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Abstract

Background: Chronic obstructive pulmonary disease (COPD) causes significant morbidity and mortality worldwide.
Estimation of incidence, prevalence and disease burden through routine insurance data is challenging because of
under-diagnosis and under-treatment, particularly for early stage disease in health care systems where outpatient
International Classification of Diseases (ICD) diagnoses are not collected. This poses the question of which criteria
are commonly applied to identify COPD patients in claims datasets in the absence of ICD diagnoses, and which
information can be used as a substitute. The aim of this systematic review is to summarize previously reported
methodological approaches for the identification of COPD patients through routine data and to compile potential
criteria for the identification of COPD patients if ICD codes are not available.

Methods: A systematic literature review was performed in Medline via PubMed and Google Scholar from January 2000
through October 2018, followed by a manual review of the included studies by at least two independent raters. Study
characteristics and all identifying criteria used in the studies were systematically extracted from the publications, categorized,
and compiled in evidence tables.

Results: In total, the systematic search yielded 151 publications. After title and abstract screening, 38 publications were
included into the systematic assessment. In these studies, the most frequently used (22/38) criteria set to identify COPD
patients included ICD codes, hospitalization, and ambulatory visits. Only four out of 38 studies used methods other than
ICD coding. In a significant proportion of studies, the age range of the target population (33/38) and hospitalization (30/
38) were provided. Ambulatory data were included in 24, physician claims in 22, and pharmaceutical data in 18 studies.
Only five studies used spirometry, two used surgery and one used oxygen therapy.

Conclusions: A variety of different criteria is used for the identification of COPD from routine data. The most promising
Criteria set in data environments where ambulatory diagnosis codes are lacking is the consideration of additional illness-
related information with special attention to pharmacotherapy data. Further health services research should focus on the
application of more systematic internal and/or external validation approaches.
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Introduction

Chronic obstructive pulmonary disease (COPD) is a
condition characterized by constriction of the airways,
and persistent shortness of breath that interferes with
normal breathing. The disease develops over a long
period of time and is not fully reversible [1]. COPD is a
cause of significant morbidity and mortality. Globally, it
is estimated that about three million deaths were caused
by the disease in 2015 (i.e., 5% of all deaths globally that
year) [2]. The World Health Organization (WHO)
reported that COPD was the third cause of mortality
worldwide in 2016 [3]. If a COPD diagnosis is made
earlier in the progression of the disease, there is a
greater potential to reduce further lung damage [4]. For
this reason, the identification of COPD patients in early
stages of the disease is of great interest for the social
health insurance system. Accurate estimates of COPD
prevalence are essential for the implementation of
strategies for detection and disease management.

The identification of patients suffering from COPD
through routine insurance data for a correct measurement
and estimation of disease epidemiology and burden of dis-
ease turns out to be difficult for various reasons. It is well
known that most COPD cases are caused by tobacco con-
sumption over long time periods, but this information, as
other life-style-related variables, is generally not available
in routine claims datasets. Another reason is underreport-
ing, since there is a very large population of undiagnosed
patients with this disease and individuals are undertreated,
especially in early stages. In the United Kingdom, for
example, there are approximately 835,000 individuals with
a diagnosis of COPD, while over 2,200,000 individuals are
estimated to be living with undiagnosed COPD [5].

The most commonly practiced approach to filter affected
beneficiaries from large datasets (e.g., claims databases) is
to apply filter algorithms referring to the International
Classification of Diseases (ICD) system, a standard tool in
clinical medicine, epidemiology, and health management.
Epidemiologists use the ICD system to monitor the inci-
dence and prevalence of diseases and disorders, gaining an
insight in the possible health situation of populations
and countries. Medical practitioners and clinicians use
ICD to identify and to document diseases or other
health conditions which can subsequently be archived
in health administrative databases and health records.
These datasets offer the foundation for the reporting
on national mortality and morbidity statistics by
WHO Member States. Furthermore, ICD is used for
reimbursement purposes and for decision-making re-
garding resource allocation by many countries [6].

Identifying COPD patients in the absence of ICD
codes in a large dataset is challenging, as it requires the
combination of other suitable identifiers, which may be
included in the data, such as pharmacy based health
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plans (PBMs) in the US, South Africa, or in Europe. For
example, in the Austrian outpatient system the ICD code
is not available in routine data, and therefore identifying
COPD patients via medical claims is even more difficult.
Thus, the Main Association of Austrian Social Insurance
Institutions (“Hauptverband der Osterreichischen Sozial-
versicherungstrager”) likely uses advanced mathematical
methods to identify COPD patients with available rou-
tine data.

Aim

The goals of this study are to summarize previously
reported methodological approaches to identify COPD
patients through routine data, and to compile potential
surrogate criteria for the identification of COPD patients
when ICD codes are not available.

Methods

Information sources

A systematic literature review was performed in Medline
via PubMed and Google Scholar, followed by a manual
review of the included studies. Medline via the PubMed
interface was used to conduct separate literature searches
in the English or German language from January 2000
through October 2018. The systematic literature search
was performed with the following algorithm: (“epidemi-
ology” OR “prevalence” OR “incidence”) AND (“COPD” OR
“chronic obstructive pulmonary disease”) AND (“claims
data” OR “routine data” OR “administrative data”).

To ensure maximum completeness of the search, we
performed a reference list search of the included studies
for additional relevant citations via Google Scholar. We
did not search the Internet to assess available grey litera-
ture. Each included study was summarized narratively
and presented in evidence tables with regard to the
study aim, datasets used and the identification criteria
for COPD patients. In studies where sensitivity analysis
of the algorithm regarding the correct identification of
COPD was performed, these results were reported.

Literature screening process, inclusion and exclusion
criteria

The title and abstract screening was conducted by three
authors (SR, DV, SG), based on predetermined selection
criteria (see below). In case of incongruence, a fourth
assessor (HG) made a final decision on the eligibility of
a publication. The full-text articles of selected studies
were further reviewed by at least two authors and in-
cluded if they met all inclusion criteria.

Publications were included if authors agreed on all of
the four following selection criteria: (1) at least one
secondary data set was used in the study, (2) COPD was
identified in a population with suspicion of being dis-
eased, (3) available information from a routine dataset
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was used, and (4) identification criteria for COPD were
clearly explained.

Studies were excluded if they primarily reported on
diseases other than COPD or if the addressed interven-
tion (e.g., thoracic surgery) was irrelevant. We excluded
all studies enrolling pre-diagnosed COPD patients, for
whom there was no need to show any identification
algorithms, as these studies would not help answer our
research question. Similarly, publications were excluded
if the COPD identification algorithms were not revealed
in the text, or if they consisted only of a study protocol.

Data extraction and reporting

We extracted descriptors of the studies and related pub-
lications as well as characteristics commonly used for
the description of COPD populations. We pre-defined
the following data to be extracted from the publications:
author(s), year of publication, publication title, country
of conduct of the study, dataset(s) used, age range, ICD
codes, hospitalization data, ambulatory visit data, phys-
ician claims data, ambulatory pharmacotherapy, spirom-
etry data, oxygen therapy data, COPD-related surgical
procedure, and algorithm of COPD diagnosis. Data
extraction was performed by one assessor and validated
by a second assessor.

Existing risk of bias tools such as the Cochrane risk of
bias tool for randomized controlled trials [7], the
Newcastle-Ottawa Quality Assessment Form for Cohort
Studies [8], and the ROBINS-I tool for assessing risk of
bias in non-randomized studies of interventions [9] are
not applicable to studies using administrative data
analyses. Until now, no well-accepted specific tools for
these kinds of studies are available; we therefore used
the method of algorithm validation within our studies to
judge the risk of bias. Specifically, the risk of bias was
appraised by classifying the studies into two risk groups:
(1) “low risk of bias” if the used algorithm was validated
against a reference standard with sensitivity and specifi-
city greater than 70% and (2) “high risk of bias” if the
algorithm was not validated or sensitivity was lower than
70%.

The review was conducted according to PRISMA -
Preferred Reporting Items for Systematic Reviews and
Meta-Analyses [10]. Results are reported as standardized
narrative summaries of the included studies and as an
evidence table for the identification criteria utilized in
the included studies. The different instruments, methods,
and algorithms to identify COPD patients, the databases
used and related challenges are discussed in detail.

Results

Included studies

The search yielded 151 hits in Medline via PubMed, with
the last update in October 2018. After title and abstract
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screening, 104 papers were excluded for the following rea-
sons: 52 studies addressed a disease other than COPD, in
31 studies patients were identified without disclosing the
algorithm or because the patients’ COPD status was
known at the beginning of the study, 17 studies described
an irrelevant intervention or condition (e. g., COPD not in
the focus of the analysis) and four studies were protocols
only. Search via Google Scholar did not yield any citations
beyond the Medline search, while the hand search of the
included studies reference lists revealed one more study,
which was included (Mapel et al. 2006 [11]).

Forty-seven papers were included for full-text screen-
ing (see Fig. 1), 10 of them were excluded due to the fol-
lowing reasons: Two publications (Chu et al. 2010 [12],
Schneider et al. 2009 [13]) were excluded, because they
focused on general aspects of COPD or chronic diseases.
Thus, both publications do not specify which algorithms
were used for the identification of COPD patients from
the datasets. Eight studies were excluded, because they
used ICD codes only (Albrecht et al. 2016 [14]; Fortin
et al. 2017 [15]; Schwarzkopf et al. 2016 [16]), or because
they only reported the study protocol (Josephs et al.
2017 [17]), or because they did not differentiate between
asthma and COPD (Marrie et al. 2016 [18]; Oelsner
et al. 2016 [19]). One publication was excluded, because
it duplicated another publication (Vozoris et al. 2016
[20]), and one study was excluded, because it investi-
gated a different disease (Pollmanns et al. 2018 [21]).
Finally, 38 studies were included in the review as one
study was identified by hand search.

Included studies predominantly reflect the situation of
North American countries: United States (n =17) and
Canada (n =17). Four studies reported on the COPD
identification process in Europe: United Kingdom (n =
1); Italy (n = 2) and France (n = 1) (Tables 1 and 2).

This review covers a publication period of 16 years as
the first study was published in 2003 (Hansell et al.). In
the first 8 years (2003-2010), nine articles were pub-
lished, while in the next 8 years (2011-2018), 29 studies
(76.3%) were published.

The classification into high and low risk of bias accord-
ing to the performed validation of algorithm, resulted in
15 studies with “low risk of bias” due to a validated algo-
rithm with a sensitivity and specificity higher than 70%,
whereas 23 studies either did not use a validated algorithm
(m =14) or the validation of their algorithm revealed a
sensitivity lower than 70% (n = 8) or missing data limited
validation (7 = 1) (Tables 1 and 2).

Identification criteria used in the included publications

In this review, ICD coding was the most common vari-
able to identify COPD patients. In 34 of 38 studies ICD-
9 (codes from 490 to 496) or ICD-10 (codes from J41 to
J44) coding were used as one part of the identification
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Fig. 1 PRISMA flowchart reporting the inclusion/exclusion of publications into/from the review

process, while four studies used other methods. In a sig-
nificant proportion of studies hospitalization data (30 of
38) and the age range of the target population (33 of 38)
were provided. Gershon et al. (2009) [22] and Gershon
et al. (2013) [27] used age limitation, and one or more
hospitalizations or ambulatory claim as indicators for
COPD; while Dalal et al. (2011) [43] used age range and
pharmacotherapy claim. Ambulatory data were included
in 24 studies, physician claims in 22 studies, and 18 stud-
ies stated some kind of pharmaceutical data. Only five
studies used spirometry data as part of the identification
process and one study used information about home
oxygen use (Fig. 2. Criteria used for identification of
COPD in the studies). Different combinations of these
indicators were used in order to identify COPD patients in
assessed studies, showed in Tables 1 and 2. Studies that
report on the validity of using a specific approach or
algorithm to identify COPD patients carry a correspond-
ing indication in the last column of Tables 1 and 2.

The most common combination of identification
criteria (22 out of 38 studies) included ICD codes,

hospitalization, and ambulatory visits. The next most
common combination (12 out of 38 studies) was adding
physician claims to the former three criteria. The next
adjoining indicator added to one of these two combina-
tions was a prescription claim.

Studies using identification criteria other than ICD codes
Gershon et al. (2009) [22] and Gershon et al. (2013) [27]
used other methods than ICD coding. Both studies
published by Gershon et al. used an age limitation and
one or more claims for hospitalization or ambulatory
care as indicators for COPD. Dalal et al. (2011) [43] and
Raymakers et al. (2017) [57] used age range and pharma-
cotherapy claims.

Gershon et al. (2009) [22] conducted a validation study
for population-based administrative COPD definitions.
For this validation, two Canadian data sources were
used. The first database was the Ontario Health Insur-
ance Plan, which contains hospital and outpatient claims
for populations in Ontario (including information on la-
boratory tests, physicians visit, and diagnostic imaging).
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As part of a physician claims, the ICD code was pro-
vided (ICD-9 codes: 491-492, 496 and ICD-10 codes:
J41, J43-J44). The second database contained administra-
tive and clinical data for each hospital visit, coded with
ICD-10 (the Canadian Institute of Health Information
discharge abstract database). Reference standard diagno-
ses of each patient were associated with their health
administrative record using the insurance number. Fur-
thermore, using the concept of diagnostic test evalu-
ation, reference standard diagnoses were compared to
the predefined COPD definitions and analyzed.

In total, 442 medical charts were used in this study, of
which 113 medical charts belonged to COPD patients.
An expert panel of two pulmonologists examined patients’
charts and COPD has reliably been diagnosed by pulmon-
ary function tests. The most sensitive health administrative
COPD definition (sensitivity 85.0%, specificity 78.4%) refer-
ring to expert opinion and clinical diagnosis included one
or more ambulatory claims and/or one or more COPD
hospitalizations.

A highly specific COPD definition, with sensitivity of
57.5% and specificity of 95.4%, included the following
criteria:

— DPatients aged =35 years with one or more
hospitalizations, or three or more ambulatory care
visits for COPD within a two-year time period
(definition 1). When the time period was increased
to 3 years, specificity remained the same (95.4%),
but sensitivity increased to 59.3% (definition 2). The
algorithm with the most sensitive definition of
COPD (sensitivity of 85.0% and specificity of 78.4%)
was one or more hospitalizations, or one or more
ambulatory care visits for COPD within an
unspecified time period (definition 3).

— ICD-9 codes: 491, 492, 496; ICD-10 codes: J41-J44 [22].

In their later published papers, Gershon and colleagues
used definition 3 with the most sensitive definition of
COPD as described above (sensitivity of 85.0% and
specificity of 78.4%) [23, 27-29]. In one study they also
used the highly specific COPD definition 1 (one
hospitalization or one or more ambulatory care claim
for COPD in adults aged >35 years) with sensitivity of
57.5% and specificity of 95.4% [25]. Gershon’s definition
1 with 95.4% specificity (95%CI 92.6-97.4%) and 57.5%
sensitivity has also been used by other authors analyzing
administrative claims data [52, 54].

Dalal et al. (2011) [43] performed a study to estimate
the impact of cardiovascular disease on costs and health-
care utilization in a COPD population in the United
States. The data was obtained from the IMS Lifelink
claims database, including pharmacy and medical data
(demographic data, prescription records, outpatient and
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inpatient procedures and diagnoses). In total, 9188
patients were analyzed.

Raymakers et al. (2017) [57] investigated the associ-
ation of statins use with all-cause mortality in patients
with COPD. The authors used various administrative
and health databases. COPD patients were identified as
50 years old or older, with three or more medication
prescriptions (anticholinergic or a short-acting beta
agonist) in a one-year period. In total, 39,678 patients
were analyzed.

Studies using identification criteria including ICD codes

In 34 of 38 studies, ICD-9 or ICD-10 codes were used to
identify COPD patients. The characteristics of these
studies are displayed in Tables 1 and 2. Thirteen of these
studies report on the validity of the identification
approach or algorithms they applied (see last column of
Tables 1 and 2).

Hansell et al. (2003) [37] performed a study to exam-
ine the validity of routine data sources on COPD and
asthma in the United Kingdom (UK). The authors used
national data from different sources to obtain informa-
tion about general practitioner contacts, symptoms,
mortality, and emergency hospital admissions. The Gen-
eral Practice Research Database, which is a commercially
available database of information on general practice
diseases and prescriptions in UK, yielded information
about inhalers prescribed in primary care and about
earlier or current COPD diagnosis [37].

Wilchesky et al. (2004) [38] performed a study determin-
ing sensitivity and specificity of the diagnoses derived from
claims data in Canada. Diagnoses were obtained from the
medical records of approximately 15,000 patients (used as
the “gold standard”) and were compared to the diagnoses
in the administrative database of this sample. Sensitivity
and specificity were analyzed for the following two
methods of COPD identification: (1) recorded diagnosis
from the physician claims, and (2) using physician claims
diagnostic codes in the year preceding the study [38].

Lacasse et al. (2005) [39] examined the validity of
COPD diagnosis in a large administrative dataset from
the Quebec health insurance agency (RAMQ, Canada)
by comparing it with data from the National Health
Survey. RAMQ includes prescription data (drug name
and dispensation date) on all prescriptions filled for
registered patients >65 years of age and for patients with
social security. RAMQ also contains information on
diagnostic and therapeutic procedures that are per-
formed in hospitals and ambulatory facilities, but does
not provide information about spirometry, medication
during hospitalization or nursing home stays, and home
oxygen use. Outpatients as well as inpatients were con-
sidered in this study. All entries matching the diagnosis
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of COPD, using ICD-9 codes 490-492 and 496, were
obtained [39].

Mapel et al. (2006) [11] developed an identification
algorithm for the undiagnosed COPD patients using
administrative claims data of Lovelace Health Plan, a
health maintenance organization serving New Mexico,
USA. Patients with new COPD diagnosis during the
study period were matched by sex and age to as many as
three control subjects. In order to identify preclinical
COPD, authors captured all outpatient encounters,
hospitalizations, and outpatient pharmacy prescription
fills with a time period of 2 years prior to COPD diagno-
sis. COPD patients were recognized if they were aged
240 years with one or more records of COPD diagnosis
(ICD-9 codes: 491, 492, and 496) listed on discharge. In
the study population of about 41,500 patients, the devel-
oped algorithm had 60.5% sensitivity and 82.1% specifi-
city. The reference standard for this analysis was a
COPD diagnosis extracted from medical records, based
on ICD codes [11].

In 2010, Mapel et al. [42] performed another study
to determine if outpatient pharmacy claims can be
used for identification of COPD patients (240 years,
one or more outpatient or inpatient claims, ICD-9
codes: 491-492, 496). To identify drugs that were related
to COPD in the years before the diagnosis, a conditional
logistic regression model was built with COPD status as
the dependent variable and sex, age, and medication use
as independent variables. In order to validate the algo-
rithm, it was used in two other databases. The final algo-
rithm identified patients with a specificity of 70.5% and a
sensitivity of 60.6%. The reference standard was at least
one inpatient or at least two outpatient claims with a
COPD diagnosis in the medical records, based on ICD
codes [42].

Mapel et al. (2011) [44] performed a cross-sectional
administrative claims data analysis to study a new meth-
odology of COPD identification in a large managed care
database in the USA. The information was obtained
from a dataset of 19 health plans across the USA, about
7.8 million cases. COPD patients were recognized if they
fulfilled one of the following three criteria: (1) 40 years
or older, plus one emergency room visit or one
hospitalization with COPD (491, 492, 496) listed as a
discharge diagnosis; or (2) 40years or older, plus two
COPD professional claims with different dates of service;
or (3) 40years or older, plus a COPD-related surgical
procedure (e.g., lung volume reduction) [44].

Akazawa et al. (2008) [40] assessed the economic bur-
den of undiagnosed COPD by comparing costs and
healthcare utilization in a sample of matched controls
(N =81,322) and newly diagnosed COPD patients (N =
28,968) in the 1 year period preceding the initial diagno-
sis. United Healthcare provided pharmacy and medical
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claims data for this study. COPD was identified using
the following three criteria: (1) hospital or emergency
department claim with a COPD diagnosis code: 491—
492, 496; (2) physician claims with a COPD diagnosis,
with another claim having the same code but a different
date of service; or (3) physician claims containing a
COPD ICD-code and drug-based algorithms [40].

Heins-Nesvold et al. (2008) [41] evaluated the similarity
of documented healthcare utilization with patient-
reported use, wants and needs in the US. For this reason,
two data sources were utilized: (1) managed care adminis-
trative database, which includes medical and pharmacy
claims data of 7782 cases, and (2) a survey mailed to 1911
Minnesota COPD patients. Patients were identified as
>40 years old, continuous enrolment during study period,
at least one claim with a diagnosis of COPD (ICD-9 codes:
491-492, 496) [41].

Cooke et al. (2011) [24] developed a predictive model
using administrative data to identify COPD patients.
Data was obtained from the US Department of Veterans
Affairs, including outpatient and inpatient databases,
pharmacy records, demographic data, and primary ICD-
9 codes (491-492, 493.2, and 496), providing a study
population of about 9600 individuals. COPD was defined
as (1) FEV1/FVC ratio less than 0.70 (indicates COPD)
and (2) FEV1/FVC ratio at the lower limits of normal. In
total, 4564 had an FEV1/FVC <0.70. The best model
additionally included =6 albuterol (a short-acting beta
agonist) metered dose inhalers, >3 ipratropium (an anti-
cholinergic) metered dose inhalers, 21 outpatient ICD-9
code, =1 inpatient ICD-9 code, and age. This model
reached a sensitivity of 72% and a specificity of 74%,
compared to spirometry as a gold standard [24].

Following their analysis published in 2011, in 2012
Dalal et al. [45] assessed in a cohort of 1936 patients
whether initiation of a fixed dose combination therapy
(fluticasone propionate/salmeterol combination (FSC)),
compared to continued or new anticholinergic (AC)
therapy, has an impact on the subsequent exacerbations
occurrence following an initial exacerbation. Data were
obtained from a US healthcare database, the Ingenix
Impact National Benchmark database, which includes
demographic data, inpatient, outpatient, laboratory re-
sults and pharmacy claims. A claim with IDC-9 codes of
491-492 and 496 was considered to represent a diagno-
sis of COPD [45].

Austin et al. (2012) [26] performed a study using five
administrative health databases from Canada, linked
using an encrypted insurance number. The Ontario
Chronic Obstructive Pulmonary Disease database con-
tains data on people with COPD diagnosis, identified by
physician billing claims or hospital discharges with
following ICD-9 codes: 491, 492, or 496, or ICD-10
codes: J41, J42, J43, or J44. In a case verification study,
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with expert opinion as the reference standard (Gershon
et al. 2009), the algorithm had a sensitivity of 85.0%
and a specificity of 78.4%. A COPD case was only
considered an incident case of COPD when the indi-
vidual patient did not have any COPD claims during
the last 5 years [26].

Make et al. (2012) [46] documented and evaluated
medication use patterns for COPD patients. Based on
guidelines, medication use and adherence, as well as care
indicators were analyzed. Data was obtained from the
PharMetrics database, which contains 19 health plans
across the United States. COPD patients were identified if
they were 40 years or older and fulfilled any of the follow-
ing criteria: (1) an emergency room visit or hospitalization
with ICD-9: 491-492, 496; or (2) two professional COPD
claims with different service dates; or (3) a COPD-related
surgical procedure [46].

Gini et al. (2013) [47] performed a study to estimate
the prevalence of COPD, ischemic heart disease, heart
failure and diabetes mellitus (DM). They compared the
derived estimates with the Italian National General Prac-
titioners’ Medical Record Database and national health
survey prevalence estimates. Analyzed data based on the
VALORE project was obtained from four sources: (1)
hospital discharge records using ICD-9 codes, (2) drug
dispensing records using ATC codes (Anatomical,
Therapeutic, Chemical Classification System codes) for
drug classification, (3) disease-specific exemption from
co-payment using ICD-9 codes, and (4) Inhabitant
Registry, providing demographic information (sex, year
of birth) and identifier of the doctor in charge. The ana-
lyses show that for COPD patients the estimates from
administrative data were within the confidence intervals
of the survey estimates in four regions [47].

Macaulay et al. (2013) [48] studied a COPD severity pre-
diction model, with the Geisinger Health System (GHS)
data. Claims data captured resource use (hospital, medical
and pharmacy claims) both in and outside of GHS. Elec-
tronic health records included present and predicted
values of spirometry. Patients with COPD ICD-9 code
(491, 492, or 496) and electronic health record spirometry
results were selected. Using the Global Initiative for
Chronic Obstructive Lung Disease (GOLD) guidelines and
spirometry, patients were classified into three groups (se-
vere/very severe, mild/moderate and GOLD-unclassified).
In order to categorize COPD severity, a regression model
was developed using data from 3 months before and after
the last spirometry. COPD severity was predicted for
62.7% of patients with a sensitivity of 50.0, 52.2, and
77.5%, and a specificity of 90.5, 80.0 and 70.4%, for severe/
very severe, mild/moderate and GOLD-unclassified, re-
spectively. The reference standard was COPD diagnosis
(using ICD-9 codes) and electronic health record results
from at least one spirometry test [48].
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Yawn et al. (2013) [49] performed a study to establish
associations between the use of inhaled corticosteroids
(ICS) in patients with a new COPD diagnosis and a
dose-related increase in the risk of pneumonia. They
used US claims databases, and examined drug prescrip-
tions and medical claims from two MarketScan® data-
bases (Commercial Claims and Encounters, Centers for
Medicare and Medicaid Services Supplemental and
Coordination of Benefits, with information on clinical
utilization, expenditures, and enrolment in inpatient or
outpatient services). Included patients had a diagnosis
of COPD (ICD-9491, 492, and 496). The study sample
consisted of 135,445 patients. Identification of patients
was based on COPD-related emergency department
visits or admissions, or at least two office visits related
to COPD [49].

Dore et al. (2014) [50] performed a study among initia-
tors of a LABA to evaluate the accuracy of claims data
for classifying COPD and prevalent asthma. The Norma-
tive Health Information Database was used (United-
Health Care, USA). ICD-9 codes (491.2, 492.8, and 496)
were observed. The National Drug Codes were used for
drug identification. All cases had COPD or asthma ICD-
9 code on claims in the period from the 6 months prior
to the index date. A random sample of medical records
was used to verify the diagnoses from each of the four
following categories of patients (in total, 370 patients):
(1) one or more claims for asthma — ICD-9493, (2) at
least one claim for COPD — ICD-9: 491.2, 492.8, 496, (3)
claims for both COPD and asthma, (4) without a claim
for COPD or asthma. Having at least one COPD claim
in the 6 months before the index date resulted in a posi-
tive predicted value (PPV) of about 82%, among recipients
of inhaled anticholinergic drugs, men and older patients,
the PPV was more than 90% [50].

Erdem (2014) [51] analyzed the prevalence of chronic
illnesses within the Medicare fee-for-service users in the
USA. Data were used from the Chronic Conditions Pub-
lic Use Files (PUFs). Administrative data for all Medicare
fee-for-service users can be found in PUFs. Among all
available data in the PUFs, COPD is also included. Algo-
rithms that search for a certain ICD-9 code, Current
Procedural Terminology, or the Healthcare Common
Procedure Coding System in the beneficiary’s Medicare
fee-for-service claims was used as the indicator [51].

Aldrich et al. (2015) [53] aimed to estimate COPD
prevalence and potential misreporting using published
algorithms for COPD patient identification among low-
income adults in the USA, aged 40 to 79years. The
Medicare and Medicaid Services database was used.
COPD was identified under the following circumstances:
one or more hospitalizations or emergency department
visits with an ICD-9 code 491, 492, 496, or at least two
visits with different service dates or, alternatively, ICD-9
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Fig. 2 Criteria used for identification of chronic obstructive pulmonary disease across included studies

code 491.21 as discharge diagnosis. Any mentioned
COPD diagnosis was explored in order to evaluate the
validity of the COPD labelling based on a reference
standard of COPD diagnosis in medical records. The
sensitivity was 62% and the positive predictive value was
80% for CMS-identified COPD [53].

Crighton et al. (2015) [30] analyzed the epidemiology
of COPD and associated health service use in Canada
[30]. Four databases were used: (1) The Registered
Persons Database, (2) The Canadian Institute of Health
Information Discharge Abstract Database, (3) The On-
tario Health Insurance Plan Physician Claims database,
and (4) the National Ambulatory Care Reporting System
databases. Patients included were > 35 years. COPD was
identified by: (1) one or more hospitalization related to
COPD, and/or (2) one ambulatory claim with ICD-9
code 491, 492, 496 or ICD-10 code J41, J42, J43, J44.
This case definition had a 85.0% sensitivity and 78.4%
specificity when using physicians’ clinical evaluation as
reference standard [30].

Laforest et al. (2016) [55] investigated the frequency
and effect of specific comorbidities on all-cause mortal-
ity in COPD patients. The Permanent Sample of Health
Insurance Beneficiaries, a random sample of the French
National Claims Data beneficiaries (SNIIRAM) with link-
age between ambulatory and hospital care, was used to se-
lect the cohort. COPD patients were identified as (1) >45
years of age, with (2) a COPD-related hospitalization
(ICD-10 codes J41, J42, J44 and J96.1, while the J96.0 code
was accepted only in the presence of J43 or J44), (3)
presence of a long-term disease status for COPD (patient
suffering from severe chronic conditions), and (4) bron-
chodilator drugs [55].

Price et al. (2016) [56] examined the comparative ef-
fectiveness of albuterol inhalers with and without inte-
grated dose counter for patients with asthma or COPD
using US claims data (Clinformatics TM Data Mart

database). This database contains medical claims on
both primary and secondary health care, laboratory test
results, and pharmacy claims. Patients from four up to
64 years of age, having at least one consultation, ED visit,
prescription for albuterol, or inpatient admission with
COPD diagnosis, were included [56].

Romanelli et al. (2016) [32] estimated the prevalence
of COPD using administrative databases. The authors
used the city’s hospital discharge register and the cause-
specific mortality register as data sources; clinical char-
acteristics were obtained from hospital or outpatient
medical records. COPD patients were identified as 40
years or older, with a primary or secondary COPD diag-
nosis at hospital discharge (ICD-9: 490, 491, 492, 494,
496), or with a COPD diagnosis in hospital or outpatient
medical record, or with a FEV1/FVC less than 0.70, or
finally COPD as a cause of death. The positive predictive
value for COPD in the hospital discharge register was
80.2%, for «clinical diagnoses in inpatient medical
charts 82.4%, outpatient 81.8, and 90.9% in the cause-
specific mortality register. Spirometry had a positive
predictive value for COPD of 88% [32].

Lee et al. (2017) [34] performed a study to determine
if the COPD patients could be accurately identified using
the data available in Electronic Medical Record. Authors
used data from the Electronic Medical Record Adminis-
trative data Linked Database (EMRALD®) in Ontario.
Several COPD algorithms were investigated, as well as
their predictive values. An algorithm using the docu-
mentation in the cumulative patient profile had a PPV of
95%, and detected 56% of COPD patients. When COPD
billing codes (491, 492 or 496) and medication prescrip-
tions (tiotropium, ipratropium, salbutamol or combina-
tions) were included in the algorithm, PPV was 98%
with a 52% sensitivity. Algorithms using a combination
of more elements from Electronic Medical Record led to
a higher sensitivity than when used separately, and a
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higher PPV, specificity and NPV. The final algorithm
resulted in the 77% sensitivity and 96% PPV, and in-
cluded COPD documentation in the cumulative patient
profile, drug prescriptions and COPD billing codes [34].

McGuire et al. (2017) [35] evaluated the risk of inci-
dent COPD in rheumatoid arthritis using administrative
health data from the Ministry of Health of British
Columbia administrative databases on provincially
funded health services. This set of data included all
physician visits, investigations, and procedures from the
Medical Service Plan, as well as hospital data. Further-
more, information on medications use is collected using
PharmaNet data, and using vital statistics data on deaths
and causes of death. The COPD population was identi-
fied based on ICD codes (Revision 9: 491, 492, 493.2,
496 and revision 10: J43 or J44) in hospital and/or
outpatient physician visit data (including billing code for
COPD) [35].

Westney et al. (2017) [36] investigated the status of
comorbidities among Medicaid patients with COPD.
The study cohort is obtained from Medicaid Analytic
eXtract (MAX) file, originating from Centers for Medi-
care and Medicaid Services. COPD patients were identi-
fied as 18 to 64 years of age, with ICD-9 codes (491.0,
491.1, 491.2, 491.8, 492.xx, 493.2, 494.xx, 496.xx) and
one or more inpatient billing claims from the inpatient
file or at least two outpatient billing claims [36].

Turner et al. (2018) [58] analyzed the prevalence, fea-
tures and subtypes of asthma, COPD and asthma COPD
overlap. The authors used (1) the HealthCore Integrated
Research Database, a health insurance repository of
administrative claims data, and (2) patients medical
records. Patients were included if they were 40 years of
age or older, having two or more COPD diagnoses
(ICD-9 codes 491, 492, 496), two or more COPD-related
procedures, three or more Generic Product Identifier
(COPD medication prescription fills) and two or more
Current Procedural Terminology codes for spirometry.
Through patients’ medical record review COPD was
confirmed by persistent airflow obstruction FEV1/FVC <
0.70 at baseline [58].

Discussion

This systematic assessment of studies using routine data
for the identification of COPD patients includes 38 stud-
ies published from January 2000 until October 2018.
Until 2010, nine studies were published (on average, a
little more than one study per year), while in the next 8
years, an additional 29 studies were published, three
times more than the period before 2010. This indicates
that use of routine data in COPD patient’s identification
is rising. On the other hand, there is a clear discrepancy
in where the studies are reporting from: 34 studies
present the situation in North America, while only four
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report on COPD identification practices in Europe (one
from United Kingdom and two from Italy and one from
France). There were no identified studies in other
regions. It is rather unlikely that the identification of
COPD implies problems to North America and European
countries only. Therefore, there seems to be a compelling
need for further research in order to understand how
other countries cope with this challenge.

In this review, ICD-9 or ICD-10 coding was the most
frequently used instrument to identify COPD patients,
adopted in 90% of studies. Hospitalization and age data
were provided for the target population in the majority
of the studies, followed by ambulatory data, physician
claims, and drug prescription data. It was not surprising
that only five studies used spirometry findings and only
one study used data regarding home oxygen use, as this
information is usually not contained in claims databases.
Combinations of these identification criteria were used
in order to identify COPD patients in routine data (as
shown in Tables 1 and 2).

Four studies used other methods than ICD coding:
Gershon et al. (2009) and Gershon et al. (2013) used age
limitation (older than 35) as an indicator, in addition to
one or more claims for hospitalization or ambulatory
care for COPD. Dalal et al. (2011) and Raymakers et al.
(2017) used age restriction (patients older than 40 years,
and 50 years respectively) and pharmacotherapy claims.
Offering alternative identification approaches, these
studies are of paramount interest for our research.

It is noteworthy that the algorithm described and pre-
viously validated by Gershon et al. (2009) has been used
in 13 out of 38 studies. Gershon, in six of her studies,
uses an algorithm defined by =>35years, one COPD
hospitalization and/or one ambulatory claim (sensitivity
85% and specificity 78.4%) [23, 25, 27-29, 33]. Austin
et al. (2012), Crighton et al. (2015), Westney et al.
(2017), Doucet et al. (2016) and McGuire et al. (2017)
uses the same algorithm, while Vozoris et al. (2014) and
Vozoris et al. (2015) takes in both publications (different
population) into account Gershon’s highly specific
COPD definition (sensitivity of 57,5% and specificity of
95,4%) which includes three or more ambulatory claims
in a 2 year period, and one or more hospitalizations for
COPD [26, 30, 31, 52, 54].

The premise of our study is that identification algo-
rithms identified through these studies would be useful
for countries with limited evidence from routine/admin-
istrative data, in general and in particular for countries
where ambulatory ICD codes are not available. Austria
is a notable example of this situation, struggling to
achieve the best possible information with alternative
approaches.

An Austrian attempt to derive ICD codes from routine
data was performed in the project “ATC to ICD:
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Determination of the reliability for predicting the ICD
code from the ATC code”, published by Weisser et al.
[59], who tried to deduce the ICD code using ATC code
(Anatomical, Therapeutic, Chemical Classification Sys-
tem, which is used for pharmaceutical products) from
routine outpatient data, an area of the Austrian health
care system where ICD codes are missing. In this project
the authors showed what would be the most feasible
way to assign ICD codes to an ATC code, with use of
data available in the Main Association of Austrian Social
Insurance Institutions. Additional information used for
the analysis was available in this database: sex, year of
birth, medication dose, prescription date and medication
issue date.

Summarizing our findings, the most elaborate approach
to identify COPD patients using routinely available re-
cords uses pharmacotherapy data (LABA, SAAC, LAAC,
theophylline and inhaled corticosteroids). Particularly for
the outpatient sector, in the fields of administrative/social
insurance data, pharmacotherapy data is the most reliable
and certainly the richest source of information available, if
the ICD code is unavailable.

Limitations

Our review has several limitations. Publication bias may
occur because the studies focusing on this specific identifi-
cation problem may be of interest only in a very limited
context (e.g., national interest, health insurance). Our lit-
erature search was restricted to Medline via PubMed and
Google Scholar. Additionally, a hand search of included
studies, only in the English and German languages, was
conducted. In the identified published papers, the basic
data was frequently not available to review.

The general dilemma of the kind of studies we reviewed
is that identification algorithms often lack a gold standard.
While Cooke et al. (2011) [24] use spirometry as a gold
standard, Romanelli et al. (2016) [32] report spirometry to
have a PPV for COPD of (only) 88%. Other authors rely
on expert opinion, but there is no common knowledge
regarding the estimation of inter-observer variability. Due
to the lack of a specific risk of bias tool, we used the
method of algorithm validation and the resulting sensitiv-
ity within our studies to judge the risk of bias. Although
the choice of any threshold should be explicitly informed
by a rational decision criterion or an explicit false positive/
false negative trade-off, this was missing in most of the
studies. However, for the comparability within our review,
it was positive that most studies, which applied a validated
algorithm, had thresholds leading to a sensitivity of
around 80%.

Regarding the generalizability of evidence, the majority
of studies are reporting on patients from the USA or
Canada. Due to possible diverse identification ap-
proaches worldwide, different health systems or datasets,
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the algorithms reported by some authors in this review
might not be applicable to other regions. Based on the
fact that different datasets were used, also the identifica-
tion criteria were diverse between the studies. This could
induce the imperative to create many diverse algorithms
and, at the same time, makes it difficult to form one
unique algorithm that could be applicable to any health
care system.

Conclusion

A variety of different criteria have been used to identify
COPD. In general, it can be concluded that the more
criteria are combined, the more accurate is the detection
of COPD patients in terms of sensitivity and specificity.
Drug data is by far the most comprehensive source of
information if used alone. The most promising criteria
set in data environments where ambulatory diagnosis
codes are lacking is the inclusion of other illness-related
data with special attention to pharmacotherapy data, and
to ATC code if available. In order to obtain more sub-
stantial insights on reliable detection of COPD patients
from routine datasets, further research should focus on
the application of internal and/or external validation
approaches.
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