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Abstract

To obtain predictive genes with lower redundancy and better interpretability, a hybrid gene selection method encoding
prior information is proposed in this paper. To begin with, the prior information referred to as gene-to-class sensitivity (GCS)
of all genes from microarray data is exploited by a single hidden layered feedforward neural network (SLFN). Then, to select
more representative and lower redundant genes, all genes are grouped into some clusters by K-means method, and some
low sensitive genes are filtered out according to their GCS values. Finally, a modified binary particle swarm optimization
(BPSO) encoding the GCS information is proposed to perform further gene selection from the remainder genes. For
considering the GCS information, the proposed method selects those genes highly correlated to sample classes. Thus, the
low redundant gene subsets obtained by the proposed method also contribute to improve classification accuracy on
microarray data. The experiments results on some open microarray data verify the effectiveness and efficiency of the
proposed approach.

Citation: Han F, Sun W, Ling Q-H (2014) A Novel Strategy for Gene Selection of Microarray Data Based on Gene-to-Class Sensitivity Information. PLoS ONE 9(5):
e97530. doi:10.1371/journal.pone.0097530

Editor: Lars Kaderali, Technische Universität Dresden, Medical Faculty, Germany

Received December 6, 2013; Accepted April 21, 2014; Published May 20, 2014

Copyright: � 2014 Han et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the National Natural Science Foundation of China (Nos.61271385, 60702056). The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: hanfei@mail.ujs.edu.cn

Introduction

One of the major applications of microarray data analysis is to

perform sample classification between different disease pheno-

types, for diagnostic and prognostic purposes [1–5]. The

classification involves a wide range of algorithms such as

differential gene expression analyses, clustering analyses and

supervised learning [6]. Gene selection is one of the critical steps

in the course of the classification of microarray data [7,8].

Selecting a useful gene subset not only decreases the computa-

tional complexity, but also increases the classification accuracy.

The methods for gene selection are broadly divided into three

categories: filter, wrapper and embedded methods [9]. A filter

method relies on general characteristics of the training data to

select genes without involving any classifier for evaluation. Most

filter methods consider each feature separately with ignoring

feature dependencies, which may lead to worse classification

performance when compared to other types of feature selection

methods [10]. In addition to considering feature dependencies,

wrapper methods take into account the interaction between

feature subset search and model selection. However, wrapper

methods have a higher risk of overfitting than filter ones and are

very computationally intensive [11]. Embedded methods have the

advantage that they include the interaction with the classification

model, while being far less computationally intensive than wrapper

methods [12].

In recent years, many methods combined with population-

based stochastic optimization techniques such as genetic algorithm

(GA) [13] and particle swarm optimization (PSO) [14,15] have

been used increasingly as an effective technique for microarray

data analyses [16–22]. In [19,20], binary PSO (BPSO) [23]

combined with filter method was applied for searching optimal

gene subsets. The method in [19] simplified gene selection and

obtained a higher classification accuracy compared to some similar

gene selection methods based on GA, while the method in [20]

could determine the appropriate number of genes and obtained

high classification accuracy by support vector machine. In [21], an

approach combined GA with K-nearest neighbor (KNN) method

was proposed to identify genes that could jointly discriminate

between different classes of samples. The GA/KNN approach

could capture the correlated structure in the data and are highly

repeatable in independent runs [21]. A combination of Integer-

Coded GA (ICGA) and particle swarm optimization, coupled with

extreme learning machine (ELM) was used to select an optimal set

of genes [22]. These hybrid methods were capable of selecting a

compact subset of predictive genes for sample classification.

However, these methods considered only the features’ relevance

by evaluating their utility for achieving accurate predication or

exploiting data variance and distribution, and the selected genes

were usually poorly explicable.

Similar to GA, PSO searches for optima by updating population

with generations. Unlike GA, PSO has no evolution operators

such as crossover and mutation. PSO is easy to implement with

few parameters need to adjust. Binary PSO (BPSO) algorithm is a

binary version of PSO, which is suitable to solve discrete

optimization problems [23].

In the gene selection process, different kinds of classification

algorithms such as backpropagation (BP) [24], KNN [25] and

support vector machine (SVM) [26], were used to evaluate the
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prediction ability of gene subsets, which may result into high

computational cost in wrapper and embedded methods. The

convergence performance, especially convergence rate, of the

classification algorithm to evaluate the candidate gene subsets is a

significant factor in the gene selection process. ELM, developed

recently for a single hidden layered neural network (SLFN) [27],

has good generalization performance with a fast training

procedure. In ELM, the input weights are chosen randomly and

the output weights are calculated analytically. Normally, ELM’s

performance is superior to other classifiers such as gradient-based

learning algorithms and SVM for problems with larger sample sets

and a smaller number of features [22]. Therefore, it is a reasonable

choice to use ELM to evaluate the candidate gene subsets.

In Kmeans-PSO-ELM method [28], we used K-means method

to group the initial gene pool into several clusters, and standard

PSO combined with ELM was used to perform gene selection,

which could obtain a compact set of informative genes. Based on

the work in [28], a prior information referred to as gene-to-class

sensitivity (GCS) is considered in the gene selection process to

select smallest possible set of predictive genes with high

interpretability in this paper. The GCS information is exploited

by SLFN from microarray data. The GCS information, indicating

if a gene is sensitive to sample classes, contributes to select those

genes significantly correlated to the sample classes. To identify

relevant genes effectively for subsequent researches such as sample

classification, we partition all genes into different clusters by K-

means method, and filter out some clusters and genes with low

GCS values. However, some remainder genes, especially those in

the same cluster, may have high similarity so that there is probably

large with rich redundancy among these remainder genes. To

identify small sets of genes that could be used for diagnostic

purpose, a modified binary PSO coupling GCS information

combined with ELM is used to select smallest possible gene

subsets. The modified BPSO may select the representative genes

from the remainder clusters to form the optimal gene subset.

Moreover, the hybrid method could reduce computational cost for

using ELM to evaluate the candidate gene subsets.

Methods

K-means Clustering Method
Clustering is a search for hidden patterns that may exist in

datasets. It is a process of grouping data objects into disjointed

clusters so that the data in each cluster are similar, yet different to

the others [29]. There are two kinds of clustering algorithms:

hierarchical clustering and partitioned clustering. Different from

hierarchical approaches, the partitioned clustering approach

divided the input data into specified in advance number of

clusters by minimizing a certain cost-function [29].

K-means, a typical partitioned clustering method, is simple and

generally very fast [29]. It initializes specified in advance number

of centers by some initial values called seed-points. Then, K-means

computes the squared distances between the input data points and

centers, and assigns the input data points to the nearest centers.

Each cluster is represented by an adaptively-changing center. The

above process is repeated until all center positions are optimized.

The standard K-means algorithm minimizes the square-error cost-

function as follows:

E~
XNc

i~1

X
p[Ci

p{ mik k2 ð1Þ

where p is a input data point in the cluster Ci, i = 1,2,…, Nc, and mi

is the center of cluster Ci (the mean of all data points in the cluster

Ci).

Particle Swarm Optimization
PSO is an evolutionary computing mechanism in searching for

the best solution by simulating the movement of flocking birds

[14]. The population of the birds is called the swarm, and the

members of the population are called the particles. Each particle

Figure 1. The frame of the proposed hybrid gene selection
method.
doi:10.1371/journal.pone.0097530.g001

Table 1. Six microarray data.

Data Total Training Testing Classes Genes

Leukemia 72 38 34 2 7129

Colon 62 40 22 2 2000

SRBCT 83 63 20 4 2308

LUNG 203 103 100 5 3312

Brain cancer 60 30 30 2 7129

Lymphoma 58 29 29 2 7129

doi:10.1371/journal.pone.0097530.t001
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represents a possible solution to the problem. In the process of

optimization, each particle flies independently in its own direction

which is guided by its individual historical best position (pbest) as

well as the global best position of all particles (gbest). Supposing the

dimension of a searching space is D, and the swarm is

S = (X1,X2,X3,…,Xns); each particle stands for a position in D-

dimensional space; the position of the i-th particle in the search

space can be denoted as Xi = (xi1, xi2,…, xiD), i = 1, 2, …, ns, where

ns is the swarm size. The individual historical best position of the i-

th particle is expressed as Pi = (pi1,pi2,…,piD). The global best

position of all particles is denoted as Pg = (pg1,pg2,…,pgD). The

velocity of the i-th particle is expressed as Vi = (vi1,vi2,…,viD).

According to [15], the basic PSO is described as:

vid

~w � vid z c1 �rand() � ( pid { xid )z c2 �rand() � ( pgd { xid )
ð2Þ

xid ~ xid z vid ð3Þ

Figure 2. The GCS values of genes in the remainder clusters (The character ‘C’ along the X axis is the abbreviation for ‘Cluster’) (A)
Leukemia (B) Colon (C) SRBCT (D) LUNG (E) Brain cancer (F) Lymphoma.
doi:10.1371/journal.pone.0097530.g002
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where c1, c2 are the acceleration constants with positive values;

rand() is a random number ranged from 0 to 1; w is the inertia

weight.

The basic PSO algorithm is usually applied to solve problems in

which the elements of the solution are continuous real number,

whereas BPSO is more suitable for discrete optimization [23]. In

BPSO, the velocity update formula remains unchanged as shown

in Eq.(2), while the new position of the particle is calculated

according to the following equation:

Xi ~
1 rand()vS( Vi )

0 rand()§S( Vi )

�
ð4Þ

where the function S(Vi) is a sigmoid function,

S(Vi )~1=(1z exp ({ Vi )).

Extreme Learning Machine
In [30], a learning algorithm for SLFN called extreme learning

machine (ELM) was proposed to solve the problem caused by

gradient-based learning algorithms. ELM randomly chooses the

input weights and hidden biases, and analytically determines the

output weights of SLFN. ELM has much better generalization

performance with much faster learning speed than gradient-based

algorithms [31,32].

For N arbitrary distinct samples (XXi, Ti) (i = 1,2,…,N.), where

XXi = [xxi1, xxi2, …,xxin]MRn, Ti = [ti1, ti2, …,tim]MRm. A SLFN with

NH hidden neurons and activation function g(?) can approximate

these N samples with zero error. This means that

Hwo~T ð5Þ

where

H( wh1 , � � � , whNH
, b1 , � � � , bNH

, XX 1 , � � � , XX N )

~

g( wh1 .XX 1 z b1 ) � � � g( whNH
.XX 1 z bNH

)

..

.
� � � ..

.

g( wh1 .XX N z b1 ) � � � g( whNH
.XX N z bNH

)

2
6664

3
7775,

wo~

woT
1

..

.

woT
NH

2
6664

3
7775

NH |m

, T~

TT
1

..

.

TT
N

2
6664

3
7775

N|m

:

The whi = [whi1, whi2, …,whin]
T is the input weight vector

connecting the i-th hidden neuron and the input neurons, the

woi = [woi1, woi2, …,woim] is the output weight vector connecting

the i-th hidden neuron and the output neurons, and the bi is the

bias of the i-th hidden neuron.

In the course of learning, first, the input weights and the hidden

biases are arbitrarily chosen and need not be adjusted at all.

Second, the smallest norm least-squares solution of the Eq. (5) is

Table 2. The classification accuracies with different gene subsets by ELM on the six data.

Data Selected genes 5-fold CV Accuracy Mean(%)±std Testing Accuracy Mean(%)±std

Leukemia 2642,4050, 2121 10060.00 10060.00

2642,4050,3258 10060.00 10060.00

2642,4050,1882 99.7460.55 10060.00

4050,1685,1078,2121 99.6460.61 98.2161.61

Colon 141,792,251,1679,1976,14 97.6161.37 93.6862.58

141,1110,792,251,1976,286, 23,14 98.0361.46 94.3662.59

127,652,1110,43,251,1976, 795,1071,286,14 97.5061.63 95.0963.27

304,360,377,1110,792,312,251,36,1763,1867,1976,795,14 98.0561.38 96.1462.53

SRBCT 742,1003,1055,2050,846, 1772 10060.00 10060.00

742,1003,603,971,846,1389 10060.00 10060.00

236,976,1003,123,819,545 10060.00 10060.00

742,1003,2050,235,1634,1120, 545 10060.00 10060.00

LUNG 498,614,567,2750,1209, 1765,2763,867,2659,2670 96.8860.61 94.8060.79

641,777,1288,614,567,320, 3178,792,3295,2558,997 97.1060.63 93.0261.17

580,103,2750,1559,1765,2763,2583,997,1014 96.1760.65 94.4460.82

Brain cancer 3362,1970,3123,5931 86.0761.99 77.2061.40

6571,4413,4917,5931 85.7063.16 79.5363.96

5721,4069,1970,3123,5931 87.8761.73 78.3061.74

6571,4409,4413,4628,1970,5931 88.6362.16 80.4063.36

Lymphoma 4092,6171,412,5843,806,4037 85.0562.44 78.6261.70

5660,4092,364,152,956,806,4037 84.6062.75 74.5262.40

4092,6171,5357,3646,5909,152,806,2650 86.9762.44 73.3863.10

5660,4092,6171,510,6219,2374,1568,2650 86.9562.33 78.7961.24

doi:10.1371/journal.pone.0097530.t002
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obtained as follows:

wo~ H
z T ð6Þ

It was concluded that the ELM has the minimum training error

and smallest norm of weights [31,32]. The smallest norm of

weights tends to have the best generalization performance [31,32].

Since the solution is obtained by an analytical method and all the

parameters of SLFN need not be adjusted, ELM converges much

faster than gradient-based algorithm.

The Proposed Hybrid Method
Gene-to-class sensitivity information. To get a better

understanding of gene-to-class sensitivity (GCS) information, the

Figure 3. The GCS values for all reserved genes (A) Leukemia (B) Colon (C) SRBCT (D) LUNG (E) Brain cancer (F) Lymphoma.
doi:10.1371/journal.pone.0097530.g003
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input-to-output sensitivity of a SLFN should be given first. whki is

the connected weight from the i-th input node to the k-th hidden

neuron, and wojk is the connected weight from the j-th hidden

neuron to the k-th output neuron. xxi is the i-th input component

and Oj is the j-th output component of the SLFN. The i-th input to

j-th output sensitivity [33,34] is defined as:

Sij ~
1

Nsam

XNsam

r~1
D LOj

Lxxi DXX~ XXr

D ð7Þ

where Nsam is the number of samples. For simplicity, the hidden

activation function of the SLFN is logsig function, and the output

neurons are linear. Obviously, the derivative LOj

�
Lxxi obtained

from the r-th sample, XXr, can be calculated as:

LOj

Lxxi DXX~ XXr

~
XNH

k~1

wojk � f ( XX r ) � (1{f ( XX r )) � whki ð8Þ

When the Oj is the value of the j-th class and xxi represents the

expression level of the i-th gene, Sij in Eq.(7) can be considered as

the i-th gene to the j-th class sensitivity. The larger the Sij value is,

the more sensitive to the j-th class the i-th gene is. The GCS value

for the k-th gene is normalized as follows:

GCS(k)~

PNO

j~1
Skj

max
k~1,���, Ngn1

f
PNO

j~1
Skjg

ð9Þ

where NO and Ngn1 are the number of the output neurons in the

SLFN and the number of genes in the first-level initial gene pool.

In this study, a SLFN is trained with the training dataset by

ELM, and the input and output weights of the SLFN are

determined. According to Eqs. (7)–(9), the GCS values of all genes

are easily obtained. To obtain more accurate GCS value of each

gene, the above operation is repeated 50 times and the average

GCS value of each gene is calculated.

Table 3. The top ten frequently selected genes with the proposed method on the Leukemia data.

Gene no. Gene name Description

2642 U05259 MB-1 gene*#

4050 X03934 GB DEF = T-cell antigen receptor gene T3-delta

2121 M63138 CTSD Cathepsin D (lysosomal aspartyl protease)*#

3320 U50136 Leukotriene C4 synthase (LTC4S) gene*#

6539 X85116 Epb72 gene exon 1*#

1882 M27891 CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage)*#

5191 Z69881 Adenosine triphosphatase, calcium#

1779 M19507 MPO Myeloperoxidase*#

4847 X95735 Zyxin*#

1078 J03473 ADPRT ADP-ribosyltransferase (NAD+; poly (ADP-ribose) polymerase)

*Also selected by the method in [40].
#Also selected by the method in [37].
doi:10.1371/journal.pone.0097530.t003

Table 4. The top ten frequently selected genes with the proposed method on the Colon data.

Gene no. Gene name Description

14 H20709 Myosin light chain alkali, smooth-muscle isoform (Human) R=

237 T50334 14-3-3-like protein GF14 omega (Arabidopsis thaliana)

1482 T64012 Acetylcholine receptor protein, delta chain precursor (Xenopus laevis)

175 T94579 Human chitotriosidase precursor mRNA, complete cds. =

286 H64489 Leukocyte antigen CD37 (Homo sapiens)

141 D21261 Sm22-alpha homolog (Human)

792 R88740 Atp synthase coupling factor 6, mitochondrial precursor (Human) =

3 R39465 Eukaryotic initiation factor 4A (Oryctolagus cuniculus)

251 U37012 Human cleavage and polyadenylation specificity factor mRNA, complete cds

23 R22197 60S ribosomal protein L32 (Human) R

RAlso selected by the method in [41].
=Also selected by the method in [42].
doi:10.1371/journal.pone.0097530.t004
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The Proposed Gene Selection Method
In this paper, gene selection also consists of two respects, which

are to identify relevant genes from each cluster and to tend to

select smallest subsets from the relevant genes. To obtain compact

and explicable gene subsets, GCS information (GCSI) exploited

from microarray data is considered in the whole process of gene

selection. The rough frame of the proposed method is shown in

Figure 1.

To identify relevant genes for subsequent sample classification,

firstly, the GCS values of all genes are calculated according to

Eqs.(7)–(9), and all genes are clustered by K-means algorithm.

Since the genes in the same cluster might have similar functions, it

is possible that several genes serve as the equivalent for the

subsequent sample classification. To reduce the redundancy, only

the representative genes among these equivalent genes are selected

for further processing. Then, if maximum GCS value of all genes

in a cluster is far lower than those of other clusters, this cluster will

be filtered out. Moreover, if the GCS value of a gene in the

remainder cluster is lower than the mean of the GCS values of all

genes in this cluster, this gene will also be filtered out. Thus, the

remainder genes in the remainder clusters have comparatively

high GCS values, and these relevant genes for sample classification

are probably kept for further gene selection.

Although the remainder genes are relevant to data classes, there

is still rich redundancy among these genes. In this study, a

modified BPSO encoding GCS information is proposed to select

the most compact gene subsets from the remainder genes. The

detailed steps are described as follows.

Step 1: Form a first-level initial gene pool. The dataset is divided

into training and testing datasets. Select 200,400 genes from all

original genes by using information index to classification (IIC)

method [35] on the training data. Since the original IIC method is

used for two-class microarray data, we develop it for multi-class

microarray data as follows:

d(g)~
Xc

j~1

Xc

k~1,k=j

½1
2

Dmgj { mgk D
sgj z sgk

z
1

2
ln (

s2
gj z s2

gk

2 (sgj sgk )
)� ð10Þ

where mgj and mgk are the means of expression value of the gene g

in the j-th and k-th classes, respectively, and sgj and sgk are the

standard deviations of expression value of gene g in the j-th and k-

th classes, respectively. c is the total number of classes. From [35],

the higher the value of d(g), the more classification information the

gene g contains, so the gene g is more relevant to samples

categories. The high classification accuracy will be obtained with

Table 5. The top ten frequently selected genes with the proposed method on the SRBCT data.

Gene no. Gene name Description

1003 796258 sarcoglycan, alpha (50kD dystrophin-associated glycoprotein){`

742 812105 transmembrane protein{

1601 629896 microtubule-associated protein 1B{`

603 42558 glycine amidinotransferase (L-arginine:glycine amidinotransferase){

1055 1409509 troponin T1, skeletal, slow{`

545 1435862 antigen identified by monoclonal antibodies 12E7, F21 and O13{`

1955 784224 fibroblast growth factor receptor 4{`

1 21652 catenin (cadherin-associated protein), alpha 1 (102 kD){`

1389 770394 Fc fragment of IgG, receptor, transporter, alpha{`

976 786084 chromobox homolog 1 (Drosophila HP1 beta)

{Also selected by the method in [33].
`Also selected by the method in [43].
doi:10.1371/journal.pone.0097530.t005

Table 6. The top ten frequently selected genes with the proposed method on the LUNG data.

Gene no. Gene name Description

498 39755 Cluster Incl Z93930:Human DNA sequence from clone 292E10 on chromosome 22q11–12. Contains

1559 1011_s tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, epsilon polypeptide

792 38704 actin binding protein; macrophin (microfilament and actin filament cross-linker protein)

3178 38799 Cluster Incl AF068706:Homo sapiens gamma2-adaptin (G2AD) mRNA, complete cds/cds = (763,3018)

1765 39722 nuclear receptor co-repressor 1

1243 39012_g endosulfine alpha

614 1147 V-Erba Related Ear-3 Protein

2750 38484 synaptosomal-associated protein, 25 kD

1014 588 protein tyrosine phosphatase, non-receptor type 1

567 33412 Cluster Incl AI535946:vicpro2.D07.r Homo sapiens cDNA, 5 end/clone_end = 50/gb = AI535946

doi:10.1371/journal.pone.0097530.t006
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high probability by a classifier if the microarray data is projected

onto the gene g whose IIC value, d(g), is high. The genes are

ranked by their IIC values on the training dataset, and those genes

with higher IIC values are chosen to establish the first-level gene

pool.

Step 2: Establish a second-level initial gene pool based on the

first-level initial gene pool. Cluster the genes in the first-level initial

gene pool to predetermined number of groups with K-means

method. The predetermined number of the clusters is determined

by trial and error. Delete those clusters whose maximum GCS

values are much smaller than other clusters. Moreover, in each

remainder cluster, the genes whose GCS values are smaller than

the mean GCS value of all genes in the cluster are also removed.

All the remainder genes in the remainder clusters form a second-

level initial gene pool to perform further gene selection.

Step 3: Use BPSO to select the optimal gene subsets from the

second-level initial gene pool. To improve the search ability of the

swarm, GCS information is encoded into BPSO for further gene

selection.

Firstly, initialize a population of particles with random positions

and velocities in the search space. The i-th particle Xi = (xi1, xi2,

…,xiD) represents a candidate gene subset, and the element

xijM{0,1},(1#j#D) indicates whether the j-th gene is selected. The

dimension of a particle is equal to the number of genes in the

second-level initial gene pool. Since the number of the remainder

clusters is comparatively small and each cluster owns its

representativeness, at least one gene should be selected from each

cluster in the initialization of each particle.

Secondly, update the position of each particle. To encode GCS

information, two modified equations for updating the particles

based on the discrete PSO in [20] are proposed as follows:

vij (tz1)~1=(1z exp ({ vij (tz1))) ð11Þ

xij (tz1)~

xij (t) vij (t)zGCS(j)vaz 1
Ngn2

PNgn2

m~1

GCS(m)

pij az 1
Ngn2

PNgn2

m~1

GCS(m)ƒ vij (t)zGCS(j) and vij (t)zGCS(j)v 1za
2

z 1
Ngn2

PNgn2

m~1

GCS(m)

pgj vij (t)zGCS(j)§ 1za
2

z 1
Ngn2

PNgn2

m~1

GCS(m)

8>>>>>>>>>><
>>>>>>>>>>:

ð12Þ

where GCS(j) is the GCS value of the j-th gene, and Ngn2 is the num-

ber of genes in the second-level initial gene pool. vij(t+1) on the right-

Table 7. The top ten frequently selected genes with the proposed method on the Brain cancer data.

Gene no. Gene name Description

5931 X58987 dopamine receptor D1

4413 U39817 Bloom syndrome

130 AFFX-BioDn-5_st /

1745 L08895 MADS box transcription enhancer factor 2, polypeptide C (myocyte enhancer factor 2C)

6732 Y00317 UDP glucuronosyltransferase 2 family, polypeptide B4

4843 U61262 neogenin homolog 1 (chicken)

2935 M60459 erythropoietin receptor

3502 S74683 ADP-ribosyltransferase 1

1970 L25270 Smcy homolog, X-linked (mouse)

18 AB000895 dachsous 1 (Drosophila)

doi:10.1371/journal.pone.0097530.t007

Table 8. The top ten frequently selected genes with the proposed method on the Lymphoma data.

Gene no. Gene name Description

5660 X14046 CD37 antigen

1116 HG2815-HT4023_s /

2748 M33478 phosducin

5357 U90543 butyrophilin, subfamily 2, member A1

806 D86969 PHD finger protein 16

3823 U09770 cysteine-rich protein 1 (intestinal)

4269 U32324 interleukin 11 receptor, alpha

5381 U90914 carboxypeptidase D

2073 L36033 chemokine (C-X-C motif) ligand 12 (stromal cell-derived factor 1)

6105 X67098 enolase superfamily member 1

doi:10.1371/journal.pone.0097530.t008

(12)
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hand side of Eq.(11) is calculated by Eq.(2). The parameter, a, is a fixed

number, and is set as 0.5 according to [20]. The subscripts i and j

denote the i-th particle and its j-th component. The pij is the j-th

component of the historical best position of the i-th particle, and the pgj

is the j-th component of the global best position of all particles. The

above equations make the genes with high GCS values be selected

with high probability.

Thirdly, evaluate the fitness value of each particle, and update

the historical best position of each particle and the global best

position of all particles. To select smallest possible predictive gene

subsets, the fitness function is defined as follows:

fitness(i)~ 104 �(1{accuracy(i))zk � GenesNumber(i) ð13Þ

According to [36], to correct for the selection bias in the gene

selection process, we perform 5-fold cross validation (CV) to

evaluate the selected genes. The accuracy(i) in Eq. (13) is the 5-fold

cross validation accuracy on training data obtained by ELM with

the candidate genes denoted by the i-th particle. The GenesNum-

ber(i) is the number of the selected genes denoted by the i-th

particle.

Finally, if the fitness value reaches the threshold value, or the

maximal iterative generations are arrived, the particle with the

best fitness value is output. So the optimal gene subset is obtained.

As a wrapper or embedded gene selection method, its main

computational cost is the computational time of evaluating the

candidate gene subset by classifier. In the proposed method, the

classifier to evaluate the candidate gene subsets is ELM which is

trained by an analytical method without iterations. In those gene

selection methods using SVM or BP algorithm to evaluate the

candidate gene subsets, the classifier is trained with thousands of

iterations and the training process is very time consuming.

Therefore, the computational time of the proposed method is

much less than that of methods using SVM or BP to evaluate the

candidate gene subset. Moreover, for better generalization

performance of ELM, the final selected gene subset evaluated by

ELM has high predictive ability. The proposed method combines

K-means method with the modified BPSO, GCS information and

ELM, so it is referred to as KMeans-GCSI-MBPSO-ELM.

Results and Discussion

Datasets
To verify the effectiveness and efficiency of the proposed gene

selection method, we conduct experiments on six open microarray

Figure 4. The Heatmap of expression levels based on the top ten frequently selected genes on the six data (A) Leukemia (B) Colon
(C) SRBCT (D) LUNG (E) Brain cancer (F) Lymphoma.
doi:10.1371/journal.pone.0097530.g004
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datasets including Leukemia, Colon, SRBCT, LUNG, Brain

cancer and Lymphoma data. The detailed description of the

datasets is listed in Table 1.

The Leukemia data [37] contains total 72 samples in two

classes, acute lymphoblastic leukemia (ALL) and acute myeloid

leukemia (AML), which contain 47 and 25 samples, respectively.

Every sample contains 7129 gene expression values. The

Leukemia data are available at http://www-genome.wi.mit.edu/

cgi-bin/cancer/datasets.cgi.

The Colon data consists of expression levels of 62 samples of

which 40 samples are colon cancer samples and the remaining are

normal samples. Although original expression levels for 6,000

genes are measured, 4,000 genes out of all the 6,000 genes were

removed considering the reliability of measured values in the

Figure 5. Plot of the first three principal components using the top 30 frequently selected genes (A) Leukemia (B) Colon (C) SRBCT
(D) LUNG (E) Brain cancer (F) Lymphoma.
doi:10.1371/journal.pone.0097530.g005
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measured expression levels. The measured expression values of

2,000 genes are publicly available at http://microarray.princeton.

edu/oncology/.

The entire SRBCT data [33] includes the expression data of

2308 genes. There are totally 63 training samples and 25 testing

samples, five of the testing samples being not SRBCT. The 63

training samples contain 23 Ewing family of tumors (EWS), 20

rhabdomyosarcoma (RMS), 12 neuroblastoma (NB), and 8 Burkitt

lymphomas (BL). The 20 testing samples contain 6 EWS, 5 RMS,

6 NB, and 3 BL. The data are available at http://www.

biomedcentral.com/content/supplementary/1471-2105-7-228-S4.

tgz.

Figure 6. The correlation between the ranks of genes from two independent runs on the six data to assess reproducibility of the
proposed approach (A) Leukemia (B) Colon (C) SRBCT (D) LUNG (E) Brain cancer (F) Lymphoma.
doi:10.1371/journal.pone.0097530.g006
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The LUNG data [38,39] contains in total 203 samples in five

classes, adenocarcinomas, squamous cell lung carcinomas, pulmo-

nary carcinoids, small-cell lung carcinomas and normal lung,

which have 139, 21, 20, 6,17 samples, respectively. Each sample

has 12600 genes. The genes with standard deviations smaller than

50 expression units were removed and a dataset with 203 samples

and 3312 genes was obtained [38,39]. The data is also available

at http://www.biomedcentral.com/content/supplementary/1471-

2105-7-228-S4.tgz.

The Brain cancer data contains 60 samples in two classes, 46

patients with classic and 14 patients with desmoplastic brain

cancer. The Lymphoma data includes 58 samples where 32

patients did cured and 26 patients did not cured. Each sample in

the Brain cancer and Lymphoma has 7129 genes. These two data

are available at http://linus.nci.nih.gov/,brb/DataArchive_

New.html.

Since there has no guidance on how to select the population size

and maximum iteration number in PSO, we determine the values

of these parameters within the crossvalidation runs on the

validation dataset. As for using modified BPSO to select optimal

genes, the population size is 100 on the SRBCT data, while the

one is 50 on the other five data; the maximum iteration number is

20 on the SRBCT, LUNG and Brain cancer data, and the one is

40 on the Leukemia, Colon and Lymphoma data. According to

[15], a recommended choice for the acceleration constants c1 and

c2 is 2, and a better decrease for the inertia weight, w, is form 1.4 to

0.5. In this study, based on the conclusions in [15] and the

crossvalidation runs on the validation dataset, the initial and final

inertia weight are set as 1.2 and 0.4, respectively on all data, and

the acceleration constants c1 and c2 are both selected as 1.6 on all

data.

Reduce Redundant Genes
In the first-level initial gene pool, some clusters with low

maximum GCS values are deleted. In the experiments, Cluster 3 is

removed on the Leukemia data, Clusters 2 and 6 are deleted on

the Colon data, Clusters 1, 2 and 3 are deleted on the SRBCT

data, Clusters 3 and 8 are filtered out on the LUNG data, Cluster

6 are deleted on the Brain cancer data, and Cluster 3 are filtered

out on the Lymphoma data. Moreover, some genes in a remainder

Figure 7. 5-fold CV accuracy on the training data versus the iteration number of the MBPSO.
doi:10.1371/journal.pone.0097530.g007

Table 9. The 5-fold CV classification accuracies of the ELM classifier based on four PSO-based gene selection methods on the six
data.

Method Mean accuracy (%)+std. (Gene number)

Leukemia Colon SRBCT LUNG Brain cancer Lymphoma

KMeans-GCSI-MBPSO-ELM 10060.00 (3) 97.6161.37(6) 10060.00 (6) 97.1060.63 (11) 88.6362.16(6) 86.9762.44(8)

KMeans-BPSO-ELM 99.1761.04(4) 93.5062.02(9) 99.2760.82(7) 95.6460.56(12) 87.2362.34(8) 85.1462.87(6)

BPSO-ELM 98.5660.27(5) 93.3461.99(9) 99.8260.60(10) 94.8060.57(11) 85.4562.33(7) 83.5062.72(8)

Method in [28] 99.6460.67(3) 93.9461.17(5) 99.3960.88(6) 95.6760.72(11) 86.5562.35(5) 83.7262.33(6)

doi:10.1371/journal.pone.0097530.t009
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cluster whose GCS values are lower than the mean GCS values of

the cluster are removed. Figure 2 shows the GCS values of the

genes in the remainder clusters on all data. From Figure 2, over

half the genes in the remainder clusters are filtered out. The less

the reserved genes are, the less the computational cost of the

further gene selection is.

The Classification Ability of the Selected Gene Subsets
To verify the classification ability of the selected gene subsets,

ELM is used to perform sample classification with these selected

gene subsets on the six datasets. Each experiment is conducted 100

times, and the mean results are listed in Table 2.

From Table 2, with the three genes selected by the proposed

approach, ELM obtains 100% testing accuracy and 5-fold CV

testing accuracy on Leukemia. ELM obtains 100% testing

accuracy and 5-fold CV testing accuracy with all selected gene

subsets on the SRBCT data. With the about ten genes selected by

the KMeans-GCSI-MBPSO-ELM method, ELM obtains high

prediction accuracies on the other four data. These results indicate

that the KMeans-GCSI-MBPSO-ELM method has the ability of

selecting most predictive genes highly related to sample classes.

The GCS values of all reserved genes listed in Figure 2 are

shown in Figure 3. It can be found that the KMeans-GCSI-

MBPSO-ELM method does not always select those genes with the

highest GCS values, and it also selects those critical genes with

comparatively low GCS values. This is mainly because the

modified BPSO considers not only the GCS values of the selected

genes but also the classification ability of each gene subset.

Biological and Functional Analysis of the Selected Gene
Subsets

The experiment on each microarray data is conducted 1000

times, and the top ten frequently selected genes are listed in

Tables 3–8 for the six data.

From Table 3, all genes except genes X03934, Z69881 and

J03473 were also selected by the methods proposed in [40] and

[37]. Gene Z69881 is also selected by the proposed method in

[37]. Gene U05259, a B lymphocyte antigen receptor, encodes cell

surface proteins for which monoclonal antibodies have been

demonstrated to be useful in distinguishing lymphoid from

myeloid lineage cells [40]. Gene M63138 is the member of the

peptidase C1 family involved in the pathogenesis of breast cancer

and possibly Alzheimer’s disease [40]. Gene X95735, an AML-

related gene, is an adhesive plaque protein, which plays a central

role in regulation of cell differentiation [40]. Form Tables 2 and 3,

it can be concluded that gene X03934 is also a critical gene for

sample classification.

From Table 4, genes H20709 and R22197 were also selected in

[41], and genes H20709, T94579 and R88740 were also selected

in [42]. A muscle index can be calculated based on an average

intensity of 17 ESTs in the array that are homologous to smooth

muscle genes which included gene H20709 [41]. Gene R22197 is

one of the ribosomal protein cluster which are ESTs homologous

to genes that appear to be related to cellular metabolism such as an

ATP-synthase component and an elongation factor [41].

From Table 5, genes 796258, 629896, 1409509, 1435862,

784224, 21652 and 770394 were also both selected by the

methods proposed in [33] and [43]. Genes 812105 and 42558

were also selected by the method proposed in [33]. Some genes are

Table 10. The 5-fold CV classification accuracies of the KNN-classifier and SVM-classifier based on six gene selection methods on
the Leukemia data.

Method KNN SVM

30 60 100 30 60 100

New method 96.5361.16 95.9761.40 / 98.4260.48 98.4060.54 /

Method in [28] 94.0461.79 / / 95.8361.84 / /

GS2 96.1064.80 96.8064.40 / 95.8065.20 96.7064.70 /

GS1 96.5064.80 97.3064.00 / 96.5065.00 97.0064.30 /

Cho’s 95.8064.90 96.3064.60 / 95.3065.40 96.2065.30 /

F-test 96.0064.90 96.6064.50 / 95.7065.50 96.8064.90 /

doi:10.1371/journal.pone.0097530.t010

Table 11. The 5-fold CV classification accuracies of the KNN-classifier and SVM-classifier based on six gene selection methods on
the SRBCT data.

Method KNN SVM

30 60 100 30 60 100

New method 98.2760.91 98.8760.38 99.0660.53 97.7160.81 99.7360.50 99.8260.43

Method in [28] 97.4661.47 98.8661.07 99.0460.92 99.4161.03 99.2561.09 99.8660.52

GS2 95.3064.80 97.1064.10 98.0063.80 94.9064.70 97.6064.00 99.0062.60

GS1 94.1064.70 96.1064.50 97.7064.10 95.9065.40 97.8064.00 98.8063.00

Cho’s 82.0069.60 86.4069.30 89.6068.70 83.5068.80 91.8066.90 94.3066.20

F-test 96.3065.00 97.3064.60 97.8064.00 97.0064.20 98.0063.90 99.2062.10

doi:10.1371/journal.pone.0097530.t011
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over-expressed in a certain type of tumor but lack of specificity.

For instance, Gene 784224 (fibroblast growth factor receptor 4)

was noted to be highly expressed only in RMS and not in normal

muscle, but it is also expressed in some other cancers and normal

tissues [33]. This tyrosine kinase receptor is expressed during

myogenesis but not in adult muscle, and is of interest because of its

potential role in tumor growth and in prevention of terminal

differentiation in muscle [33].

Although many gene selection methods were used on the

LUNG, Brain cancer and Lymphoma data, they did not give the

detailed information of the selected genes [38,39,44,45], and thus

we do not know which genes listed in Tables 6–8 were also

selected by these methods. Genes listed in Tables 6–8 can be a

useful reference for future study of these three data.

To further verify that the proposed method is capable of

selecting predictive genes, the heatmap with top ten frequently

selected genes for the six data are shown in Figure 4. From Figure 4

(A), all ten genes expression levels clearly differentiate between

AML and ALL. From Figure 4 (B), the expression levels of genes

237, 286 and 141 are distinct in two classes. From Figure 4 (C),

some genes are over-expressed in a certain type of tumor but lack

specificity. For instance, the expression levels of genes 1601 and

742 are distinct from NB and other classes, while the ones of genes

1003, 603, 1055 and 1955 are distinct from RMS and other

classes. Gene 545 has different expression level in EWS, and

expression level of gene 1 clearly differentiate in BL and NB from

EWS and RMS. From Figure 4 (D), the expression levels of genes

498, 1243 and 614 clearly differentiate between NOR and other

four classes, while the ones of gene 3178, 1765, 1014, 2750 and

567 differentiate between SQ and other classes. From Figure 4 (E–

F), there has no single gene in the Brain cancer and Lymphoma

data (especially in the Lymphoma data) whose expression levels

are distinct between two classes. This is mainly because all genes in

these two datasets have low deviation over all samples.

Principal component (PC) analysis is a linear orthogonal

transform such that the coordinates of the data in the new space

are uncorrelated and the most amount of variance of the original

data is preserved by only a few coordinates [46]. Hence, the first

few PCs explain most of the variance in the data. A plot of the first

three PCs often reveals patterns in the data [47]. Here it is used to

project samples of high dimensions onto a three-dimensional plot

for visual display. PC analysis is applied to all samples in the six

data using the top 30 frequently selected genes, and the display is

shown in Figure 5. Noticeably, two and four distinct clusters

emerge for the Leukemia and SRBCT data, respectively

(Figure 5(A) and (C)). As for the LUNG data (Figure 5(D)),

although several samples of different classes are overlapped, five

clusters are apparent. As for the Colon data (Figure 5(B)), four

normal samples are in the cluster of the tumor samples, which

were considered as the contaminated samples in [47]. From

Figure 5 (E–F), a few samples of different classes are overlapped.

This further indicates that the samples from different classes are

not very distinct in both the Brain cancer and Lymphoma data,

which was verified in [44,45].

Reproducibility of the Proposed Method
To examine the reproducibility of gene selection [21], we repeat

the same proposed approach on the six data with different random

seed numbers. Another 1000 subsets of optimal particles are thus

obtained through an independent run. This means that the

proposed method runs 1000 times in one independent run to

obtain 1000 optimal gene subsets. All genes in the second-level

initial gene pool are ranked according to the frequency of being

selected in 1000 solutions obtained by the independent run.

Figure 6 depicts the correlation between the ranks from the two

independent runs. The points in Figure 6 are distributed along the

line, y = x, which indicates the proposed method is highly

repeatable in two independent runs, so the reproducibility of

KMeans-GCSI-MBPSO-ELM is high.

Table 12. The 5-fold CV classification accuracies of the KNN-classifier and SVM-classifier based on six gene selection methods on
the LUNG data.

Method KNN SVM

30 60 100 30 60 100

New method 95.1760.42 95.7660.57 96.4060.47 94.5960.77 96.0160.69 94.6760.73

Method in [28] 92.1360.57 94.8260.50 94.9160.57 90.8261.00 97.6660.47 96.4760.71

GS2 88.4065.30 91.6064.10 92.8063.70 85.8066.10 91.3063.50 93.1063.30

GS1 89.0064.60 91.9064.10 93.7063.40 87.1065.10 92.2063.80 93.8063.10

Cho’s 84.3065.30 89.7064.40 92.4063.80 80.3066.50 89.4064.40 92.4063.50

F-test 87.3064.90 88.2064.40 91.8064.40 85.2065.50 90.1064.20 93.0063.60

doi:10.1371/journal.pone.0097530.t012

Table 13. The 5-fold CV classification accuracies of the KNN-classifier and SVM-classifier based on two gene selection methods on
the Colon data.

Method KNN SVM

30 60 100 30 60 100

New method 83.7762.37 84.9561.59 84.9762.09 84.9563.21 87.9762.76 86.3262.46

Method in [28] 75.9562.01 80.9062.01 81.0362.01 84.0563.43 80.1863.46 79.5663.73

doi:10.1371/journal.pone.0097530.t013
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Convergence Rate of the Proposed Method
Figure 7 shows the 5-fold CV accuracy on the training data

versus the iteration number of the modified BPSO. From Figure 7,

the MBPSO finds the optimal gene subset with only five epochs on

the SRBCT and LUNG data, 13, 23, 13 and 25 epochs on the

Leukemia, Colon, Brain cancer and Lymphoma data, respectively.

For the low redundancy of the second-level initial gene pool and

encoding the GCS information into BPSO, the modified BPSO

could find the optimal gene subset with fast convergence rate.

Figure 7 could give a guide for selecting the maximum iteration

number in the modified BPSO for different types of microarray

data.

Comparison with Other Gene Selection Methods
First, to compare the KMeans-GCSI-MBPSO-ELM method to

other PSO-based gene selection methods such as BPSO-ELM,

KMeans-BPSO-ELM and our previous work in [28], ELM is used

to perform sample classification with the selected genes obtained

by the four gene selection methods. In the BPSO-ELM method,

BPSO search the optimal gene subsets and ELM is used to

evaluate the gene subsets. As for the KMeans-BPSO-ELM

method, all genes are grouped by K-means clustering method

first and BPSO combined with ELM to perform gene selection.

Compared to the KMeans-GCSI-MBPSO-ELM method,

KMeans-BPSO-ELM method does not consider GCS information

and not reduce redundant genes in each cluster before using

BPSO-ELM to select genes. Each experiment is conducted for 100

times, and the corresponding results of 5-fold CV are listed in

Table 9. With the genes selected by the KMeans-GCSI-MBPSO-

ELM method, ELM obtains the highest 5-fold CV classification

accuracy on all data, whereas it obtains the lowest 5-fold CV

classification accuracy on all data with the genes selected by the

BPSO-ELM. Although all the four methods combine PSO with

ELM to select informative gene subsets, the KMeans-GCSI-

MBPSO-ELM method has the best performance because it uses

the GCS information to reduce the redundancy of genes and select

those gene subsets highly correlated to sample classes.

Then, to compare the proposed method with GS1 [38], GS2

[38], Cho’s [48], F-test [49] and the method in [28], we have

adopted two ways to build a classifier more than ELM using the

top frequently selected genes, one is through support vector

machines (SVMs) [50] and the other is through K-nearest-

neighbor (KNN) search [49]. As in [38], we also chose a linear

kernel in SVM and chose the Euclidean distance in KNN classifier

with K = 5. To be consistent with [38], each experiment is

conducted 100 times on the Leukemia, SRBCT, LUNG and

Colon data, and the mean 5-fold CV classification accuracies for

three numbers of top ranked genes (that is, 30, 60, and 100) on the

Leukemia, SRBCT, LUNG and Colon data are listed in

Tables 10–13. The results of GS1, GS2, Cho’s and F-test are

directly quoted from [38], and thus the results of these four

methods on the Colon data are not provided in Table 13. Since

the number of the reserved genes for further gene selection by

BPSO in the proposed method is less than 100 on the Leukemia

data, the results with 100 genes for six methods are not provided in

Table 10. Similarly, the results with 60 genes on the Leukemia

data for the method in [28] are not provided. In all cases except

the KNN classifier with top 60 frequently selected genes on the

Leukemia data, the KNN and SVM classifiers achieve higher

classification accuracies with the genes selected by the KMeans-

GCSI-MBPSO-ELM method than with the genes selected by

other methods but the method in [28]. Moreover, the standard

deviations in all cases except the method in [28] on the LUNG

data of the KMeans-GCSI-MBPSO-ELM method are always less

than those of other gene selection methods, which shows that the

proposed method is most robust in most cases. Compared to the

proposed method, the KNN and SVM classifiers achieve almost

high classification accuracies on the SRBCT and LUNG data with

the 60 and 100 genes selected by the method in [28], which

indicates the method in [28] requires a comparatively large set

including those predictive genes selected by the proposed method.

Table 14. The LOOCV classification accuracies of five methods on the Brain cancer and Lymphoma data.

Data LOOCV classification accuracy (%) (Gene number)

KMeans-GCSI-MBPSO-ELM Method in [28] MIDClass SGC-t SGC-W

Brain cancer 90.93 (6) 88.38 (5) 83 (239) 80 (1) 77 (1)

Lymphoma 93.79 (8) 91 (6) 69 (3) 76 (1) 71 (1)

doi:10.1371/journal.pone.0097530.t014

Table 15. The LOOCV and 5-fold CV classification accuracies of ELM based on two gene selection methods on the six data.

Data KMeans-GCSI-MBPSO-ELM KMeans+Elbow-GCSI-MBPSO-ELM

Classification accuracy±std Nc Classification accuracy±std Nc

LOOCV 5-fold CV LOOCV 5-fold CV

Leukemia 100.0060.00 100.0060.00 5 100.0060.00 100.0060.00 5

Colon 99.3560.92 97.6161.37 8 99.3560.92 97.6161.37 8

SRBCT 100.0060.00 100.0060.00 8 99.9060.33 99.4560.77 6

LUNG 98.1460.33 97.1060.63 10 97.3360.66 95.6760.74 6

Brain cancer 90.9361.65 88.6362.16 6 90.9361.65 88.6362.16 6

Lymphoma 93.7962.07 86.9762.44 7 93.7962.07 86.9762.44 7

doi:10.1371/journal.pone.0097530.t015
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Finally, to compare the KMeans-GCSI-MBPSO-ELM method

with MIDClass [45], SGC (based on t-test (SGC-t) and based on

WMW (SGC-W)) [44] and the method in [28], we conduct the

experiments on the Brain cancer and Lymphoma data. To be

consistent with [44,45], the experiments are conducted with

standard Leave-One-Out-Cross-Validation (LOOCV). The results

of the KMeans-GCSI-MBPSO-ELM and the method in [28] is

the average of 100 trials, and the results of the MIDClass and SGC

methods are retrieved from [44,45]. From the results shown in

Table 14, it can be found that the KMeans-GCSI-MBPSO-ELM

method outperform the method in [28], MIDClass and SGC

methods.

Discussion on the Selection of the Number of the
Clusters

In the KMeans-GCSI-MBPSO-ELM method, the number of

the clusters of the genes in the first-level initial gene pool (Nc) is

determined by trial and error where the number of the clusters is

determined within the crossvalidation runs on the validation

dataset. However, there are some methods available such as the

Elbow method [51] or Silhouette scores [52] that could be used to

determine the number of the clusters for K-means method. To

show the influence of the selection of the Nc, we use KMeans+
Elbow-GCSI-MBPSO-ELM method to perform gene selection on

six data. The only difference between the KMeans-GCSI-

MBPSO-ELM and the KMeans+Elbow-GCSI-MBPSO-ELM

method is the selection of the Nc. In the KMeans+Elbow-GCSI-

MBPSO-ELM method, the Elbow method [51] is used to

determine the number of the clusters by evaluating the ratio of

the between-group variance to the total variance (also known as an

F-test). The comparison results between the KMeans-GCSI-

MBPSO-ELM and the KMeans+Elbow-GCSI-MBPSO-ELM

methods are provided in Table 15. The results in Table 15 are

the average of 100 trials.

From Table 15, the KMeans-GCSI-MBPSO-ELM and the

KMeans+Elbow-GCSI-MBPSO-ELM methods select the same

number of the clusters on some data including the Leukemia,

Colon, Brain cancer and Lymphoma data, so ELM obtains the

same classification accuracies with the genes selected by these two

methods on these four data. The value of the Nc in the KMeans-

GCSI-MBPSO-ELM method is different from that of the

KMeans+Elbow-GCSI-MBPSO-ELM method on both the

SRBCT and LUNG data, and ELM obtains higher classification

accuracies with the genes selected by the KMeans-GCSI-MBPSO-

ELM method than with the one selected by the KMeans+Elbow-

GCSI-MBPSO-ELM method on both the SRBCT and LUNG

data. In summary, since the selection of the Nc is determined by

the crossvalidation accuracies obtained by ELM on the validation

dataset in the KMeans-GCSI-MBPSO-ELM method, ELM tends

to obtain higher classification accuracies on the full dataset with

the genes selected by the KMeans-GCSI-MBPSO-ELM method

than with the one selected by the KMeans+Elbow-GCSI-

MBPSO-ELM method.

Figure 8 shows the relationship between the number of the

clusters (Nc) and the classification accuracies on the full dataset

obtained by ELM with the genes selected by the KMeans-GCSI-

MBPSO-ELM method on the six data. The result in Figure 8 is

the average of 100 trials. From Figure 8, the KMeans-GCSI-

MBPSO-ELM method is less sensitive to the choice of the Nc on

the Leukemia and SRBCT data than on the other four data. The

best Nc for the KMeans-GCSI-MBPSO-ELM method is 5, 8, 8

and 10 on the Leukemia, Colon, SRBCT and LUNG data,

respectively, which is same as the one determined by trial and

error in the proposed method. The best Nc is 4 and 7 on the Brain

cancer data, and the best one is 6 on the Lymphoma data, while

the Nc is selected as 6 and 7 by trial and error in the KMeans-

GCSI-MBPSO-ELM method on the Brain cancer and Lympho-

ma data, respectively. This difference lies in the fact that the Nc in

the KMeans-GCSI-MBPSO-ELM method is selected by trial and

error within the crossvalidation runs on the validation dataset

while the best Nc obtained from Figure 8 is determined within the

crossvalidation runs on the full dataset.

Conclusions

In this study, the GCS information combined with K-means

clustering method was used to reduce redundant genes, and then a

modified BPSO encoding the GCS information was used to

perform further gene selection. The new method could select the

predictive gene subsets with comparatively high GCS values.

Experiment results also shown that ELM, SVM and KNN

Figure 8. The number of the clusters (Nc) versus the classification accuracy obtained by ELM with the genes selected by the
KMeans-GCSI-MBPSO-ELM method on the six data.
doi:10.1371/journal.pone.0097530.g008
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classifiers obtained high prediction accuracy with the genes

selected by the proposed method. Moreover, the proposed gene

selection method has high reproducibility. Since the proposed

method reduced the redundancy of genes only by removing the

genes with low GCS values, it might filter out a few critical genes

highly related to sample classification in some cases and thus lead

into worse classification accuracy. Future work will include how to

solve this problem in the proposed gene selection method as well as

apply the new method to more complex microarray data.
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