
GABenchToB: A Genome Assembly Benchmark Tuned on
Bacteria and Benchtop Sequencers
Sebastian Jünemann1,2*, Karola Prior1, Andreas Albersmeier3, Stefan Albaum4, Jörn Kalinowski3,

Alexander Goesmann5, Jens Stoye2,6, Dag Harmsen1

1 Department for Periodontology, University of Münster, Münster, Germany, 2 Institute for Bioinformatics, Center for Biotechnology, Bielefeld University, Bielefeld,

Germany, 3 Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Bielefeld, Germany, 4 Bioinformatics Resource Facility, Center for

Biotechnology, Bielefeld University, Bielefeld, Germany, 5 Bioinformatics and Systems Biology, Justus-Liebig-Univeristy Gießen, Gießen, Germany, 6 Genome Informatics

Group, Faculty of Technology, Bielefeld University, Bielefeld, Germany

Abstract

De novo genome assembly is the process of reconstructing a complete genomic sequence from countless small sequencing
reads. Due to the complexity of this task, numerous genome assemblers have been developed to cope with different
requirements and the different kinds of data provided by sequencers within the fast evolving field of next-generation
sequencing technologies. In particular, the recently introduced generation of benchtop sequencers, like Illumina’s MiSeq
and Ion Torrent’s Personal Genome Machine (PGM), popularized the easy, fast, and cheap sequencing of bacterial organisms
to a broad range of academic and clinical institutions. With a strong pragmatic focus, here, we give a novel insight into the
line of assembly evaluation surveys as we benchmark popular de novo genome assemblers based on bacterial data
generated by benchtop sequencers. Therefore, single-library assemblies were generated, assembled, and compared to each
other by metrics describing assembly contiguity and accuracy, and also by practice-oriented criteria as for instance
computing time. In addition, we extensively analyzed the effect of the depth of coverage on the genome assemblies within
reasonable ranges and the k-mer optimization problem of de Bruijn Graph assemblers. Our results show that, although both
MiSeq and PGM allow for good genome assemblies, they require different approaches. They not only pair with different
assembler types, but also affect assemblies differently regarding the depth of coverage where oversampling can become
problematic. Assemblies vary greatly with respect to contiguity and accuracy but also by the requirement on the computing
power. Consequently, no assembler can be rated best for all preconditions. Instead, the given kind of data, the demands on
assembly quality, and the available computing infrastructure determines which assembler suits best. The data sets, scripts
and all additional information needed to replicate our results are freely available at ftp://ftp.cebitec.uni-bielefeld.de/pub/
GABenchToB.

Citation: Jünemann S, Prior K, Albersmeier A, Albaum S, Kalinowski J, et al. (2014) GABenchToB: A Genome Assembly Benchmark Tuned on Bacteria and
Benchtop Sequencers. PLoS ONE 9(9): e107014. doi:10.1371/journal.pone.0107014

Editor: Christophe Antoniewski, CNRS UMR7622 & University Paris 6 Pierre-et-Marie-Curie, France

Received April 30, 2014; Accepted August 7, 2014; Published September 8, 2014

Copyright: � 2014 Jünemann et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. Sequencing reads were deposited at the
European Nucleotide Archive ENA and are available under the project accession number ERP006674. All data including the raw sequencing reads, the sub-
sampled data sets, and all generated assemblies are unrestricted and anonymously available at ftp://ftp.cebitec.uni-bielefeld.de/pub/GABenchToB (for some web
browsers or ftp clients a guest account without password must be chosen explicitly). In addition, all information required to reproduce the results, e.g. the full
execution pipeline including all custom scripts, assembler installation configurations and run parameters, are also available at this site.

Funding: This work was supported in parts by grants of the German Federal Ministry of Education and Research (BMBF) in the framework of the FBI-Zoo project
(FKZ 01KI1012B), of the Technology Platform Bioinformatics (TPB) project (FKZ 031A190) and by the European Commission’s Seventh Framework Programme (EU
PathoNGenTrace project agreement no. 278864). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: jueneman@cebitec.uni-bielefeld.de

Introduction

With the introduction of massively parallel high-throughput

next generation sequencing (NGS) platforms, fast and cost-

effective whole genome shotgun sequencing of the full variety of

organisms has been enabled. The rapid advancement in this field

is best represented by the recently introduced small scaled

benchtop sequencers (BS), e.g., the MiSeq by Illumina (San

Diego, California) and the Ion Torrent PGM by Life Technologies

(Carlsbad, California). Albeit providing a lower throughput than

their conventional non-benchtop counterparts (e.g., Illumina’s

HiSeq and Ion Torrent’s Proton), they still provide sufficient

genomic coverage and sequencing accuracy to be efficiently used

for sequencing bacterial genomes [1–2].

One crucial step in genome based analysis is the attempt to de
novo assemble raw sequencing reads into a bacterial chromosome.

De novo genome assembly is the process of reconstructing a whole

genome sequence from short sequencing reads by finding common

subsequences and assembling overlapping reads to longer contin-

uous sequences, i.e. contigs, under the assumption that such reads

originate from the same genomic location. If special pairs of reads

with a known pairing distance are available, i.e. mate-pair (MP) or

paired-end (PE) reads, this information can be used to arrange

individual contigs in an ordered sequence consisting of contigs and

gaps of known sizes (scaffolds). This is in particular useful to span

PLOS ONE | www.plosone.org 1 September 2014 | Volume 9 | Issue 9 | e107014

ftp://ftp.cebitec.uni-bielefeld.de/pub/GABenchToB
ftp://ftp.cebitec.uni-bielefeld.de/pub/GABenchToB
http://creativecommons.org/licenses/by/4.0/
ftp://ftp.cebitec.uni-bielefeld.de/pub/GABenchToB
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0107014&domain=pdf

gaps related to long repetitive elements which are hard to be

resolved solely by overlapping reads of limited length. In general,

most current assembly algorithms can be assigned to one of two

classes based on their underlying data structure: de Bruijn graph

(DBG) and overlap layout consensus (OLC) assemblers. Both

approaches utilize a graph structure built upon the sequencing

reads and algorithms for graph traversal in order to deduce

overlapping sequences and to generate contigs. Very briefly, OLC

assemblers build a graph by connecting nodes which represent the

sequencing reads by edges representing the specific overlaps. For

the DBG approach reads are initially partitioned into substrings of

the reads of a fixed length (k-mers) and a graph is built by

connecting nodes symbolizing sub-reads that share a specific prefix

and suffix, respectively. See Compeau et al. 2011 [3], Li et al. 2012

[4] and Nagarajan and Pop 2013 [5] for detailed descriptions on

the principles of DBG and OLC assemblers.

The rapid progress in the field of NGS as well as diverse

sequencing procedures and protocols had also impacts on genome

assembly algorithms and assembly software solutions. The number

of sequence assemblers steadily increased in recent years with

currently several dozens of assemblers available (22 genome

assemblers compared in 2008 [6], additional 13 assemblers in

2010 [7], further ten assemblers in 2011 [8]). Although this variety

becomes somewhat more limited as some assemblers require a

particular kind or set of sequencing data as an input, researchers

are still confronted with a wide range of assembler candidates. The

decision which de novo assembler to use is conditional to several

aspects, notably the specification of the applied sequencing

platform and protocol (e.g., single-end versus PE reads), charac-

teristics of the sequencing results (read lengths and error profiles)

and, if available, characteristics of the sequenced genome (e.g.,

number of repetitive genomic elements or the genomic %GC-

content).

Therefore, systematic evaluations of assemblers are necessary to

provide the research community with scientifically sound decision-

making support. In the past, several efforts have been made to

assess genome assembler efficiency on different scales and for

different application scenarios [8–11]. Most prominently, two

comparative studies with recently introduced remakes contributed

greatly to this field, i.e. Assemblathon and Genome Assembly

Gold-Standard Evaluations (GAGE). For the first large scale

assembler competition Assemblathon 1 [12] and its recent

successor Assemblathon 2 [13] assemblies were performed and

submitted by different institutions and thereafter evaluated. In the

first study, 17 participants generated 41 assemblies based on

simulated short Illumina HiSeq reads covering 16 different

genome assemblers. In Assemblathon 2, 21 participants assembled

43 genomes of three vertebrate species sequenced on different

instruments while using eight genome assemblers. In contrast, for

the GAGE [14] and GAGE-B [15] competitions all assemblies

were generated under equal conditions. Whereas GAGE com-

pared eight different genome assemblers using multiple Illumina

libraries of four different pro- and eukaryotic data sets, GAGE-B

concentrated on single library assemblies of nine Illumina

sequenced bacterial strains using also eight different assemblers.

Albeit these studies give a very comprehensive picture of the

efficiency and applicability of state-of-the-art assembler algo-

rithms, several questions remain unanswered. First and foremost,

NGS is evolving fast and consumables, protocols, and technical

specifications of BS differ in comparison to conventional NGS

instruments. For instance, the MiSeq offers an improved read

length of 26300 base pairs (bp) compared to the maximum

26150 bp of the HiSeq system. The Ion Torrent PGM, although

comparable to Roche’s 454 in terms of the error profile, produces

a different read length distribution (current maximum read length

of about 400 bp for the PGM compared to the 1,000 bp at max.

for the 454 GS2FLX+ system). Up to now, only the GAGE-B

evaluation took into account MiSeq data sets while evaluations of

assemblies originating from PGM instruments are missing.

Therefore, methods need to be reconsidered for deciding how to

assemble data originating from BS instruments. Secondly,

bacterial genomes are underrepresented, particularly in the

Assemblathon surveys. Even if bacterial genomes are lightweights

regarding their assembly difficulty compared to e.g. vertebrates,

they nevertheless have different requirements on sequencing

procedures and the assembler algorithms. GAGE-B recently tried

to close this gap, yet for the majority of the used data sets a high

quality genome reference was not available. A third aspect of an

assembler evaluation is more of a practice-oriented nature, e.g. the

run time and memory usage of an assembly and the demands each

assembler has on the compute infrastructure. An assembler

recommendation would have little practical value if best perform-

ing assemblers cannot be operated due to impractical hardware

requirements. However, this aspect was covered insufficiently in

the past. Finally, a comparison study should be transparent in

order to sustain reproducibility. This means that all steps

beginning from the raw sequencing data to the final results should

be sufficiently documented. Especially the Assemblathon compe-

titions could not fully satisfy this requirement owed to the fact that

the assemblies were performed at different institutions and

documented at varying extent.

Here, we present a de novo assembler evaluation with a strong

focus on practical aspects and which addresses the aforementioned

unanswered questions. To this end, the main objectives of this

Genome Assembly Benchmark Tuned On Bacteria and benchtop

sequencers (GABenchToB) are:

N to use real (no synthetic) data originating from benchtop

sequencers,

N to use single libraries only of bacterial genomes with an

available high-quality reference,

N to consider open licensed as well as commercial assemblers,

N to select assemblers covering different assembly strategies,

N to not perform extensive assembly fine tuning but to rest on

default parameters for the different sequencing platforms

where possible and to use unprocessed raw reads,

N to include run time benchmark parameters, and

N to ensure for equal executing conditions by using dedicated

computing hosts and to deposit all information necessary for

reproduction at an open repository.

Results

Evaluation data sets
We have chosen three different bacterial strains for our

assembly evaluation: Escherichia coli O157:H7 Sakai (American

Tissue Culture Collection [ATCC] accession no. BAA-460),

Staphylococcus aureus COL (Network on Antimicrobial Resistance

in Staphylococcus aureus [NARSA] accession no. NRS100), and

Mycobacterium tuberculosis H37Rv (ATCC accession no. 25618).

For all three bacteria full reference sequences are available: NCBI

Reference Sequence (RefSeq) accession no. NC_002695.1,

NC_002128.1 and NC_002127.1 with modifications as described

previously [2] were used as a reference for the E. coli genome and

plasmids; NC_002951.2 and NC_006629.2 for the S. aureus
genome and plasmid, and NC_000962.2 for the M. tuberculosis

GABenchToB

PLOS ONE | www.plosone.org 2 September 2014 | Volume 9 | Issue 9 | e107014

genome, respectively. The genomes cover a GC-content between

33 and 66% and have a genome size between 2.81 and 5.59

megabases (Mb). Samples of the three bacterial strains were

sequenced on BS platforms Ion Torrent PGM (PGM) by Life

Technologies and MiSeq (MIS) by Illumina. Both platforms are

not only represented by all three organisms but also with different

chemistries, i.e. 26150 base pairs (bp) PE and 26250 bp PE

sequencing for the MiSeq as well as 200 bp and 400 bp

sequencing for the PGM, resulting in a total of ten single library

data sets (Table 1). Except for the four E. coli data sets, which

were used and published previously [2], all other libraries were

generated newly for the purpose of this study.

De novo assembler selection
To enable an assembler evaluation we aimed to select a set of de

novo assemblers regarding the following criteria: assemblers which

are (i) representing DBG or OLC approaches; (ii) free-to-use or

open source as well as commercial products; (iii) unbiased in terms

of the supported sequencing technology or the required sequenc-

ing library (processing single and paired-end reads, not relying on

mate-pair libraries and no requirement on multiple libraries); (iv)

up-to-date regarding to the date of their release or the latest

software update; and (v) established and widely used either in

recent de novo sequencing projects or in other assembler

evaluations. Based on these criteria we selected nine representative

assemblers: AbySS [16], Celera [17], CLC Assembly Cell (CLC

bio A/S, Aarhus, Denmark) [18], GS De Novo Assembler (454

Life Sciences, Branford, CT) [19], MIRA [20], SeqMan Ngen

(DNASTAR Inc., WI, USA) [21], SOAPdenovo2 [22], SPAdes

[23], and Velvet [24] (Table 2). Some assemblers we did not

include in our study, but which performed best in either one or

several categories in previous evaluations [11–15] are: Allpaths-

LG [25] because its algorithm requires input data consisting of at

least two different libraries (one PE and one MP), ARACHNE

[26] because it combines only long Sanger with MP reads,

MaSuRCA [27] and SGA [28] because both can not handle

single-end data, and Phusion [29] because it builds solely upon

MP reads.

Assembly evaluation metrics
The evaluation of genome assemblers is a complex problem and

single metric based evaluations using e.g., the N50 or NG50 value

for comparisons examine only specific aspects of an assembly [9].

On the other hand, Haiminen et al. [9] criticize that providing

tables full of different assembly metrics complicate the under-

standing and interpretation of an evaluation effort and limit their

usability in practice. A single metric capturing the trade-off

between contig contiguity and accuracy are feature response

curves (FRC) as proposed by Narzisi and Mishra [11]. However,

one limitation of FRC is their requirement of read based contig

layouts, which are naturally not available for DBG assemblers. To

overcome this limitation, Haiminen et al. [9] introduced

FRCbam, which allows generating a read layout by aligning the

sequencing reads to the assembled contigs by incorporating

paired-end and mate-pair information. However, this is also a

strong limitation for the evaluation of assemblies based on BS data,

as no paired-end libraries are available (PGM) or are of limited use

due to their small insert-size (MiSeq). Another single metric is the

Log Average probability proposed by Ghodsi et al. [30] but it was

designed to measure assemblies without knowledge of the true

reference. Here, we assessed assembly accuracy using the recently

published assembly evaluation software QUAST [31] following in

essence the GAGE-B evaluation [15]. For that matter, assembly

contiguity and accuracy are measured by two metrics introduced

by QUAST and another two metrics are used to measure system

workload: i.e. the NGA50 length, the number of mis-assemblies,

the total run time (wall clock time), and the average system

utilization (see the Methods section for a detailed definition of the

metrics).

It is to be noted that we did not compare assemblies and

platforms separately for contigs and scaffolds in order to preserve a

focused evaluation. From a pragmatic point of view it is

contradictory to use contigs for an evaluation even though

scaffolds of the same assembly are available. Additionally,

scaffolding requires PE or MP reads. As no PE-libraries have

been available for the PGM platform scaffolding of PGM data was

not possible but disabling scaffolding would unnecessarily disfavor

the MiSeq data sets. Therefore, the term contig is used, with

Table 1. Overview of the data sets used in this study and their sequencing yield.

Platform Library Software version Strain Chip/Lane Megabases Coverage

PGM 200 bp& Ion Xpress Plus Fragment** TSS v3.0$ E. coli (Sakai) 16316 chip 733 133

PGM 400 bp Ion Xpress Plus Fragment** TSS v3.4$ E. coli (Sakai) 16318 chip 1,179 214

PGM 200 bp Ion Xpress Plus Fragment TSS v3.0$ S. aureus (COL) 16316 chip 555 197

PGM 400 bp Ion Xpress Plus Fragment TSS v3.2$ S. aureus (COL) 16318 chip 1,420 505

PGM 400 bp Ion Xpress Plus Fragment TSS v3.6$ M. tuberculosis (H37) 1/3 x318 chip 344 77

MiSeq 26150 bp PE+ Nextera* MCS v1.2.3 E. coli (Sakai) J multiplexed lane 565 102

MiSeq 26250 bp PE Nextera* MCS v2.0.5 E. coli (Sakai) J multiplexed lane 776 141

MiSeq 26150 bp PE Nextera MCS v1.2.3 S. aureus (COL) J multiplexed lane 445 158

MiSeq 26250 bp PE Nextera MCS v2.0.5 S. aureus (COL) J multiplexed lane 509 181

MiSeq 26250 bp PE Nextera MCS v2.0.5 M. tuberculosis (H37) 15% multiplexed lane 340 77

&base pairs.
+Paired-end sequencing.
*Same raw data set as in Jünemann et al. [2].
**Same raw data set as in Jünemann et al. [2] but re-analyzed using a different sequencing software version. MiSeq, Illumina MiSeq; PGM, Ion Torrent Personal Genome
Machine. MCS, MiSeq Control Software; TSS, PGM Torrent Suite Software.
$More stringent filter enabled.
doi:10.1371/journal.pone.0107014.t001

GABenchToB

PLOS ONE | www.plosone.org 3 September 2014 | Volume 9 | Issue 9 | e107014

appropriate remarks, ambiguously for both contigs and scaffolds

(see Table 1 for an overview which data sets are based on PE data

and Table 2 which assembler supports scaffolding).

Genome coverage
One major parameter that influences the result of a genome

assembly is the amount of available data to cover the whole

genome, i.e. the depth of coverage. Insufficient coverage may lead

to an inferior assembly result either due to uncovered genomic

regions or due to the impossibility to overrule randomly

distributed sequencing errors. In contrast, each increase of the

target coverage involves a higher load of the sequencing platform

capacity, which comes at the price of an increased sequencing cost

per library as well as of a growing computational effort due to the

increased data volume. Also, non-randomly distributed sequencing

errors (e.g., systematic errors related to homopolymer regions) can

not be ruled out by redundant sequencing and accumulate with

increasing coverage which can trick assemblers to handle them as

true biological events [32]. Therefore, finding a balance between

sequencing effort, cost, assembly turn-around time and assembly

quality is crucial in advance to the sequencing itself. The

observation that an ad infinitum increased depth of coverage

does not necessarily improve assembly results was already reported

by Lin et al. [10]. They found that for seven assemblers operated

on six simulated data sets based on a eukaryotic chromosome the

depth of coverage at which the N50 length plateau was reached

never exceeded values of 50. Consequentially, an upper coverage

threshold of 70x was used to compare the assembly results. Similar

examinations in further studies yielded comparable results [9],

[15], [33]. However, common to all these studies were shortcom-

ings regarding the resolution, the range of assemblers, the amount

of data at which this effect was studied, and most of all only

Illumina reads were used. To address the question to what extent

depth of coverage affects assembly results we have randomly sub-

sampled all PGM and MiSeq data sets into a fix range of subsets.

All subsets were subsequently assembled using three DBG (CLC,

ABYSS, and SPADES) and three OLC assemblers (NEWBLER,

CELRA, and MIRA). This reduced assembler set was chosen to

cope with the high computational effort while maintaining

meaningful results with regard to our assembler selection criteria.

Independent of the data set and the assembler, we found out

that for each assembler and data set a window of reasonable

coverage can be identified which is confined by a lower and upper

bound, which mark the areas of inappropriate coverage

(Figure 1). Given the E. coli Sakai data sets, too low coverages

result in inferior NGA50 lengths progressively improving with

increasing coverage, whereas above the upper bound a further

increase in the depth of coverage does not necessarily effects

superior assemblies. For the PGM platform oversampling, i.e. too

high coverage, can even have a negative impact on the assembly

especially if combined with OLC assemblers. Here, NGA50

lengths are constantly falling after reaching a specific maximum.

This effect is apparent for both the PGM 200 bp and PGM

400 bp data, albeit the global coverage maxima are higher for the

400 bp (between 40- and 100-fold coverage) than for the 200 bp

data sets (between 40- and 50-fold coverage). The MiSeq platform

is not susceptible to oversampling. After reaching sufficient

coverage, NGA50 lengths are mostly saturated and show only

moderate improvement or degradation, marking the upper bound

of appropriate coverage for the MiSeq data sets. These findings

are in good accordance with the other data sets and with other

metrics, as e.g. the number of mis-assemblies (local and non-local

mis-assemblies) or the number of assembly errors (insertions,

deletions and substitutions) and is further supported by another

sub-sampling approach (see Supporting Information Text S1 and

Figures S1–S5). In order to achieve comparability between the

data sets and the assemblers, we have selected two different cutoffs,

reflecting the described upper coverage bounds, at which we sub-

sample our data sets prior to any consecutive analysis. The 40-fold

coverage limit was chosen for the PGM 200 bp data, whereas all

MiSeq and the remaining PGM 400 bp data sets were sub-

sampled at 75-fold depth of coverage. Even though these

thresholds do not always represent individual global optima, they

are not in favor or disfavor of any particular assembler or

sequencing platform and in good accordance with previous

findings [9], [15], [33].

K-mer parametrization of de Bruijn Graph assemblers
Generally stated, DBG assemblers break raw sequencing reads

into a set of k-mers and construct a graph by connecting the suffix

and prefix nodes of overlapping k-mers by edges. By that, the size

of the DBG depends only on the length of the k-mer and not on

the initial read length distribution. Albeit this has a beneficial effect

on the memory footprint and graph traversing time, it comes at

Table 2. De novo assemblers used for comparison.

Assembler (acronym) Software version Type Supports scaffolding License Supported operating systems

AbySS (ABYSS) 1.3.5 DBG$ yes commercial* Windows, Linux

Celera (CELERA) 7.0 OLC& yes open source Windows, Linux

CLC Assembly Cell (CLC) 4.0.10 DBG yes commercial Windows, Linux, Mac OS

GS De Novo Assembler (NEWBLER) 2.8 OLC yes commercial** Linux

MIRA (MIRA) 3.9.9 OLC# no open source Linux

SeqMan Ngen (SEQMAN) 11.0.0.172 OLC no commercial Windows, Linux, Mac OS

SOAPdenovo2 (SOAP2) 2.04 DBG yes open source Linux

SPAdes (SPADES) 2.5.0 DBG yes open source Linux, Mac OS

Velvet (VELVET) 1.2.08 DBG yes open source Linux, Mac OS

$de Bruijn Graph assembler,
&Overlap Layout Consensus assembler,
#MIRA is not a pure OLC assembler but uses also greedy assembler techniques.
*Free for non-commercial and academic applications.
**Freely available upon request.
doi:10.1371/journal.pone.0107014.t002

GABenchToB

PLOS ONE | www.plosone.org 4 September 2014 | Volume 9 | Issue 9 | e107014

the price for another parameter optimization step. Surprisingly, we

are not aware of any study that tried to analyze this optimization

problem extensively, nor were it a topic in previous assembly

evaluation surveys, even though its existence is common knowl-

edge in the assembly community. To meet this shortcoming, we

have examined the effect of the k-mer parameter k on all data sets

and all DBG assemblers for which a k needs to be specified

(ABYSS, SOAP2 and VELVET) by iteratively running these

assemblers at all supported values of k. Two main effects can be

seen. First, the choice of an optimal k is depending on the

underlying data set. Assemblages of different data sets using the

same assembler provided different best performing values of k.

Second, the optimal k also depends on the assembler and strongly

varies even though the same data set was assembled. An

approximation of an optimal k is further complicated by the fact

that already the results based on one assembler and one data set

show more than one local optima along the full spectrum of k.

Hence, best performing k-mer parameters for the consecutive

assemblies were determined by optimizing over the whole possible

k-mer spectrum. For PGM data sets a k-mer optimization is less

reasonable. Even though comparable pattern as for the MiSeq

data were observed, overall unsatisfactory results were obtained

independent of k. For an in depth description on the K-mer

parametrization of de Bruijn Graph assemblers see the Supporting

Information (Text S1 and Figures S6 and S7).

Figure 1. Effect of the depth of coverage on the assembly efficiency measured by NGA50 sizes based on randomly sub-sampled E.
coli Sakai data sets. The coverage is referring to the average depth each genomic position is covered by the sequencing reads and not to the
average depth of coverage the assemblies are actually reaching. The fitted average is, for each data set, the mean of all NGA50 lengths at each
coverage fitted to a nonlinear local regression model. Sub-sampling was done in steps as a percentage of the original full sample size; hence, the x-
axis ranges of the four sub-plots differ. The dotted vertical lines mark the finally used 40-fold (PGM 200 bp) and 75-fold coverage limits (PGM 400 bp,
MiSeq 26150 bp and MiSeq 26250 bp).
doi:10.1371/journal.pone.0107014.g001

GABenchToB

PLOS ONE | www.plosone.org 5 September 2014 | Volume 9 | Issue 9 | e107014

Evaluation of de novo assemblies
Combining ten data sets and nine assemblers we have generated

90 de novo assemblies. For every single assembly, the assembly

effort was measured using QUAST [31]. Results were transformed

into a spread-sheet readable tabulator separated file format and

stored in addition to the complete assembly output, log files, and

run time benchmarking results. In Figure 2 we present the results

of each assembly using the following two key metrics: the NGA50

length and the number of mis-assemblies. As mentioned before,

these figures show either scaffolds or contigs according to the data,

i.e. scaffolds for all MiSeq assemblies except for MIRA and

SEQMAN and contigs for all others including the PGM

assemblies. Similarly, Figure 3 shows the central aspect of the

running time benchmark, i.e. the wall clock time and the average

system utilization. Details about specific assembly parameters and

the full execution pipeline are given in the Supporting Information

(Text S1) or can be looked up at the following project site: ftp://

ftp.cebitec.uni-bielefeld.de/pub/GABenchToB.

At this repository, also the 90 assembly results together with all

computed assembly metrics can be accessed. In addition to this

core set, each of the more than two thousand assemblies used for

the coverage and k-mer parameter optimization are deposited

here, with the limitation that not for all of those assembly and run

time metrics are available.

Discussion

One of our main goals was to provide the research community

with a practice-oriented de novo assembly evaluation of bacterial

genomes sequenced by benchtop instruments. In this spirit, our

study is intended to be more than a pure assembler comparison

following the question which assembler performs best. Also, it is

not a sequencing platform comparison trying to answer which

platform allows for the best assemblies. Instead, given a diverse set

of sequencing data, we identified those assemblers, which are best

suited to handle individually different data sets and meet specific

requirements such as the least amount of mis-assemblies or the

fastest compute time.

Consequently, given the assembly results in Figure 2 and

Figure 3, none of the assemblers emerges as the overall winner.

The individual assembler performance as given by the NGA50

length strongly depends on the nature of the data (Figure 2A).

For MiSeq reads the assembler selection is less restricted than it is

for PGM reads. Both, DBG and OLC assemblers are generally

applicable on the MiSeq data sets. The E. coli MiSeq 26150 bp

and 26250 bp assemblies, for example, yield NGA50 values of the

same magnitude (about 155 kb) for both approaches. The highest

MiSeq 26150 bp S. aureus NGA50 lengths originate from DBG

assemblers, whereas OLC assemblers performed better on the

MiSeq 26250 bp S. aureus and M. tuberculosis data. In contrast,

assembled PGM data yielded better results more often when using

OLC than DBG assemblers. Comparing the sum of all NGA50

lengths of the DBG assembled PGM 200 bp and 400 bp data sets

with those using OLC, a more than 2-fold increase can be

observed (719 megabases (Mb) compared to 1518 Mb). The only

exception to this is the DBG SPADES assembler, which achieves

NGA50 lengths on a par with the OLC assemblers. Omitting

SPADES from this comparison, the proportion changes from a 2-

fold increase to an over 6-fold increase (220 Mb compared to

1518 Mb), clearly showing the difficulties DBG assemblers have

while dealing with PGM data. Considering the NGA50 length, we

want to highlight the DBG assembler SPADES and the OLC

assemblers NEWBLER and MIRA, as they repeatedly perform

above average in their category and are more robust with respect

to the kind of sequencing data.

Laying focus on the number of mis-assemblies, a different

picture arises (Figure 2B). The NGA50 is the NG50 length after

contigs have been split at each observed mis-assembly position.

Resting on this relation, the naı̈ve assumption would be that lots of

mis-assemblies are directly reflected by a low NGA50 and vice

versa. However, here a high and low mis-assembly rates could be

observed independent of the NGA50 length for both assembler

approaches across all data sets. The highest rate of mis-assemblies

originates from an assembly that can be, measured against the

NGA50, declared as failed (S. aureus PGM200 bp SEQMAN

with NGA50 of 2292 bp). In contrast, some assemblies with also a

very low NGA50 show very few mis-assemblies (e.g., all PGM

ABYSS assemblies). However, discussing rates of mis-assemblies

for assemblies with extremely low NGA50 values has little

meaning. Assemblies with a reasonable NGA50 length again

show both, i.e. a high (e.g., the SOAP2 and VELVET MiSeq E.
coli and M. tuberculosis assemblies) and low (e.g., the SPADES

MiSeq E. coli assemblies) rate of mis-assemblies. Of those, three

assemblers show the most consistent pattern of mis-assemblies.

While SPADES produced the least mis-assemblies in total across

all data sets and sequencing platforms, NEWBLER produced high

rates of mis-assemblies only when dealing with MiSeq data, and

MIRA had one of the most miss-assembled contigs across all

platforms. For all other assemblers, the number of mis-assemblies

depended on the processed data and varies from very high to very

low. Moreover, the NGA50 metric shows no significant correlation

with the mis-assembly rates (data not shown). This implies, that a

low NGA50 value is not necessarily equivalent to many mis-

assemblies. Instead, it simply indicates a comparably inferior

assembly, either due to many mis-assemblies or low assembly

contiguity. These findings are also consistent with other metrics,

e.g. the amount of fully covered genes and the number of assembly

errors (insertions, deletions, and substitutions; Figure S8).

Genomes of extreme GC-rich or GC-poor bacteria are known

to be challenging for genome assemblers as amplification biases of

GC-poor or GC-rich regions can result in uneven genome

coverage. Here, a weak relationship between the genomic GC-

content and assembly contiguity could be found. Assemblages of

the GC-poor S. aureus genome (33% GC) tend to reach higher

NGA50 lengths than the E. coli (51% GC) and the GC-rich M.
tuberculosis (66% GC) genome, for which on average the lowest

NGA50 lengths were achieved. Likewise, the S. aureus assemblies

exhibited fewer mis-assemblies than those of the other two

genomes. However, the relatively inferior M. tuberculosis assem-

blies cannot be entirely explained by increased mis-assemblies, as

they are comparable to the ones based on the E. coli genome.

Instead, this discrepancy might be explained by the finding that

extreme GC-rich regions are especially difficult to amplify [34],

possibly lowering the assembly completeness and by that the

contiguity. Despite these findings, a general conclusion on the

effect of the GC-content on genome assemblies cannot be drawn,

as this would require a broader range of differing genomes to be

analyzed. In addition, the differences shown here are not clear

enough and for all genomes a successful assembly could be

generated. This is also supported by a previous study, which

reports that the degree of a GC bias, the factor most influencing

the assembly contiguity, correlates neither with the mean GC

content nor with the standard deviation of GC content of a

genome [35]. In the same study it could also be shown that a

sufficient depth of coverage can compensate for a GC bias, which

may explain the comparatively low differences observed here with

regard to the sub-sampling optimized approach used in our study.

GABenchToB

PLOS ONE | www.plosone.org 6 September 2014 | Volume 9 | Issue 9 | e107014

ftp://ftp.cebitec.uni-bielefeld.de/pub/GABenchToB
ftp://ftp.cebitec.uni-bielefeld.de/pub/GABenchToB

One neglected aspect in preceding assembler evaluation studies

has been the computational cost of an assembly. By measuring the

wall clock time of all assembly processes we observed a great

discrepancy between DBG and OLC assemblers (Figure 3A).

With the exception of SPADES, all DBG assemblers finished

within less than 20 minutes, the majority even within less than five

minutes, whereas OLC assemblers took from eight minutes up to

20 hours. NEWBLER is to be highlighted positively by showing

consistently the shortest run time of the OLC assemblers.

CELERA and MIRA, on the contrary, repeatedly exceeded run

times of three hours. However, for all DBG assemblers only the

run time of a single assembly effort is shown, i.e. of the single

assembly call resulting in the highest N50 length (Table S1). So

the total wall clock time for an entire assembly project needs to be

adjusted with respect to the chosen k-mer optimization strategy

and may markedly reduce the outstanding performance of the

DBG assemblers. Exceptions to this are the assemblers CLC and

SPADES as both do not rely on an external k-mer optimization

step. Thus, their run times are equivalent to the overall needed run

times. In this sense, CLC outperforms all other assemblers many

times over. SPADES prolonged execution times, in contrast, can

be explained by its operating procedures, as in the case of MiSeq

PE data six and for PGM data five consecutive assemblies were

performed internally.

A good indicator showing to which extent an assembler benefits

from a parallelized computing environment is the average CPU

utilization (Figure 3B). Surprisingly, only ABYSS is nearly full

parallelized. All other assemblers have an average CPU utilization

Figure 2. Comparison between the de novo genome assemblies based on the NGA50 length and the number of mis-assemblies. The
NGA50 length (A, in kilobases) and the number of mis-assemblies (B, combining local and non-local mis-assemblies) on the y-axis are either contig or
scaffold based, respectively. Scaffolds for MiSeq 26150 bp and MiSeq 26250 bp assemblies obtained by ABYSS, CELERA, CLC, NEWBLER, SOAP2,
SPADES, and VELVET; contigs for MiSeq assemblies obtained by MIRA and SEQMAN as well as for all PGM assemblies. The second plot (B) is further
divided into two plot rows where the upper row has an altered y-axis scale only showing high rates of mis-assemblies ranging from two hundred up
to thousand.
doi:10.1371/journal.pone.0107014.g002

GABenchToB

PLOS ONE | www.plosone.org 7 September 2014 | Volume 9 | Issue 9 | e107014

below 50%, which means that of the 48 available and requested

CPUs, on average, only half of them were used during the full

assembly procedure. Next to ABYSS, CLC and SOAP2 show the

second and third best CPU utilizations, respectively. Also CLC

and SOAP2 have a higher utilization if operating on MiSeq data

than on PGM, showing that they are obviously optimized for

Illumina data. All other assemblers have a total CPU utilization

below 20%. This implies that the running time of those assemblers

cannot be increased considerably by assigning more CPU cores.

However, a low CPU utilization does not necessarily result in long

running times, as demonstrated by VELVET, which always

finished in less than four minutes but never exceeded a

comparably low workload of 13.3%. One aspect negatively

influencing the CPU utilization are input and output (I/O)

operations, causing processes to enter a waiting state. Here, most

critical are I/O operations caused by swapping when system

memory is insufficient. The memory usage of our assemblies was

very different but system memory was always sufficient and no

assembly process was waiting because of swapping (Figure S9).

However, some assemblers (e.g., MIRA, SPADES and CELERA)

utilize or demand considerably more memory than others, which

should be considered before an assembly attempt in order to

circumvent swapping. One possible solution, besides the extension

of the system memory, is to make use of specific memory

constraining parameters that memory intensive assemblers usually

offer. With regard to the average system utilization, we want to

clarify that the assemblers are different in terms of the

implemented parallelization and the internal assembly pipeline.

Figure 3. Computing time of de novo genome assemblies. Based on the elapsed wall clock time (A, in hours) and the total CPU utilization (B, in
percent and relative to the 48 available CPU cores of the executing compute host). With regard to the CPU utilization, all assemblies have been
instructed via proper parameterization to make maximal use of the 48 available CPU cores. The only exceptions to this were SEQMAN, which does not
support parallelization, and CELERA, which due to configuration constraints has altering concurrency and multi-threading parameters for different
internal processes. For DBG assemblers only run time and CPU utilization of the single assemblies with the best performing k-mer parameter are
shown and not the summation of the full k-mer optimization procedure (for SPADES and CLC this is equivalent).
doi:10.1371/journal.pone.0107014.g003

GABenchToB

PLOS ONE | www.plosone.org 8 September 2014 | Volume 9 | Issue 9 | e107014

Thus, a low CPU utilization does not mean that the entire

assembly is inadequately parallelized, but that, for instance, parts

of the assembly are constrained to system I/O (e.g., because of

data pre- and post-processing), resulting in wait times of the

depending processes. Therefore, this metric should not be

considered as a fixed upper limit of the parallelization capabilities

of each assembler. Instead, it reflects to what extent an assembler

scales, in terms of run time, with the provided computing power,

and helps to find a suitable combination between assemblers and

the available hardware infrastructure.

One central aspect of this study was to compare the assemblies

from a practical point of view. By that, we omitted additional data

processing steps like, for instance, error correction methods.

However, to respond to the question whether upstream error

correction is reasonable and which assembler would profit from

such methods we have exemplary used two different read

correction methods on our data sets (BayesHammer from SPAdes

[23] for MiSeq data and Coral version 1.4 [36] for PGM data) and

compared the consecutive assemblies with those using uncorrected

data (Figure S10). In essence, the observed differences are

marginal. Even for those assemblers that do not include an error

correcting pre-processing step (e.g., SOAP2, VELVET and

NEWBLER) the beneficial effects are, albeit partially present,

not altering their individual performance.

In this evaluation, we did not perform extensive parameter

optimization, i.e. whenever possible we used default parameters.

For mandatory or data specific parameters without default values

we have chosen appropriate values (details given in Text S1). The

only exception to this was the k-mer parameter optimization. We

have shown that an optimal k-mer highly depends on both the

assembler as well as the given data set. This implies that unless the

assembler itself offers a suitable k-mer parameter estimation (as

e.g., CLC) or default values (as e.g., SPADES), currently the best

solution is to pursue a trial-and-error approach. Of course, this

problem is not described for the first time and algorithms have

been developed to predict optimal k-mer parameters a priori.
KmerGenie, for instance, uses a heuristic to generate k-mer

abundance histograms in order to estimate the best possible k-mer

value [37]. However, for our data sets the optimal k-mer as

predicted by KmerGenie did not matched the k-mer length at

which the best assembly was achieved (data not shown). This may

be caused by parameter estimations inferred only from the input

data, which cannot take into account assembler peculiarities. Still,

k-mer estimation may prove useful for other data sets and,

especially due to quick heuristics, it is to be preferred over

randomly chosen or alleged established k-mer lengths. Parameters

proven successful in the past may not be adequate for new

assembly problems. The downsides of the trial-and-error ap-

proach, in turn, are drastically increased running times countering

the speed advantage of DBG assemblers. Besides the k-mer

parameter, testing and comparing various parameter settings for

each assembler is possible beyond the scope of every evaluation

effort simply due to the high computational cost. Moreover, results

of comparisons in which assemblies were highly optimized are

hard to transfer to other application scenarios, weakening the

overall conclusions of such a comparison. Therefore, good default

parameters and standardized recipes are needed to support

unbiased and useful comparisons. Every evaluation is affected by

the applied evaluation procedure and the used metrics. Therefore,

the results of this study cannot be interpreted as final principles to

rule in or out individual assemblers, but to give a general advice

which assemblers to shortlist in consideration of an upcoming

bacterial genome assembly. Nevertheless, given the scope of our

evaluation we want to highlight some promising combinations

between assemblers and bacterial BS data. The most obvious

recommendation is to pair different BS platforms with specific

assembler approaches, i.e. PGM data is better combined with

OLC assemblers whereas MiSeq data shows stronger preferences

towards DBG assemblers. The only exception here is the

CELERA assembler, which consistently performs better on MiSeq

than on PGM data. For MiSeq data, promising DBG assemblers

to begin with are SPADES and CLC. Both assemblers offer good

performing default k-mer parameters, are generally easy to

execute and show one of the highest NGA50 and lowest mis-

assembly rates among the DBG assemblers. In addition, SPADES

also performed best on PGM data among DBG assemblers. The

CLC assembler shows the least memory footprint and the notably

fastest running time of all assemblers, which qualifies it for quick

and reasonable draft assemblies. Given MiSeq data and a highly

parallelized computing infrastructure, the ABYSS assembler might

also be an option, as it generates good assembly results while

offering the best CPU utilization. For PGM data, researchers

should consider to sub-sample their data to a coverage between 40

and 80-fold prior to an assembly in order to prevent negative

oversampling effects. The two OLC assemblers that are a good

entry point for PGM data sets are MIRA and NEWBLER. MIRA

is able to achieve very high NGA50 values particular at higher

coverages but comes at the price of more mis-assemblies and a

longer running time. NEWBLER, in contrast, convinces with the

shortest running time of all OLC assemblers and a low rate of mis-

assemblies. Finally, it is to be noted that there is still a great

discrepancy between researchers who are developing or evaluating

genome assemblers and researchers who simply want to use them.

The former ones take great care to avoid exaggerated generaliza-

tions, like to conclude that a particular assembler provides the best

assemblies. The latter ones, on the other hand, are confronted with

concrete application scenarios and therefore require decision-

making support without needing to perform extensive evaluations

personally. Therefore, evaluations should consider realistic assem-

bly scenarios and include assembly metrics that summarize several

assembly features into easy to communicate metrics.

Methods

Library preparation and sequencing
Growing and DNA extraction of the entero-haemorrhagic

Escherichia coli (EHEC) O157:H7 Sakai Japanese 1996 outbreak

strain was done as previously described [38]. For Staphylococcus
aureus COL, an early methicillin-resistant strain originally isolated

in a hospital in Colindale (United Kingdom) [39], growing

conditions were the same as for E. coli Sakai. For effective cell

lysis of S. aureus an additional step to the before mentioned DNA

isolation protocol was essential. It was performed with Lysostaphin

(Sigma-Aldrich, Taufkirchen, Germany, final concentration100 mg/

ml), for 30 min at 37uC. Isolated DNA from Mycobacterium
tuberculosis H37Rv was kindly provided by the group of Stefan

Niemann (Forschungszentrum Borstel, Borstel, Germany). Growing

and isolation of M. tuberculosis high molecular genomic DNA was

performed as described earlier [40].

As described previously, sequencing of the S. aureus and M.
tuberculosis strains was carried out for both the MiSeq 26150 bp

and 26250 bp sequencing runs, respectively [2]. A minor

modification was applied to the M. tuberculosis library, which was

pooled after gel-extraction with other lane samples according to

their molarity such that a 15 percent ratio was reached. Sequencing

on the Ion Torrent PGM was also done as described before for the

E. coli 200 bp and 400 bp sequencing libraries [2]. The two PGM

E. coli 200 bp and 400 bp data sets were re-analyzed using the

GABenchToB

PLOS ONE | www.plosone.org 9 September 2014 | Volume 9 | Issue 9 | e107014

Torrent Sequencing Software (TSS) v3.0 and v3.4, respectively.

PGM sequencing of S. aureus COL was performed in the same

manner as it was described for E. coli Sakai with one minor

modification, i.e. for the 400 bp sequencing run the TSS version

was v3.2. Sequencing of M. tuberculosis was performed with the Ion

PGM Template OT2 Kit (Life Technologies, Darmstadt, Germany)

and the Ion PGM Sequencing 400 kit (Life Technologies) according

to the manufacturer’s instructions. Library preparation and quality

controls were performed just as described for the E. coli Sakai

400 bp library. The TSS version was v3.6 for M. tuberculosis
sequencing. Independent of the applied TSS version, the software

parameters and quality filter criteria remained the same, i.e. the

more stringent filter was enabled and the base recalibration was

disabled.

De novo genome assemblies
According to the findings on the genome coverage analysis, all

data sets were sub-sampled prior to the de novo genome assembly.

For the PGM 200 bp data a 40-fold coverage threshold was

chosen, whereas PGM 400 bp and all MiSeq data were sub-

sampled to 75-fold coverage. For each MiSeq data set insert size

distribution was determined by mapping the PE reads to their

corresponding reference using the aln and sampe module of BWA

v0.5.10 [41]. Thereafter, the low and high boundaries of the insert

sizes, as well as mean and standard deviation were calculated using

the same method as implemented in BWA (Table S2). MiSeq

FASTQ files were additionally edited to cope with special file

format prerequisites of individual assemblers having different

standards for the pairing information of PE reads.

All assemblies were independently computed on ten identical

compute hosts, i.e. A+ Server 2024G-TRF (Super Micro

Computer Inc., San Jones, CA, USA) equipped with four AMD

Opteron 6168 processors, each with 1.90 GHz and 12 cores and

in total 128 GB system memory. These machines were chosen as

they provide reasonable computing power and a high degree of

parallelization for asset costs below 10,000 Euros. Custom shell

scripts were used to submit assembly bulk jobs to a Sun Grid

Engine instance and the scheduler was utilized to consecutively

distribute individual jobs among the ten compute hosts. Custom

wrapper scripts for each assembler were used to prepare and

initiate the actual assembly. To prevent network file system

influences on the benchmarking results all necessary input data

was copied to local storage prior to the assemblies. To guarantee

that per compute host only one individual assembly job was

executed at a time, each job was configured in such a way that it

consumed the entire system resources regardless of the actual

workload.

For recording run time statistics, each plain assembly process

was wrapped once again using the ‘/usr/bin/time -v ’ system call.

Additionally, at an interval of five seconds a ‘ps -o ’‘%cpu =
%mem = cputime = etime = nlwp = size = vsize = sz = rss =
lstart = psr = comm = ’ system call was invoked to monitor

detailed processor and memory utilization of all assembly threads

while the programs were executed. Details about used assembler

versions are given in Table 2. After the assemblies were finished,

QUAST v2.1 [31] was executed on the resulting contig or scaffold

FASTA files with the minimum contig length filter ‘–min-contig’

set to 200 and the parameters ‘–gage –genes –gene-finding ’

enabled. QUAST utilizes MUMmer [42] to align contigs to a

given reference and infer various assembly metrics. Regarding the

measurement of the assembly accuracy, our evaluation effort

follows in essence the GAGE-B evaluation [15]. In the following,

the metrics used for our main comparison are explained briefly:

N NGA50 describes the length of the last contig that is taken

from all assembled contigs sorted in descending order by

contig length in such a way that the summarized length of this

and all previously selected contigs have at least 50% of the size

of the corresponding genome. Contigs were split at all mis-

assembly positions prior to this calculation.

N The number of mis-assemblies, i.e. the combined number of

relocations, translocations and inversions independent of the

affected genomic area.

N Wall clock time refers to the time a plain assembly process

takes in total from the very beginning to the very end. This

measurement does not include any pre- or post-processing

procedure and is not corrected for the system load, degree of

parallelization or any software dependent idle time.

N The average system utilization U describes the degree of

parallelization of an assembly process in percent and is defined

as follows:

U~
tuztsys

twc|ncpu

� �
|100

Where tu refers to the accumulated user time for which all

CPUs were busy executing the assembly, tsys to the amount of time

the CPUs spent on system calls on behalf of the assembly process,

twc to the wall clock time of the entire assembly and ncpu to the

number of available CPUs.

An average system load of 100% corresponds to 100% work

load of all 48 available CPU cores for the entire execution,

illustrating maximum possible parallelization of all parts of an

assembly. In contrast, a system load of 2.08% means that for the

entire execution only one of the 48 available cores was occupied,

which is synonymous to no parallelization. Finally, assembly and

run time metrics were collected and processed using custom Perl

and shell scripts. Plots were generated using the statistical software

suite R v 2.9.10 [43] and the lattice R-package [44]. For an in-

detail description of the complete bioinformatic analysis it is

referred to the Supporting Information (Text S1).

Supporting Information

Figure S1 Effect of the depth of coverage on NGA50
lengths using random sub-sampling. Shown are in rows the

results of randomly sub-sampled S. aureus, E. coli, and M.
tuberculosis data sets, respectively. The coverage is referring to the

average depth each genomic position is covered by the sequencing

reads and not on the average depth of coverage the assemblies are

actually reaching. The dotted vertical lines mark the finally used

40-fold (PGM 200 bp) and 75-fold coverage limits (PGM 400 bp,

MiSeq 26150 bp and MiSeq 26250 bp).

(PDF)

Figure S2 Effect of the depth of coverage on mis-
assemblies using random sub-sampling. Shown are in

rows the results of randomly sub-sampled S. aureus, E. coli, and

M. tuberculosis data sets, respectively. Mis-assembly combines

local and non-local mis-assemblies. The coverage is referring to

the average depth each genomic position is covered by the

sequencing reads and not on the average depth of coverage the

assemblies are actually reaching. The dotted vertical lines mark

the finally used 40-fold (PGM 200 bp) and 75-fold coverage limits

(PGM 400 bp, MiSeq 26150 bp and MiSeq 26250 bp).

(PDF)

GABenchToB

PLOS ONE | www.plosone.org 10 September 2014 | Volume 9 | Issue 9 | e107014

Figure S3 Effect of the depth of coverage on assembly
errors using random sub-sampling. Shown are in rows the

results of randomly sub-sampled S. aureus, E. coli, and M.
tuberculosis data sets, respectively. Assembly error is summarizing

substitutions, insertions, and deletions errors. The coverage is

referring to the average depth each genomic position is covered by

the sequencing reads and not on the average depth of coverage the

assemblies are actually reaching. The dotted vertical lines mark

the finally used 40-fold (PGM 200 bp) and 75-fold coverage limits

(PGM 400 bp, MiSeq 26150 bp and MiSeq 26250 bp).

(PDF)

Figure S4 Effect of the depth of coverage on NGA50
lengths using progressive sub-sampling. Shown are in rows

the results of progressively sub-sampled E. coli and S. aureus data

sets, respectively. The coverage is referring to the average depth

each genomic position is covered by the sequencing reads and not

on the average depth of coverage the assemblies are actually

reaching. The dotted vertical lines mark the finally used 40-fold

(PGM 200 bp) and 75-fold coverage limits (PGM 400 bp, MiSeq

26150 bp and MiSeq 26250 bp).

(PDF)

Figure S5 Effect of the depth of coverage on mis-
assemblies using progressive sub-sampling. Shown are

in rows the results of progressively sub-sampled E. coli and S.
aureus data sets, respectively. Mis-assembly combines local and

non-local mis-assemblies. The coverage is referring to the average

depth each genomic position is covered by the sequencing reads

and not on the average depth of coverage the assemblies are

actually reaching. The dotted vertical lines mark the finally used

40-fold (PGM 200 bp) and 75-fold coverage limits (PGM 400 bp,

MiSeq 26150 bp and MiSeq 26250 bp).

(PDF)

Figure S6 Effect of the k-mer size parameter on the
NGA50 length. Shown are values for the three de Bruijn Graph

assembler ABYSS (A, D), SOAP2 (B, E), and VELVET (C, F). On

the left side (A, B, C) using MiSeq 26150 bp (dotted lines) and

MiSeq 26250 bp (solid lines); on the right side (D, E, F) using

PGM 200 bp (dotted lines) and PGM 400 bp (solid lines) data sets

of the E. coli (red), M. tuberculosis (blue), and S. aureus (green)

genomes, respectively. For each line, the highest reached NGA50

length is indicated by a vertical arrow and the corresponding x-

and y-values are given in the upper left legend.

(PDF)

Figure S7 Effect of the k-mer size parameter on the
NGA50 length of the SPADES assembler. The assemblies

were generated in two ways: using an increasing set of k-mer

parameters where for each assembly process the NGA50 length of

the last and final k-mer cycle is drawn (A); using the default set of

k-mer parameters where the NGA50 length of all intermediate

and the final k-mer cycle is drawn (B). MiSeq 26150 bp (dark-

red), MiSeq 26250 bp (red), PGM 200 bp (green), and PGM

400 bp (dark-green) data sets of the E. coli (solid lines), M.
tuberculosis (dot-dashed lines), and S. aureus (dashed lines)

genomes are used, respectively. For each line, the highest reached

NGA50 length is indicated by a vertical arrow and the

corresponding x- and y-values are given in the upper left legend.

(PDF)

Figure S8 Gene coverage and assembly error rates of de
novo genome assemblies. Based on the percentage of full

covered genes (A) and the number of assembly errors (B,

combining substitutions, insertions, and deletions). Full covered

genes are completely covered positions in the reference genome

where a gene annotation was provided (based on all chromosomal

and plasmid genes). The numbers of assembly errors are either

contig or scaffold based, respectively. Scaffolds for MiSeq

26150 bp and MiSeq 26250 bp assemblies obtained by ABYSS,

CELERA, CLC, NEWBLER, SOAP2, SPADES, and VELVET;

contigs for MiSeq assemblies obtained by MIRA and SEQMAN

as well as for all PGM assemblies.

(PDF)

Figure S9 Memory usage of de novo genome assem-
blies. Shown is the maximum non-swapped physical memory, i.e.

the peak resident size that an assembly process has used over the

entire time. For assemblies running several processes or threads in

parallel this value is calculated from the maximum summation of

all concurrent processes at a specific time point. For the DBG

assemblers ABYSS, SOAP2, and VELVET only the peak resident

size of the best resulting k-mer parameter are shown and not the

summation of all assemblies using different k-mer parameters.

(PDF)

Figure S10 Effect of upstream error correction on de
novo genome assemblies. Compared are NGA50 lengths (in

kilobase pairs) of assemblies without an upstream read based error

correction (left side) with those based on error corrected reads

(using BayesHammer on MiSeq data and Coral on PGM data;

right side). The NGA50 length is either contig or scaffold based,

respectively. Scaffolds for MiSeq 26150 bp and MiSeq 26250 bp

assemblies obtained by ABYSS, CELERA, CLC, NEWBLER,

SOAP2, SPADES, and VELVET; contigs for MiSeq assemblies

obtained by MIRA and all PGM assemblies.

(PDF)

Table S1 Determined optimal k-mer sizes for DBG
assemblies with mandatory k-mer parameterization.

(DOC)

Table S2 Calculated insert-sizes of MiSeq sequencing
libraries.

(DOC)

Text S1 Supporting Information to GABenchToB: A
Genome Assembly Benchmark Tuned on Bacteria and
Benchtop Sequencers.

(PDF)

Acknowledgments

The authors gratefully thank the system administrators of the Bioinfor-

matics Resource Facility at the CeBiTec for general technical support and

in particular for providing the dedicated computing infrastructure.

Furthermore, the authors thank DNASTAR Inc. (Madison, Wisconsin,

USA), CLC bio A/S (Katrinebjerg, Aarhus, Denmark) and 454 Life

Sciences (Branford, CT, USA) for providing extended trail or free licenses

of their assembly software products.

Author Contributions

Conceived and designed the experiments: SJ DH. Performed the

experiments: SJ KP AA. Analyzed the data: SJ SA AG JS. Contributed

reagents/materials/analysis tools: SJ JK DH. Wrote the paper: SJ KP DH.

GABenchToB

PLOS ONE | www.plosone.org 11 September 2014 | Volume 9 | Issue 9 | e107014

References

1. Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, et al. (2012)
Performance comparison of benchtop high-throughput sequencing platforms.

Nat Biotechnol 30: 434–439.

2. Jünemann S, Sedlazeck FJ, Prior K, Albersmeier A, John U, et al. (2013)

Updating benchtop sequencing performance comparison. Nat Biotechnol 31:
294–296.

3. Compeau PE, Pevzner PA, Tesler G (2011) How to apply de Bruijn graphs to
genome assembly. Nature biotechnology 29: 987–991.

4. Li Z, Chen Y, Mu D, Yuan J, Shi Y, et al. (2012) Comparison of the two major
classes of assembly algorithms: overlap-layout-consensus and de-bruijn-graph.

Brief Funct Genomics 11: 25–37.

5. Nagarajan N, Pop M (2013) Sequence assembly demystified. Nat Rev Genet 14:

157–167.

6. Scheibye-Alsing K, Hoffmann S, Frankel A, Jensen P, Stadler PF, et al. (2009)

Sequence assembly Computational biology and chemistry 33: 121–136.

7. Paszkiewicz K, Studholme DJ (2010) De novo assembly of short sequence reads.

Brief Bioinform 11: 457–472.

8. Zhang W, Chen J, Yang Y, Tang Y, Shang J, et al. (2011) A practical

comparison of de novo genome assembly software tools for next-generation

sequencing technologies. PLoS One 6: e17915.

9. Haiminen N, Kuhn DN, Parida L, Rigoutsos I (2011) Evaluation of methods for

de novo genome assembly from high-throughput sequencing reads reveals
dependencies that affect the quality of the results. PLoS One 6: e24182.

10. Lin Y, Li J, Shen H, Zhang L, Papasian CJ, et al. (2011) Comparative studies of
de novo assembly tools for next-generation sequencing technologies. Bioinfor-

matics 27: 2031–2037.

11. Narzisi G, Mishra B (2011) Comparing de novo genome assembly: the long and

short of it. PLoS One 6: e19175.

12. Earl D, Bradnam K, St John J, Darling A, Lin D, et al. (2011) Assemblathon 1: a

competitive assessment of de novo short read assembly methods. Genome Res
21: 2224–2241.

13. Bradnam KR, Fass JN, Alexandrov A, Baranay P, Bechner M, et al. (2013)
Assemblathon 2: evaluating de novo methods of genome assembly in three

vertebrate species. Gigascience 2: 10.

14. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T, et al. (2012) GAGE: A

critical evaluation of genome assemblies and assembly algorithms. Genome Res

22: 557–567.

15. Magoc T, Pabinger S, Canzar S, Liu X, Su Q, et al. (2013) GAGE-B: an

evaluation of genome assemblers for bacterial organisms. Bioinformatics 29:
1718–1725.

16. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, et al. (2009) ABySS:
a parallel assembler for short read sequence data. Genome Res 19: 1117–1123.

17. Miller JR, Delcher AL, Koren S, Venter E, Walenz BP, et al. (2008) Aggressive
assembly of pyrosequencing reads with mates. Bioinformatics 24: 2818–2824.

18. CLC bio (2014) CLC Assembly Cell. Available: http://clcbio.com. Accessed 23
April 2014.

19. Life Sciences (2014) GS De Novo Assembler. Available: http://www.454.com/
products/analysis-software/. Accessed 2014 Apr 23.

20. Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Müller WEG, et al. (2004)
Using the miraEST assembler for reliable and automated mRNA transcript

assembly and SNP detection in sequenced ESTs. Genome Res 14: 1147–1159.

21. DNASTAR (2014) SeqMan Ngen. Available: http://www.dnastar.com/t-

nextgen-seqman-ngen.aspx. Accessed 2014 Apr 23.

22. Luo R, Liu B, Xie Y, Li Z, Huang W, et al. (2012) SOAPdenovo2: an

empirically improved memory-efficient short-read de novo assembler. Giga-
science 1: 18.

23. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, et al. (2012)
SPAdes: a new genome assembly algorithm and its applications to single-cell

sequencing. J Comput Biol 19: 455–477.

24. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res 18: 821–829.

25. Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, et al. (2011) High-
quality draft assemblies of mammalian genomes from massively parallel

sequence data. Proc Natl Acad Sci U S A 108: 1513–1518.

26. Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S, et al. (2002) ARACHNE: a
whole-genome shotgun assembler. Genome Res 12: 177–189.

27. Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, et al. (2013) The
MaSuRCA genome assembler. Bioinformatics 29: 2669–2677.

28. Simpson JT, Durbin R (2012) Efficient de novo assembly of large genomes using
compressed data structures. Genome Res 22: 549–556.

29. Mullikin JC, Ning Z (2003) The phusion assembler. Genome Res 13: 81–90.

30. Ghodsi M, Hill CM, Astrovskaya I, Lin H, Sommer DD, et al. (2013) De novo
likelihood-based measures for comparing genome assemblies. BMC Res Notes 6:

334.
31. Gurevich A, Saveliev V, Vyahhi N, Tesler G (2013) QUAST: quality assessment

tool for genome assemblies. Bioinformatics 29: 1072–1075.

32. Hubisz MJ, Lin MF, Kellis M, Siepel A (2011) Error and error mitigation in low-
coverage genome assemblies. PLoS One 6: e17034.

33. Illumina (2009) De novo assembly using Illumina reads. Available: http://www.
illumina.com/Documents/products/technotes/technote_denovo_assembly_

ecoli.pdf. Accessed 2014 Apr 23.
34. Arezi B, Xing W, Sorge JA, Hogrefe HH (2003) Amplification efficiency of

thermostable DNA polymerases. Anal Biochem 321: 226–235.

35. Chen Y-C, Liu T, Yu C-H, Chiang T-Y, Hwang C-C (2013) Effects of GC bias
in next-generation-sequencing data on de novo genome assembly. PLoS One 8:

e62856.
36. Salmela L, Schröder J (2011) Correcting errors in short reads by multiple

alignments. Bioinformatics 27: 1455–1461

37. Chikhi R, Medvedev P (2014) Informed and automated k-mer size selection for
genome assembly. Bioinformatics 30: 31–37.

38. Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, et al. (2011)
Prospective genomic characterization of the German enterohemorrhagic

Escherichia coli O104:H4 outbreak by rapid next generation sequencing
technology. PLoS One 6: e22751.

39. Jevons PM (1961) ‘‘Celbenin’’ - resistant Staphylococci. Br Med J 1: 124–125.

40. van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, et al. (1993)
Strain identification of Mycobacterium tuberculosis by DNA fingerprinting:

recommendations for a standardized methodology. J Clin Microbiol 31: 406–
409.

41. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-

Wheeler transform. Bioinformatics 26: 589–595.
42. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, et al. (2004) Versatile

and open software for comparing large genomes. Genome Biol 5: R12.
43. Team RDC (2011) R: a language and environment for statistical computing.

Available: http://www.R-project.org. Accessed 23 April 2014.
44. Sarkar D (2008) Lattice: multivariate data visualization with R. New York:

Springer.

GABenchToB

PLOS ONE | www.plosone.org 12 September 2014 | Volume 9 | Issue 9 | e107014

http://clcbio.com
http://www.454.com/products/analysis-software/
http://www.454.com/products/analysis-software/
http://www.dnastar.com/t-nextgen-seqman-ngen.aspx
http://www.dnastar.com/t-nextgen-seqman-ngen.aspx
http://www.illumina.com/Documents/products/technotes/technote_denovo_assembly_ecoli.pdf
http://www.illumina.com/Documents/products/technotes/technote_denovo_assembly_ecoli.pdf
http://www.illumina.com/Documents/products/technotes/technote_denovo_assembly_ecoli.pdf
http://www.R-project.org

