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Predictive models composed by radiomic features
extracted from multi-detector computed
tomography images for predicting low- and
high- grade clear cell renal cell carcinoma
A STARD-compliant article
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Abstract
To evaluate the values of conventional image features (CIFs) and radiomic features (RFs) extracted from multi-detector computed
tomography (MDCT) images for predicting low- and high-grade clear cell renal cell carcinoma (ccRCC).
Two hundred twenty-seven patients with ccRCC were retrospectively recruited. Five hundred seventy features including 14 CIFs

and 556 RFs were extracted from MDCT images of each ccRCC. The CIFs were extracted manually and RFs by the free software—
MaZda. Least absolute shrinkage and selection operator (Lasso) was applied to shrink the high-dimensional data set and select the
features. Five predictive models for predicting low- and high-grade ccRCC were constructed by the selected CIFs and RFs. The 5
models were as follows: model of minimummean squared error (minMSE) of CIFs (CIF-minMSE), minMSE of cortico-medullary phase
(CMP) of kidney (CMP-minMSE), minMSE of parenchyma phase (PP) of kidney (PP-minMSE), the combined model of CIF-minMSE
and CMP-minMSE (CIF-CMP-minMSE), and the combined model of CIF-minMSE and PP-minMSE (CIF-PP-minMSE). The Lasso
regression equation of each model was constructed, and the predictive values were calculated. The receiver operating characteristic
(ROC) curves of predictive values of the 5 models were drawn by SPSS19.0, and the areas under the curves (AUCs) were calculated.
According to Lasso regression, 12, 19 and 10 features were respectively selected from the CIFs, RFs of CMP image and that of PP

images to construct the 5 predictive models. The models ordered by their AUCs from large to small were CIF-CMP-minMSE (AUC:
0.986), CIF-PP-minMSE (AUC: 0.981), CIF-minMSE (AUC: 0.980), CMP-minMSE (AUC: 0.975), and PP-minMSE (AUC: 0.963). The
maximum diameter of the largest axial section of ccRCC had a maximum weight in predicting the grade of ccRCC among all the
features, and its cutoff value was 6.15cm with a sensitivity of 0.901, a specificity of 0.963, and an AUC of 0.975.
When combined with CIFs, RFs extracted fromMDCT images contributed to the larger AUC of the predictive model, but were less

valuable than CIFs when used alone. The CIF-CMP-minMSE was the optimal predictive model. The maximum diameter of the largest
axial section of ccRCC had the largest weight in all features.

Abbreviations: ARM = auto-regressive model, AUC = area under curve, ccRCC = clear cell renal cell carcinoma, CIF =
conventional image feature, CIF-CMP-minMSE = combined model of CIF-minMSE and CMP-minMSE, CIF-minMSE = minimum
mean squared error model of CIF, CIF-PP-minMSE = combined model of CIF-minMSE and PP-minMSE, CMP = cortico-medullary
phase of kidney, CMP-minMSE = minimum mean squared error model of CMP, CSS = cancer specific survival, CT = computed
tomography, GLCM = gray level co-occurrence matrix, GLH = gray level histogram, GLRLM = gray level run long matrix, HOG =
histogram of oriented gradient, Lasso = least absolute shrinkage and selection operator, MDCT = multi-detector computed
tomography, minMSE = minimum mean squared error model, NCP = non-contrast phase of kidney, PP = parenchyma phase of
kidney, PP-minMSE = minimum mean squared error model of PP, RCC = renal cell carcinoma, RF = radiomic feature, ROC =
receiver operating characteristic, WHO/ISUP = World Health Organization/International Society of Urological Pathology, WT =
wavelet transformation.
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Table 1

Demographic and clinical characteristics of patients with clear cell
renal cell carcinoma (ccRCC).

Characteristic of ccRCC Data of ccRCC

Gender
Male 130 (60.4%)
Female 97 (39.6%)

Age (y)
Median (y) 57.3±12.9
Range (y) 10–85
�50 71 (31.2%)
51–69 115 (50.7%)
≥70 41 (18.1%)

WHO/ISUP grade
1 69 (30.4%)
2 67 (29.5%)
3 39 (17.2%)
4 52 (22.9%)

ccRCC= clear cell renal cell carcinoma.
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1. Introduction
Renal cell carcinoma (RCC) is the most common malignant
tumor among the diseases of urinary system, accounting for
about 85% of renal malignant tumors and 3% of body tumors.
Clear cell renal cell carcinoma (ccRCC) is the most common
subtype of RCC, accounting for about 70 to 80% of all kidney
cancers.[1,2] The latest WHO/ISUP (World Health Organization/
International Society of Urological Pathology) grading system of
RCC, with 4 stratifications (grade 1–4), is commonly used for
evaluating the outcome of ccRCC and papillary RCC.[3,4] Many
studies found that the WHO/ISUP grade of ccRCC was closely
correlation with the cancer specific survival (CSS) of the patient
and drew a conclusion that the higher WHO/ISUP grade the
lower CSS could be got.[5–7] Kuthi et al[8] found the 5-year
survival rate of grade 1 or 2 ccRCC was significant better than
that of grade 3 or 4. However, there were not significant
differences between the 5-year CSSs of grade 1 vs grade 2 tumors
(P=.550), and that of grade 3 vs grade 4 tumors (P= .226). They
also foundwhen the grade 1 and 2 were combined into low-grade
group, and the grade 3 and 4 into high-grade group, the 5-year
CSSs of the 2 groups revealed a significant difference (P< .0001).
The similar results could also be found in some other studies.[9–11]

Preoperative needle biopsy and pathological section of the nidus
are the most authoritative methods to determine the WHO/ISUP
grade of ccRCC. However, their applications are limited due to
their invasiveness. So, we aim to find if there is a noninvasive way
to predict the pathological grade of ccRCC.
With the rapid development of medical imaging technology

and equipment, especially the application of 64 or more rows
multi-detector computed tomography (MDCT), the CT images
with high isotropic resolution can be achieved, more precisely
presenting the internal structure of lesion. Normally, we can
perceive the information about size, shape, density, necrosis and
blood supply of the lesions by naked eyes, but cannot for the RFs
concealed in the MDCT images. The RF is a kind of feature
reflecting the homogeneous phenomenon about the pixels in an
image and can be quantitative analyzed by some special
software.[12] Since ‘Beyond Imaging’ was selected as the theme
of the 2016 annual conference of the Radiological Society of
North America (RSNA), the radiomics has become a buzzword
now. It refers to the high-throughput extracting of massive
imaging features describing the characteristics of the pixels of
nidus in digital medical images.[13] In a short time, a large number
of studies about radiomics emerged, mainly focusing on
preoperative accurate diagnosis, classifying, and prognosis of
tumors.[14–17]

Owing to obvious characteristics on enhanced CT images, such
as fast in and out style of enhancement in artery phase and
polycystic necrosis, ccRCC can be differentiated from the other
subtypes of RCC, such as papillary RCC, chromophobe RCC,
and oncocytoma, without much difficulty.[18] With the develop-
ment of precision medicine and personalized treatment, more and
more clinicians want to know the WHO/ISUP grade of ccCC
before treatment or operation, in order to determine the way of
therapy and roughly predict the cancer-free survival (CSS) if
surgery. Though, there were some radiomic studies about ccRCC
could be found, however, their RFs were drownmainly from gray
level histograms (GLH) and the outdated Fuhrman grading
system of RCC was referred.[19–23] As far as we know, there are
no radioimc studies about exploring the correlations between
numerous RFs andWHO/ISUP grades of ccRCC. So, we conduct
this study with an intention to uncover the relationships between
the RFs and the WHO/ISUP grades of ccRCC.
2

The whole procedure of this research included 4 parts:
extracting massive RFs from MDCT images; selecting the most
predictive RFs by Lasso regression and then constructing 5
predictive models; using the predictive models to calculate the
predictive value for each ccRCC; and drawing ROC curves of the
predictive values, calculating the AUC and the cutoff value of
each model. Our ultimate aim is to find the optimal predictive
model composed by CIFs and RFs for recognizing low-grade
(WHO/ISUP grade 1 and 2) and high-grade (WHO/ISUP grade 3
and 4) ccRCC.
2. Materials and methods

2.1. Patients

This study was a retrospective case-control investigation,
approved by the Ethics Committee of Sichuan University,
and the consents from patients were waived. Two hundred
seventy-one patients with ccRCC confirmed by 2 pathologists
through biopsy or surgical resection were searched from the
picture archiving and communication system (PACS) of our
hospital from January 2012 to June 2017. The inclusion criteria
of cases were as follows: no previous treatment in the patients
before CT examination; the MDCT scanning of the patient
must comprise 3 phases [the non-contrast phase (NCP), the
cortico-medullary phase (CMP), and the parenchyma phase
(PP) of enhanced CT scanning]; every case must has an explicit
WHO/ISUP grade confirmed by pathology. Overall, in this
study, 7 cases were excluded for having previous treatments, 16
cases were excluded for inadequate phases of MDCT scanning,
and 21 cases were excluded for non-explicitWHO/ISUP grades.
Finally, 227 patients remained in this study, of which 130 cases
were male patients, 97 cases were female patients, the age range
was 10 to 85 years old, the mean age was 57.3±12.9 years, 136
cases were low-grade ccRCCs (WHO/ISUP grades 1 and 2), and
91 cases were high-grade ccRCCs (WHO/ISUP grades 3 and 4)
(Table 1).
2.2. CT acquisition

Two hundred and four patients were examined by a 64-
multidetector spiral CT scanner (LightSpeed VCT, GE Health-
care), and 23 patients were examined by a 256-multidetector
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spiral CT scanner (Brilliance iCT, Philips Healthcare). The NCP,
CMP, and PP were recorded in each patient. The scanning
protocols of the 3 phases were as follows: using spiral scanning
and thin-slice reconstruction in NCP, CMP, and PP; the scanning
of CMP and PP were started at 30th and 90th second after the
contrast agent was injected into the antecubital vein, respectively.
Contrast agent (70–100mL; Iopamiro, Bracco, Italy; Ultravist,
Bayer, Germany) was injected into the antecubital vein by high
pressure injector at a rate of 3.5ml/s. The CT scanning
parameters of the 3 phases were as follows: the tube voltage
was 120 KV; the automated tube-current modulation based on
weight was used; collimation width was 0.625mm; the pitch was
0.967:1; the reconstruction thickness was 1.5 to 2.5mm; the field
of view (FOV) was 360mm; and the matrix was 512�512.
2.3. Conventional image features (CIFs) acquisition

The CIFs were extracted from MDCT images in the PACS
(Huahai Health, China) of our hospital by 2 radiologists with 10
and 15 years of experience in diagnosis of abdominal imaging,
respectively, both blinded to the explicit WHO/ISUP grade of
each ccRCC. The region of interest (ROI) was determined
according to the consents of the 2 radiologists. When measuring
the attenuation of the parenchyma of ccRCC, they put 3 ROIs
with the areas from 2.0 to 5.0cm2, and then took the mean
attenuation of the 3 ROIs for study. When measuring the whole
attenuation of the maximum axial section of ccRCC including the
necrotic area, the contour of the ROI was recessed approximately
2mm from the tumor margin to reduce the partial volume effect.
In this study, the CIFs defined and consented by the 2 radiologists
were presented in Table 2.
Table 2

List of the conventional image features (CIFs) extracted frommulti-
detector computed tomography (MDCT) images of each clear cell
renal cell carcinoma (ccRCC).

The name
of CIF The definition of CIF

X1 Age of each patient with ccRCC
X2 Attenuation of parenchyma of ccRCC on NCP
X3 Attenuation of parenchyma of ccRCC on CMP
X4 Attenuation of parenchyma of ccRCC on PP
X5 Mean attenuation of the maximum axial section of ccRCC

including necrotic area on NCP
X6 Mean attenuation of the maximum axial section of ccRCC

including necrotic area on CMP
X7 Mean attenuation of the maximum axial section of ccRCC

including necrotic area on PP
X8 Area of the maximum axial section of ccRCC
X9 Maximum diameter of the maximum axial section of ccRCC
X10 The absolute enhanced attenuation (X3-X2) of parenchyma of

ccRCC on CMP
X11 The absolute enhanced attenuation (X4-X2) of parenchyma of

ccRCC on PP
X12 The homogeneity rate of the maximum axial section of ccRCC

based on CT values (X5/X2) on NCP
X13 The homogeneity rate of the maximum axial section of ccRCC

based on CT values (X6/X3) on CMP
X14 The homogeneity rate of the maximum axial section of ccRCC

based on CT values (X7/X4) on PP

ccRCC= clear cell renal cell carcinoma, CIF= conventional image feature, CMP= cortico-medullary
phase of kidney, NCP=non-contrast phase of kidney, PP=parenchyma phase of kidney, X10=X3-
X2; X11=X4-X2; X12=X5�X2; X13=X6�X3; X14=X7�X4.
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2.4. Radiomic feature (RF) extraction (Fig. 1)

Image selection: the images of the maximum axial section of each
ccRCC on CMP and PP were chosen. All the images extracted
from PACS were anonymized. The reconstructive thickness of
each image was 1.5 to 2.5mm. The window width and window
level of every MDCT image ranged from 300 to 400 HU and 45
to 65 HU, respectively.
The ROI definition: The irregular contour of ROI drew by

manually was recessed approximately 2mm from the margin of
tumor to reduce the interference by adjacent tissue, such as fat
and normal renal tissue.
The RFs extraction: The RFs were extracted by a free

software package, MaZda (version 4.6)[24,25] and primarily
came from gray level histogram (GLH), gray level co-
occurrence matrix (GLCM), gray level run long matrix
(GLRLM), histogram of oriented gradient (HOG), wavelet
transformation (WT), and auto-regressive model (ARM) of
the MDCT images of each ccRCC. The RFs coming from
GLH indicated the intensity distribution of image pixels, but
without spatial information. The RFs deriving from GLCM
indicated the changes of pixel signal intensities with the
increase of pixel length and described the distributions of the
pixels with the same gray level at different orientation. The
RFs derived from GLRLM reflected the homogeneity of pixel
gray levels in different directions. The RFs derived from HOG
primarily reflected the contour information of the images.
The RFs derived from WT indicated the frequencies of a
certain cohort of pixel gray levels within images. The RFs
deriving from ARM, in which the gray level of some pixel
could be estimated by the neighboring pixels, manifested the
homogeneity of image in some degree.[26,27] Overall, from the
MDCT images of CMP and PP of each ccRCC, 556 RFs were
extracted from the ROI of nidus in the maximum axial
section.
2.5. Data standardization

Tominimize the effects of variations of contrast and brightness of
images, the gray level values of pixels were normalized by putting
into the range of m±3s (m, mean gray level value; s, standard
deviation) before statistical analysis. The values of different kinds
of RFs were normalized into the range (0, 1) by sigmoid function,
respectively.
2.6. RFs screening and predictive model construction

The most predictive features among the primary dataset were
selected by the least absolute shrinkage and selection operator
(Lasso) regression, which is very suitable for the shrinkage of a
high-dimensional dataset.[28] By means of Lasso regression, the
minimummean squared error model (minMSE) composed by the
most predictive features was obtained from the dataset of CIFs,
RFs of CMP, and that of PP, respectively. The 3 minMSEs were
abbreviated as CIF-minMSE, CMP-minMSE, and PP-minMSE,
respectively. The combined model of CIF-minMSE and CMP-
minMSE was abbreviated as CIF-CMP-minMSE, and that of
CIF-minMSE and PP-minMSE was abbreviated as CIF-PP-
minMSE.

2.7. Statistical analysis

The Lasso regression equation of each model for predicting low-
and high-grade ccRCC was constructed, and the predictive value

http://www.md-journal.com


Figure 1. Flowchart of radiomic features (RFs) extraction from MDCT image. (A) The image of the maximum axial section of clear cell renal cell carcinoma (ccRCC)
on cortico-medullary phase of kidney (CMP) was chosen. (B) The region of interest (ROI) of tumor was drown by pink color onMaZda (version 4.6). (C) The gray level
histogram (GLH) of tumor was calculated. (D) The gray level co-occurrence matrix (GLCM) of tumor was calculated. (E) The gray level run long matrix (GLRLM) of
tumor was calculated. (F) The histogram of oriented gradient (HOG) of tumor was calculated. (G) The wavelet transformation (WT) of tumor was calculated. (H) The
auto-regressive model (ARM) of tumor was calculated. (I) The high dimensional radiomic data set of tumor was constructed. ARM=auto-regressive model, CMP=
cortico-medullary phase of kidney, ccRCC=clear cell renal cell carcinoma, GLCM=gray level co-occurrence matrix, GLH=gray level histogram, GLRLM=gray
level run long matrix, HOG=histogram of oriented gradient, MDCT=multi-detector computed tomography, RFs= radiomic features, ROI= region of interest, WT=
wavelet transformation.
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of each ccRCC (‘1.0’ defined as the standard value of low-grade
ccRCC and ‘2.0’ defined as the standard value of high-grade
ccRCC) was calculated. The receiver operating characteristic
4

(ROC) curve of predictive values of each model was drawn by
SPSS19.0 (SPSS Inc., Chicago, IL), and the area under curve
(AUC) was calculated.
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3. Results

Twelve features were selected from CIFs by Lasso regression and
constructed the model of minMSE. The equation of Lasso
regression of CIF-minMSE was as follows: CIF-minMSE_Y =
0.1741∗X1-0.0717∗X3-0.1379∗X4-0.2986∗X5+0.8157∗X6-
Table 3

The definitions and interpretations of the radiomic features selected by
parenchyma phase of kidney (PP).

Name of
model

RFs selected
by Lasso Full name Main

CMP-minMSE Area Area Sum number of pix
MinNorm Minimum normalization Value of minimum
Hist_Skewness Histogram’s skewness Histogram’s skewne
Hist_Perc.50% 50% percentile of

histogram
50% percentile of h

S(0,1)Entropy S(0,1) entropy Entropy of 1-pixel l
S(0,2)SumOfSqs S(0,2) sum of squares Sum of squares of
S(2,2)SumAverg S(2,2) sum average Sum average of 2-p
S(3,3)Entropy S(3,3) entropy Entropy of 3-pixel l
S(4,0)SumEntrp S(4,0) sum entropy Sum entropy of 4-p
S(5,0)InvDfMom S(5,0) inverse difference

moment
Inverse difference m
0° orientation

S(5,�5)SumAverg S(5,�5) sum average Sum average of 5-p
Vertl_RLNonUni Vertical run length

nonuniformity
Run length nonunifo

GrSkewness Gradient skewness Absolute gradient s
GrKurtosis Gradient kurtosis Absolute gradient k
Teta2 Teta2 1 pixel intensity can

using parametr u
WavEnHL_s-1 Wavelet energy high low

subband image 1
Energies of wavelet
image 1 added h
and column resp

WavEnLL_s-3 Wavelet energy low low
subband image 3

Energies of wavelet
image 3 added l
and column resp

WavEnHH_s-3 Wavelet energy high
high subband image 3

Energies of wavelet
image 3 added h
and column resp

WavEnLL_s-4 Wavelet energy low low
subband image 4

Energies of wavelet
image 4 added l
and column resp

PP-minMSE Area Area Sum number of pix
MinNorm Minimum normalization Value of minimum
S(5,5)DifVarnc S(5,5) difference

variance
Difference variance

S(5,�5)Entropy S(5,�5) entropy Entropy of 5-pixel l
S(5,�5)DifEntrp S(5,�5) difference

entropy
Difference entropy o
orientation

Vertl_RLNonUni Vertical run length
nonuniformity

Run length nonunifo

Teta2 Teta2 1 pixel intensity can
using parametr u

WavEnHL_s-2 Wavelet energy high low
subband image2

Energies of wavelet
image 2 added h
and column resp

WavEnLH_s-3 Wavelet energy low high
subband image 3

Energies of wavelet
image 3 added l
and column resp

WavEnHL_s-3 Wavelet energy high low
subband image 3

Energies of wavelet
image 3 added h
and column resp

ARM= auto-regressive model, CMP= cortico-medullary phase of kidney, CMP-minMSEM=minMSE of CM
matrix, HOG=histogram of oriented gradient, minMSEM=minimum mean squared error model, PP=p

5

0.6586 X8+2.4304 X9-0.5833 X10-0.0103 X11-0.0176
X12-0.3042∗X13-0.2645∗X14 (the ‘∗’ in the equation means
‘multiply’).
Nineteen features were selected from the 278 RFs extracted

from CMP by Lasso regression and constructed the model of
minMSE. The equation of Lasso regression of CMP-minMSE
Lasso regression fromcortico-medullary phase of kidney (CMP) or

meaning in the ROI
Which group
belongs to

weight coefficient
in the equation of
Lasso regression

els General feature 1.0192
normalization General feature �0.2748
ss GLH 0.0493
istogram GLH �0.2055

ength in 90° orientation GLCM 0.2595
2-pixel length in 90° orientation GLCM �0.1400
ixel length in 45° orientation GLCM 0.0818
ength in 45° orientation GLCM 0.2582
ixel length in 0° orientation GLCM 0.0818
oment of 5-pixel length in GLCM 0.3582

ixel length in 135° orientation GLCM �0.0072
rmity in vertical direction GLRLM 0.4781

kewness HOG 0.0187
urtosis HOG 0.0373
been best calculated by ARM

2

ARM 0.1331

coefficients calculated in subband
igh- and low-pass filters in row
ectively

WT �0.1561

coefficients calculated in subband
ow- and low-pass filters in row
ectively

WT 0.2385

coefficients calculated in subband
igh- and high-pass filters in row
ectively

WT �0.0505

coefficients calculated in subband
ow- and low-pass filters in row
ectively

WT �0.1909

els General feature 0.1597
normalization General feature �0.3982
of 5-pixel length in 45° orientation GLCM �0.1115

ength in 135° orientation GLCM 0.1722
f 5-pixel length in 135° GLCM �0.2169

rmity in vertical direction GLRLM 1.4737

been best calculated by ARM

2

ARM 0.0308

coefficients calculated in subband
igh- and low-pass filters in row
ectively

WT �0.0228

coefficients calculated in subband
ow- and high-pass filters in row
ectively

WT �0.0180

coefficients calculated in subband
igh- and low-pass filters in row
ectively

WT �0.0216

P, GLCM=gray level co-occurrence matrix, GLH=gray level histogram, GLRLM=gray level run long
arenchyma phase of kidney, PP-minMSEM=minMSE of PP, WT=wavelet transformation.
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was as follows: CMP-minMSE_Y = 1.0192 Area-0.2748
MinNorm+0.0493∗Hist_Skewness-0.2055∗Hist_Perc.50%
+0.2595∗S(0,1)Entropy-0.1400∗S(0,2)SumOfSqs+0.0818∗S
(2,2)SumAverg + 0.2582∗S(3,3)Entropy+0.0818∗S(4,0)
SumEntrp+0.3582∗S(5,0)InvDfMom-0.0072∗S(5,-5)SumAverg
+0.4781∗Vertl_RLNonUni+0.0187∗GrSkewness+0.0373∗
GrKurtosis+0.1331∗Teta2-0.1561∗WavEnHL_s-1+0.2385∗
WavEnLL_s-3-0.0505∗WavEnHH_s-3-0.1909∗WavEnLL_s-4.
Ten features were selected from the 278 RFs extracted from PP

by Lasso regression and constructed the minMSE model. The
equation of Lasso regression of PP-minMSE was as follows: PP-
minMSE_Y=0.1597∗Area -0.3982∗MinNorm-0.1115∗S(5,5)
DifVarnc+0.1722∗S(5,-5)Entropy-0.2169∗S(5,-5)DifEntrp
+1 .4737∗Ver t l _RLNonUn i+0 .0308∗Te ta2 -0 .0228∗
WavEnHL_s-2-0.0180∗WavEnLH_s-3-0.0216∗WavEnHL_s-3.
In the Lasso equations of the models of CIF-minMSE, CMP-

minMSE, and the PP-minMSE, we found the X1, X6, and X9 of
CIFs, the Area, Skewness, S(0,1)Entropy, S(2,2)SumAverg, S(3,3)
Entropy, S(4,0)SumEntrp, S(5,0)InvDfMom, Vertl_RLNonUni,
GrSkewness, GrKurtosis,Teta2, and WavEnLL_s-3 of RFs from
CMP, and the Area, S(5,-5)Entropy, Vertl_RLNonUni, and
Figure 2. The scatter diagram of the predictive values of CIF-CMP-minMSE for pr
CIF-CMP-minMSE=combined model of CIF-minMSE and CMP-minMSE.
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Teta2 of RFs from PP had positive weight coefficients. However,
the X3, X4, X5, X8, X10, X11, X12, X13, and X14 of CIFs, the
MinNorm, Hist_Perc.50%, S(0,2)SumOfSqs, S(5,-5)SumAverg,
WavEnHL_s-1, WavEnHH_s-3, and WavEnLL_s-4 of RFs from
CMP, and the MinNorm, S(5,5)DifVarnc, S(5,-5)DifEntrp,
WavEnHL_s-2,WavEnLH_s-3, and WavEnHL_s-3 of RFs from
PP had negative weight coefficients. The definitions and
interpretations of the RFs selected by Lasso regression and the
groups that they belonged to was shown in Table 3.
The scattergram and histogram the predictive values of CIF-

CMP-minMSE, for example, for predicting low- and high-grade
ccRCC were shown in Figures 2 and 3, respectively. The cutoff
values, sensitivities, specificities, and AUCs of the 5 predictive
models (CIF-minMSE, CMP-minMSE, PP-minMSE, CIF-CMP-
minMSE, and CIF-PP-minMSE) were shown in Table 4. The
ROC curves of the 5 models were shown in Figure 4. In addition,
the largest diameter of the maximum axial section of ccRCC (the
X9 of CIFs) gained also good performance in predicting low- and
high-grade ccRCC individually. Its cutoff value was 6.15cm,
with a sensitivity of 0.901, a specificity of 0.963, and an AUC of
0.975.
edicting low- and high- grade ccRCC. ccRCC=clear cell renal cell carcinoma,



Figure 3. The histogram of the predictive values of CIF-CMP-minMSE for predicting low- and high- grade ccRCC. ccRCC=clear cell renal cell carcinoma, CIF-
CMP-minMSE=combined model of CIF-minMSE and CMP-minMSE.
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4. Discussion
In this study, 14 CIFs and 556 RFs were extracted from the 3-
phase MDCT images of each ccRCC. Using the features selected
from CIFs and RFs by Lasso regression, we got predictive
equation of CIF-minMSE, CMP-minMSE, and PP-minMSE,
respectively, in which each predictive feature had its own weight
coefficient positive or negative. We proposed 5 predictive models
composed by the selected CIFs and RFs to differentiate low-grade
(WHO/ISUP grade 1 and 2) from high-grade (WHO/ISUP grade 3
and 4) ccRCC. On account of the AUC from large to small, the
order of the 5 predictive models was CIF-CMP-minMSE (AUC:
0.986), CIF-PP-minMSE (AUC: 0.981), CIF-minMSE (AUC:
0.980), CMP-minMSE (AUC: 0.975), and PP-minMSE (AUC:
Table 4

The results of the 5 predictive models in predicting the low- and hig

Name of model Cutoff value Sensitivi

CIF-minMSE 1.451 94.
CMP-minMSE 1.433 94.
PP-minMSE 1.486 86.
CIF-CMP-minMSE 1.489 91.
CIF-PP-minMSE 1.491 90.

ccRCC= clear cell renal cell carcinoma, CIF=conventional image feature, CIF-CMP-minMSE= the combi
combined model of CIF-minMSE and PP-minMSE, CMP= cortico-medullary phase of kidney, CMP-minM
kidney, PP-minMSE=minMSE of PP.
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0.963). It was found that the RFs either extracted from CMP or
PP, especially the former, were able to improve the accuracy rate
of predicting the low- and high-grade ccRCC and the optimal
predictive model was CIF-CMP-minMSE. Furthermore, among
all the features, the feature X9—the maximum diameter of the
largest axial section of ccRCC—was found having the maximum
positive weight in predicting the WHO/ISUP grade of ccRCC.
Some previous studies had indicated the values of RFs

extracted from CT or MRI images in the diagnoses, classifica-
tions, prognoses, and identifications of many tumors, such as the
cancers of lung, rectum, breast, stomach, and brain.[29–32] The
reasons speculated by researchers might be that the RFs were
closely related to the internal structures of niduses and partly
h-grade of clear cell renal cell carcinoma (ccRCC).

ty (%) Specificity (%) Area of AUC

5 92.6 0.980
5 91.9 0.975
8 93.4 0.963
2 97.1 0.986
1 95.6 0.981

ned model of CIF-minMSE and CMP-minMSE, CIF-minMSE=minMSE of CIFs, CIF-PP-minMSE= the
SE=minMSE of CMP, minMSE=minimum mean squared error model, PP=parenchyma phase of
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Figure 4. The centralized display of the ROC curves of the 5 predictive models. ROC= receiver operating characteristic.

He et al. Medicine (2019) 98:2 Medicine
reflected the heterogeneities of tumors. About ccRCC, there were
also some studies on RFs could be found. Kierans et al[33] found
that high-grade ccRCC had significantly higher skewness of GLH
and correlations of GLCM on preoperative magnetic resonance
(MR) diffusion-weighted imaging (DWI) than that of low-grade
ccRCC, respectively. Lubner et al[34] studied 157 patients with
RCC and drew a conclusion that the entropy, mean of positive
pixels, and standard deviation of the pixel distribution of GLHon
CT images were associated with tumor histologic types, nuclear
grades, and outcomes. Ding et al[35] calculated texture-score
using 4 RFs (RunLengthNonuniformity, Contrast, GrayLevel-
Nonuniformity and 0.025Quantile) selected from 184 RFs
extracted from MDCT images of each ccRCC and found the
texture-score was valuable in the preoperative discrimination of
the low from high grade ccRCC. Compared to the previous
researches, some similar results could be got by this study,
however, the larger numbers of patients (227 cases) and RFs (556
features) were studied and the outdated Fuhrman grade system of
ccRCC was substituted by WHO/ISUP grade system adopted by
ISUP after March 2012. Among the AUCs of the 5 models, we
found the AUC of CIF-CMP-minMSE was the largest one and
that of CIF-PP-minMSE was the second. That was to say, when
combined with CIF-minMSE, the RFs of MDCT images were
conducive to the higher rate of correctly recognizing the low and
high grade ccRCC, and moreover, the RFs of CMP-minMSE
were more valuable than that of PP-minMSE. However, we also
found, when used alone, the AUC of CIF-minMSE was larger
than that of CMP-minMSE or PP-minMSE. That was to say, the
CIFs were more valuable than RFs of CMP or PP in predicting the
grade of ccRCC individually.
Among all the features in this study, the maximum diameter of

the largest axial section of ccRCC was found having the
maximum positive weight in predicting the grade of ccRCC and
8

its cutoff value was 6.15cm, with a sensitivity of 0.901, a
specificity of 0.963, and an AUC of 0.975. The similar results
could also be found in some other studies. In Kierans’ study,[33]

the means of the tumor size of low and high grade ccRCC were
3.49±1.57cm and 6.94±2.93cm, respectively, and their differ-
ence was statistical significant. Frank and Zhang et al[36,37] also
found the tumor size of ccRCC was positively correlated with the
nuclear grade of tumor, with 1cm increaser in diameter of tumor
the possibility of high grade increased by 32%. The reason why
the significant difference appeared between the tumor sizes of
low- and high-grade ccRCC is not confirmed, the speculated
reason needing further prove may be that the tumor cells will
become more and more malignant with the tumor growth.
There were several limitations in this study. First, this study

was a single-center retrospective research, and the results need
further validation from multi-center samples. Second, due to the
different shape of each patient, the tube voltage and milliampere
second of each CT examination were not identically. And, in all
patients, 204 cases were examined by a 64 multi-detector CT
scanner, the remained 23 cases were examined by a 256-
multidetector CT scanner. Because of this, the measurement
errors might increase during extracting RFs. Third, the RFs
extracted from the maximum axial section of tumors did not
entirely reflect the texture structures of the 3-dimensional tumor,
which should be further studied in the future. Fourth, there was
no independent validation cohort in this study to evaluate the
overfitting of these models. Fifth, the sample size of this study is
still some small, and more cases need to be added in the future.
5. Conclusions

In this study, we presented the whole procedure of the analysis
about massive RFs. According to Lasso regression, we



[12] Chae H-D, Park CM, Park SJ, et al. Computerized texture analysis of
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constructed 5 predictive models for discerning low- and high-
grade ccRCC and proved the model of CIF-CMP-minMSE was
the optimal predictive model. When combined with CIFs, the RFs
extracted fromMDCT images could contribute to the larger AUC
of the predictive model. But, when used alone, the CIFs were
more valuable than RFs. Nevertheless, among all the features, the
CIF feature X9—the largest diameter of the maximum axial
section of ccRCC—had the largest positive weight in predicting
the grades of ccRCC.
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