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Malignant ascites constitute a unique tumor microenvironment providing a physi-

cal structure for the accumulation of cellular and acellular components. Ascites is

initiated and maintained by physical and biological factors resulting from under-

lying disease and forms an ecosystem that contributes to disease progression. It

has been demonstrated that the cellular contents and the molecular signatures of

ascites change continuously during the course of a disease. Over the past decade,

increasing attention has been given to the characterization of components of

ascites and their role in the progression of ovarian cancer, the most malignant

gynecologic cancer in women. This review will discuss the role of ascites in dis-

ease progression, in terms of modulating cancer cell behavior and contributing to

tumor heterogeneity.

E pithelial ovarian cancer (EOC) is the most lethal gyneco-
logic cancer and is very heterogeneous malignancy. EOC

are diverse not only in histopathology, but also in etiology,
and are mostly diagnosed in the late stages.(1) This fatal dis-
ease is inherently silent, with patients often presenting with
fluid accumulation in the abdominal cavity, called ascites, at
diagnosis. The standard treatment of EOC includes cytoreduc-
tive surgery followed by chemotherapy with carboplatin and
paclitaxel. Despite initially high response rates to this standard
treatment, most patients develop recurrent disease and the
ascites is present in almost all recurrences.(2) The presence of
malignant ascites correlates with deterioration in quality of life
and with a poor prognosis.(3,4)

The importance of the tumor microenvironment in cancer
progression has been increasingly recognized and it plays an
essential role in mediating and sustaining the hallmarks of can-
cer. In particular, ascites is gaining recognition as a unique
form of tumor microenvironment responsible for hallmark of
ovarian cancer. The link between the presence of ascites and
ovarian cancer progression was first proposed by Lopez
et al.(5) Since then, numerous studies have contributed to the
characterization of the ascites components, further revealing
it’s key roles in the hallmarks of ovarian cancer.
To overcome the limitations of current anticancer agents,

better understanding of EOC and its tumor microenvironment

is needed. Remarkable progress has been made in research on
malignant ascites, expanding our knowledge of both the cellu-
lar (tumor cells and stromal cells) and acellular (soluble fac-
tors) components (Fig. 1). All of these components work in
coordination to create tumor-friendly microenvironments,
which fosters the acquisition of hallmarks. Here, we discuss
the current understanding of the roles of ascites components in
EOC progression, with specific emphasis on the individual key
factors contributing to tumor heterogeneity.

Ascites as a tumor microenvironment in ovarian cancer

Ovarian cancer is characterized by rapid growth and spread
of intraperitoneal tumors and patients present with a huge
amount of ascites in the peritoneal cavity.(6) Ascites provide
local tumor microenvironment and is composed of both cel-
lular and acellular factors, which modulate cancer cell
behavior and contribute to tumor heterogeneity in ovarian
cancer. Their functional contributions are discussed below
(Fig. 2).

Components of ascites. Cellular components. The origin and
phenotype of the cells in the ascites is poorly understood. Sim-
ilar to other tumor microenvironments, the cellular components
of ascites contain a complex heterogeneous mixture of cell
populations, including tumor cells and stromal cells, each with
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a defined role. The stromal cellular components of ascites
include fibroblasts, endothelial or mesothelial cells, adipocytes,
adipose tissue-derived stromal cells, bone marrow-derived stem
cells and immune cells.(7,8) Some of these stromal cellular
components show abnormal features, including activation of
growth and angiogenesis.(9,10) In several tumors, stromal cells
play a significant role in malignant progression. In particular,
the malignant role of cancer-associated fibroblasts (CAF) has
been highlighted, through autocrine-paracrine loops, and pro-
moting proliferation, migration and invasion of cancer cells.
CAF secrete factors that can transduce signals to cancer cells
as well as to themselves, establishing reciprocal reinforcement
of growth and migration signals as well as chemoresistance.(11)

Similarly, the interactions between EOC cells and human peri-
toneal mesothelial cells (HPMC) in ascites are believed to be
important for tumor progression.(9,12) Like CAF, HPMC
secrete factors that promote tumor growth. For example,
lysophosphatidic acid (LPA) is produced by immortalized
HPMC and has been shown to enhance adhesion, migration
and invasion of ovarian cancer cells.(12) These cancer-asso-
ciated mesothelial cells have also been reported to produce
factors that promote chemoresistance in ovarian cancer

cells.(10) HPMC also produce dipeptidyl peptidase IV and
VEGF in response to malignant ascites exposure.(13,14)

In addition to the complex mixture of stromal cellular com-
ponents, malignant tumor cells are found in ascites and are
thought to be a major factor in disease recurrence in EOC
patients.(15) Tumor cells within the ascites are present either as
single cells with adherent properties or, more commonly, as
aggregates of non-adherent cells, also known as spheroids.(16)

These cells are proposed to undergo epithelial-to-mesenchymal-
transition to a motile phenotype with low levels of E-cadherin
and higher invasivity than the primary tumor cells.(17,18) Spher-
oids represent the invasive or metastasis-forming subpopulation
leading to recurrent disease.(19,20) This notion has in part been
supported by in vitro work on artificial spheroids. However, a
study by Wintzell et al.(16) showed that the spheroids freshly
isolated from patients were less invasive and expressed low
levels of the EOC tumor-initiating cell marker CD44 and the
stem cell transcription factor OCT4A. However, these spher-
oids represent a chemoresistant population since chemothera-
peutic drugs do not penetrate such multicellular structures.(21,22)

Interestingly, two distinct types of adherent cells have been
isolated from ascites, and were separated into mesenchymal-

Fig. 1. Overview of cellular and acellular
components of ascites. Ascites is composed of both
tumor cells present either as single cells or as
spheroids and stromal cells, including fibroblasts,
mesothelial cells, adipose tissue derived stromal
cells (ASC/MSC), endothelial cells, adipocytes and
inflammatory cells. These cellular components
communicate with each other through acellular
factors, including cytokines, proteins, metabolites
and exosomes.

Fig. 2. Schematic overview of the signaling
interactions during malignant progression in
ascites. The arrows in bold indicate which acellular
components are used to communicate between
cellular components. Unknown communications are
indicated with a dashed arrow. See text for
description of individual components and their
functional contributions in ovarian cancer.
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like and epithelial-like morphology. Both cell populations
resembled stem/progenitor cells with potential for self-renew
and expression of typical cancer stem cell markers, including
CD44high, CD24low and AC133+.(23) These cells also highly
expressed genes associated with tumorigenesis and metastasis,
including BMP-2, BMP4, TGF-b, EGFR and integrin a2b1.

(23)

Current studies are focusing on elucidating the importance of
these cellular components in EOC progression.
Acellular components. Cellular components of ascites com-

municate with each other through soluble factors, including
cytokines, proteins and metabolites, and, as discovered
recently, through the secretion and exchange of exosomes.(24)

Thus, the heterogeneous mixture of cellular components of
ascites influences the acellular components of ascites. The
acellular components of ascites constitute a dynamic reservoir
of both pro-tumorigenic and anti-tumorigenic factors, including
cytokines, growth factors and bioactive lipids, which individu-
ally and in combination influence EOC behavior and progres-
sion.(25–27)

(1) Cytokines in ascites: The cytokine profiles of EOC
ascites demonstrated the presence of both pro-tumorigenic and
anti-tumorigenic factors in this unique tumor microenviron-
ment.(1,4,28,29) At significantly elevated levels of pro-tumori-
genic cytokines including IL-6, IL-8, IL-10, IL-15, IP-10,
MCP-1, MIP-1b and vascular endothelial growth factor
(VEGF), and significantly reduced levels of IL-2, IL-5, IL-7
and IL-17, PDGF-BB and RANTES were reported in EOC
ascites. These factors cumulatively contribute to creating a
pro-inflammatory and immunosuppressive tumor microenviron-
ment.(29) Among these factors, IL-6 and IL-10 have received
the most attention due to their correlation with poor prognosis
and response to therapy.(4,30)

(2) Metabolites in ascites: The metabolomics of EOC ascites
are also of interest to determine the role of metabolites in EOC
ascites. Metabolome profiling of ascites have demonstrated that
the most important differences are found in fatty acids, choles-
terol, ceramide, glycerol-3-phosphate, glucose and glucose-3-
phosphate in ascites derived from patients with EOC compared
to those from patients with portal alcoholic cirrhosis. 2-Hydro-
xyisovalerate was found to be the most depleted among the
other metabolites, whereas glucose-1-phosphate (G1P) was the
dominant metabolite in the malignant ascites. The breakdown
of branched chain amino acids produces 2-hydroxyisovalerate
in humans(31) and has been identified in the urine of patients
with lactic and ketoacidosis;(32) its elevation suggests increased
amino acid catabolism. The cause of 2-hydroxyisovalerate
depletion in EOC ascites is currently unknown. G1P is a pro-
duct of glycogenolysis and its elevation suggests an increase of
glucose usage in the ascites tumor microenvironment.(33) How-
ever, measurements of both glucose uptake and lactate produc-
tion are needed to confirm whether the difference in the
metabolite patterns in the ascites tumor microenvironment
reflects metabolic reprogramming in cancer cells. Previously,
our group have also reported effective use of positron emission
tomography using 18F-fluorodeoxyglucose for the diagnosis of
ovarian cancer (34) and have demonstrated potential selective
cytotoxicity through targeting distinct metabolic characteristics
in ovarian cancer cells.(35) Moreover, glucose transporter
(GLUT) 1 or GLUT3 and glycolytic enzymes, hexokinase (HK)
II are overexpressed in several tumor cells and were proposed
as an indicator of poor prognosis in various malignancies,
including ovarian cancer.(36) Our group previously demon-
strated that overexpression of HK II was associated with
chemoresistance and poorer progression-free survival in patients

with ovarian cancer.(37) In addition, glycolate, glucose, furanose
and fructose were significantly decreased, whereas glycerol-3-
phosphate, cholesterol, ceramide and monoacylglycerol; MAG
(18:0/0:0/0:0) were significantly elevated in EOC patient-
derived ascites.(38) Furthermore, ceramide, derivatives of fatty
acids(39) and LPA were identified only in malignant ascites.(38)

(3) Proteins in ascites: Proteomics studies of EOC ascites
have revealed the presence of over 2000 proteins.(38,40) Among
these, the concentrations of pyruvate kinase isozymes M1/M2
(PKM1/2), glyceraldehyde phosphate dehydrogenase (GAPDH)
and mesothelin (MSLN) were slightly but significantly higher
in the ascites from patients with serous-type EOC compared to
those in the ascites derived from benign ovarian tumor
patients.(41) Moreover, the most pronounced differences (≤7-
fold) in protein levels were found for the components associ-
ated with RNA splicing in EOC-derived ascites compared to
those in cirrhosis ascites.(38)

(4) Exosomes in ascites: Exosomes have also been detected
in biofluids, including EOC ascites, which are nano-sized
microvesicles (30–100 nm in diameter), formed by inward
budding of the late endosomal membrane to segregate the car-
gos, including lipids, proteins and nucleic acids, within the
membrane-covered vesicles.(24) Exosomes contain molecular
signatures of donor cells and can circulate throughout the
body, potentially transferring information between cells to alter
gene expression in recipient cells.(42) Moreover, exosome-
derived molecular cargos were found to contain distinct sub-
sets of disease-specific biomarkers, including miR-200c, miR-
214, CA125, Muc-1 and CD24.(24,43)

Ascites tumor microenvironment contributing to cancer
progression and heterogeneity

Ascites serves as an important tumor microenvironment,
enriched with pro-tumorigenic signals that fosters the acquisi-
tion of hallmarks in ovarian cancer, including proliferation,
invasion and anti-apoptosis and subsequently contribute to
chemoresistance and tumor heterogeneity.(7,8)

Promoting cancer cell progression. The essential role of
ascites in mediating and sustaining the hallmarks of ovarian
cancer are being increasingly recognized, where the reciprocal
reprogramming of both cancer cells and components of ascites
occurs throughout disease progression. Ascites-derived cellular
components, including stromal progenitor cells, mesothelial
cells, mesenchymal cells and endothelial cells, have been
reported increase tumor growth and metastasis.(9,10,44,45)

In particular, ascites-derived mesothelial cells and endothelial
cells secrete soluble factors, including osteoprotegerin (which
acts as a pro-tumorigenic factor), promote tumor growth and
angiogenesis, and attenuate TRAIL-induced apoptosis.(10,45,46)

It has been demonstrated that interactions between tumor cells
and mesenchymal stem cells promote the elevation of IL-6, a
proinflammatory cytokine. IL-6 acts as an oncogenic stimulus,
promoting the epithelial–mesenchymal transition process that
enables invasion.(44) VEGF is best known as a key regulatory
molecule enabling hallmarks of cancer, including tumor
growth, invasion, metastasis and recurrence of EOC.(47) Sub-
stantial evidence also supports VEGF as a key player in the for-
mation of ascites and ovarian cancer progression.(48,49) Another
factor, IL-8, is present in abundance and has been shown to
activate the epithelial–mesenchymal transition and metasta-
sis,(50) and enables tumor growth and angiogenesis.(51)

Tumor heterogeneity. Cancers may arise from more than one
founder cell, contain subpopulations driven by stochastic, stem
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cell and mixed hierarchies, and are exposed to post-transcrip-
tional and environmental influences resulting in their hetero-
geneity.(52,53) The tumor mass is composed of cancer cells that
differ greatly from each other in their morphology, gene
expression patterns, metabolism, proliferation and metastatic
potential.(54) Heterogeneity is, therefore, both genetic, in which
mutations are present on the genome and transferred to subse-
quent generations, and responsive, whereby the expression of
genes is altered by environmental factors or in response to
selective pressures.
Epithelial ovarian cancer has long been considered a histo-

logically heterogeneous cancer(1,55,56) as it comprises at least
five distinct histological subtypes, the most common and well-
studied being high-grade serous ovarian cancer (HGSOC).(55)

Pathological and epidemiological studies suggest distinct tis-
sues of origin for the main EOC histotypes. For example, the
low-grade endometrioid and clear cell histotypes of EOC are
thought to be derived from endometriotic tissue that has
migrated along the fallopian tube onto the ovary(57) and muci-
nous EOC from Walthard nests, which is derived from benign
clusters of epithelial cells with morphological similarities to
urothelial tissue present at tubal–mesothelial junctions.(58) The
strongest association has been made between HGSOC cancers
and fallopian tube premalignant lesions.(59) There was consid-
erable genetic heterogeneity observed between patients and
between samples collected from the same patient, manifested
as chromosome deletion, microsatellite instability and single
nucleotide polymorphism (SNP) variation.(60) It is now evident
that tumor cells within the ascites are also heterogeneous at
both cellular and molecular levels,(55) but its contribution to
the tumor heterogeneity and ovarian cancer prognosis need to
be studied further. Cancer was previously viewed as a hetero-
geneous disease, caused not only by tumor cell themselves
containing aberrant mutations but also by microenvironment
constituents.(61) Chronic and often uncontrolled oncogenic sig-
nals are generated from growing tumors and concentrate in
ascites, and the components of ascites continually change dur-
ing disease progression. The proportion and diversity of bioac-
tive molecules present in ascites vary according to the disease
subtype, stage and grade, as well as between patients, thus
diversifying the constituents of the tumor microenvironment.
The heterogeneity in ascites is demonstrated by the presence
of both oncogenic and tumor suppressive factors. Specifically,
ascites in high-grade serous ovarian cancer patients has been
shown to serve as a protective tumor microenvironment against
drug-induced apoptosis through induction of survival signaling
pathways such as PI3K/Akt in tumor cells.(62,63) The extent to
which ascites serves as a protective tumor microenvironment
against TRAIL-induced apoptosis and chemotherapy is vari-
able.(64) Therefore, further research is needed to identify key

players responsible for the tumoral heterogeneity of the tumor
microenvironment.

Therapeutic implications of targeting tumor
microenvironment

Ascites is highly attractive as a resource for biomarker discov-
ery studies. As opposed to serum, ascites, being a proximal
fluid, might reveal events in the early stage of ovarian cancer.
Moreover, the concentration of cancer-associated soluble fac-
tors is usually much higher in ascites than in serum.(29) Thus,
malignant ascites could be a promising biospecimen for inves-
tigating diagnostic, therapeutic, as well as prognostic markers.

Utility of ascites as a diagnostic factor. The presence of ascites
is not limited to malignant ovarian cancer: ascites is often pre-
sent in patients with benign ovarian epithelial tumors. The clin-
ical management of ascites associated with malignant tumors is
quite different from those associated with benign lesions. How-
ever, it remains difficult in the clinic to differentiate benign and
malignant ascites, particularly in the early diagnosis of malig-
nant ascites.(65) Currently, cytological detection of ascites has
become a gold standard for confirming malignant ascites.(66)

This detection shows high specificity, but its sensitivity is low,
which can easily result in misdiagnoses and repeated tests after
multiple ascites collection, leading to delays in providing opti-
mal therapeutic options and increased discomfort from
abdominocentesis.(65) Our group previously suggested that a
smaller amount of ascites may correlate with a good prognosis
for patients with ovarian cancer.(67) Moreover, its components
may also reveal potential diagnostic and prognostic factors. A
number of soluble factors are present in abundance in ovarian
cancer patient-derived ascites, but few have been validated for
their biomarker potential; these are shown in Table 1.
Several laboratory indexes have been reported, including

VEGF, matrix metalloproteinase, DNA heteroploid and human
leukocyte antigen system-G indexes, which have some value
in diagnosing malignant ascites; however, their applications
are limited under clinical settings because of the complicated
inspection techniques involved.(68–71) These reported tumor
markers have some diagnostic sensitivity and specificity for
diagnosing malignant ascites, but the diagnostic value of each
index differs greatly in malignant ascites induced by different
causes because of the complex etiology of malignant
ascites.(72) It is thought that no identified tumor markers show
high sensitivity and specificity for prediction of the cause of
malignant ascites formation in clinical practice. Combined
detection of tumor markers in serum and ascites may improve
their diagnostic value. Moreover, a recent study by Zhu
et al.(65) explored the values of tumor markers in serum and
ascites for identifying and diagnosing malignant ascites by

Table 1. Profiles of possible diagnostic and prognostic markers in acellular fraction of ovarian cancer patient derived ascites

Family/type
Targeting

molecules
Function Biomarker [otential References

Cytokine IL-6 Pro-inflammatory; upregulate VEGF Ascites formation; chemoresistance;

metastasis; survival

4, 29, 30, 43

Chemokine IL-8 Pro-inflammatory; angiogenesis Chemoresistance; metastasis; survival 4, 29, 49, 50

Cytokine IL-10 Immune suppressive Tumor stage, grade and histological type 29, 30

TNF receptor

superfamily

OPG Bone remodeling; mucosal immunity Tumor stage; TRAIL-induced apoptosis resistance 10, 44, 45

Chemokine VEGF Angiogenesis; cellular growth Ascites formation; malignant versus benign

ascites discrimination; metastasis; survival

29, 46, 47, 48
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analyzing the clinical data of patients diagnosed with ascites;
their findings suggested that compared to a single index, com-
bined detection of tumor markers in the serum and ascites will
significantly improve diagnostic sensitivity and specificity.(65)

However, tumor markers that accurately identify malignant
ovarian tumors are required for optimal patient management.

Personalized therapy. Personalized therapies have been added
to the treatment strategy of malignant ascites. Several lines of
targeted drugs have improved progression-free survival in
some patients with ovarian cancer. The presence of ascites in
women with advanced ovarian cancer may predict the popula-
tion of women more likely to derive a long-term benefit from
bevacizumab, an anti-angiogenic therapy.(73) Intra-peritoneal
infusion of catumaxomab, a bispecific monoclonal antibody
(anti-EpCAM and anti-CD3) activates immune cells, despite
the prevailing immunosuppressive environment of malignant
ascites.(74) The relative excess of CD8+ T cells in ascites is
reportedly associated with significantly improved overall sur-
vival of ovarian cancer patients.(75) Moreover, integrated ana-
lysis of ascites at molecular level may provide a powerful
platform for discovering indicators of pathological processes or
pharmacologic responses to therapeutic interventions, leading
to the development of precision medicine.(76,77) These reports
highlight the potential use of ascites constituents in diagnostic
and prognostic marker screening in ovarian cancer, and an
increased understanding of ascites will enable the development
of precision medicine.

Conclusion and future perspectives

Ascites, which is a readily accessible source of primary cancer
cells and cancer-associated secreted bioactive factors, are

underutilized. Although the presence of ascites correlates with
a poor prognosis in ovarian cancer patients, its association with
chemoresistance is poorly understood. Further studies are
needed to highlight both genetic and responsive heterogeneity
and to identify chemoresistance mechanisms in ovarian cancer.
The contents of ascites may reflect the molecular signatures of
the underlying disease, and ascites potentially harbor both
diagnostic and prognostic factors, which can be used in bio-
marker discovery studies. The current stage of the ascites
research field provides a foundation for future experiments
examining larger numbers of patient samples to validate sug-
gested markers. A more detailed understanding of the relative
contribution of ascites-regulated molecules on subsets of ovar-
ian cancer cells will increase the understanding of ovarian can-
cer biology and will result in improved treatment for patients.
In the present study we have summarized the functional roles
of ascites in the progression of EOC and have provided a new
perspective regarding tumor heterogeneity.
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