming to both single-stranded and more
complex CpG-DNA structures.

In contrast, the second category (type II TLR9-expressing
cells) includes primarily follicular B cells in mice (and possibly
colon epithelial cells and naïve B cells in humans) that directly
respond to single stranded CpG-DNA, whereas they require
additional co-signals to gain responsiveness to more complex
CpG-DNA. We also propose that the primary abnormality in
lupus occurs in type I cells, which develop a lower threshold
for responding to self CpG-DNA (or self-RNP), ultimately
leading to progression from low-specificity autoimmune
reactivity to high-specificity pathogenic autoimmunity, or
disease. We next offer the concept of class R INH-ODNs (R
for ‘restricted’), which specifically and primarily target type I

responsive cells but spare type II TLR9-expressing cells. We
discovered that when our initial INH-ODNs were modified to
include partial or complete palindromic sequences, G-rich
ends, 3′ or 5′ overhangs, or other modifications that result in
the formation of more complex secondary and tertiary
structures (Table 1), these INH-ODNs were much less potent
in follicular B cells, which are type II TLR9-expressing cells.
Because all type R INH-ODNs have at least partial dsDNA
structure, they will be preferentially recognized by dsDNA-
reactive, and therefore lupus-pathogenic, B cells. Further-
more, these class R INH-ODNs will be delivered to TLR9-
containing endosomes in B cells, not by less efficient passive
uptake but, rather, via highly efficient uptake through the B
cell antigen receptors specific for dsDNA. Therefore, we
propose that class R INH-ODNs might specifically target
autoreactive B cells and thereby also inhibit pDC-mediated
IFN-α production. This may be advantageous over the
existing protocols that nonselectively suppress all lupus B
cells [133,134]. Eventually, this may result in more lupus
friendly therapy, offering new hopes for lupus patients.

Conclusion
TLR signaling plays an important role in the pathogenesis of
SLE. Circulating DNA/anti-DNA complexes (or RNP/anti-RNP
complexes) are capable of inducing proliferation of auto-
reactive B cells and IFN-α secretion from pDCs. Lupus mice
that lack TLR9 do not produce anti-chromatin (dsDNA) anti-
bodies. We propose herein a model in which initial activation
of MZ-B cells and pDCs with self-derived hypomethylated
DNA triggers a chain of events ultimately leading to systemic
autoimmune disease. TLR9-induced activation can be
specifically and potently blocked with INH-ODNs when used
at low nanomolar concentrations. Based on the ability of
certain INH-ODNs to block selectively TLR9-induced
activation of a subset of TLR9-expressing cells (e.g. MZ-B
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Table 1

Classification of inhibitory oligodeoxynucleotides

Feature Class B Class R

Cell specificity All TLR9+ cells MZ-B, DC, MF

Potency Nanomolar Nanomolar

Structure Linear–primary Secondary

Backbone PS PS or SOS

Effect on BCR signaling No Yes(?) in 
anti-dsDNA B cells

Inhibitory activity in Yes [132] Yes [125]
animal lupus

Prototype

BCR, B cell receptor for antigen; DC, dendritic cell; ds, double
stranded; MF, macrophages; MZ, marginal zone; PS,
phosphorothioate; SOS, chimeric – phosphorothioate-phosphodiester-
phosphorothioate; TLR, Toll-like receptor.



cells and pDCs) but spare activation of other TLR9+ cells
(e.g. follicular B cells), we now classify INH-ODN into two
categories: class B (broadly reactive) and class R (restricted
reactivity). We therefore see a possible therapeutic role for
class R INH-ODNs as a means to suppress disease-specific
autoimmune B cell responses, while sparing non-autoimmune
and protective humoral and T-cell-mediated antimicrobial
immune responses. Moreover, because some INH-ODNs
share specificity for both TLR7 and TLR9 pathways, whereas
others preferentially block TLR7-mediated activation,
intelligible application of these small molecular compounds
may result in better treatment protocols for different clinical
subsets of SLE patients.
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