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Abstract

Predicting the quantitative regulatory function of transcription
factors (TFs) based on factors such as binding sequence, binding
location, and promoter type is not possible. The interconnected
nature of gene networks and the difficulty in tuning individual TF
concentrations make the isolated study of TF function challenging.
Here, we present a library of Escherichia coli strains designed to
allow for precise control of the concentration of individual TFs
enabling the study of the role of TF concentration on physiology
and regulation. We demonstrate the usefulness of this resource by
measuring the regulatory function of the zinc-responsive TF, ZntR,
and the paralogous TF pair, GalR/GalS. For ZntR, we find that zinc
alters ZntR regulatory function in a way that enables activation of
the regulated gene to be robust with respect to ZntR concentra-
tion. For GalR and GalS, we are able to demonstrate that these
paralogous TFs have fundamentally distinct regulatory roles
beyond differences in binding affinity.
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Introduction

Transcription factors (TFs) are an important set of proteins that play

a major role in controlling condition-specific cellular decision-

making. Techniques such as DNaseI footprinting (Ellis et al, 2007),

SELEX (Ishihama et al, 2016), ChIP-seq (Galagan et al, 2013; Myers

et al, 2015) and their variants have enabled high-resolution base-

pair mapping of where TFs bind and which genes they control.

However, predicting the direct regulatory effect of any given TF on

a gene under its control remains challenging; the ability to build

genetic circuits from natural TFs or foretell the regulation of promot-

ers directly from its architecture is still completely lacking. One chal-

lenge to these predictions is the interconnected nature of regulatory

networks. Individual TF genes typically regulate (and are regulated

by) several to dozens of different genes and so controlling the

concentration of a TF systematically and thus the quantitative regu-

latory function of that TF at a target is convolved with network and

“context-dependent” effects that hide the direct role of the TF on the

gene. As a result, predicting the quantitative input-output relation-

ship between TF concentration and output of a gene based on regu-

latory architecture, i.e., the location, identity, and sequence of the

TF-binding sites that contribute to a promoters’ regulation, is not

possible. However, tremendous progress has been achieved towards

the predictive design of gene circuits and network architectures

using model TFs (Elowitz & Leibler, 2000; Gardner et al, 2000;

Brewster et al, 2014; Nielsen et al, 2016; Potvin-Trottier et al, 2016),

although the toolbox of well-characterized TFs is relatively sparse.

Clearly, the characterization of a greater set of TFs would enable

enhanced utility for biological engineering purposes while also

deepening our understanding of why natural regulatory elements

are built the way they are.

Here, we report the construction of a titratable copy of each of

the 194 TFs in Escherichia coli for the purpose of characterizing the

TF function. In this library, the copy number of any TF is control-

lable by induction rather than through indirect changes to growth or

nutrient sources. The single-cell TF level is also measurable due to a

fusion of the TF with the mCherry fluorescent protein (Fig 1C).

Importantly, the expression of the TF is isolated from the natural

regulatory interactions that would limit or complicate copy number

control. In addition, the titratable TF construct is stably integrated at

a constant genetic locus in the chromosome to avoid any copy

number difference. The ability to titrate TFs precisely enables a

direct and quantitative measure of the role of a specific TF in regula-

tion or physiology. Similar approaches with individual model TFs

have enabled a deep understanding of the input-output function of

those specific TFs (Amit et al, 2011; Garcia & Phillips, 2011; Garcia

et al, 2012; Jones et al, 2014; Sep�ulveda et al, 2016; Chen et al,

2018; Einav et al, 2018). The resource introduced here enables
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studies of TFs as a whole with the same quantitative control typi-

cally dedicated to model TFs. When combined with systematically

designed promoters, this library enables careful examination of the

input-output relationship of regulation for any TF in simple

regulatory architectures that can reveal the fundamental regulatory

function of these TFs. Overall, the goal of designing this resource is

to enable detailed studies to characterize the regulatory function of

TFs in a less biased way (Fig 1A).
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In the remainder of the manuscript, we discuss the construction

of the library followed by an account of the inducible TF copy

number range of the library strains and the physiological impact of

controlling the TF copy number in each strain. Finally, we give two

examples of uses of the library to characterize the TF function. In

the first vignette, we examine the unique regulatory architecture of

heavy metal-responsive TF, ZntR, and in the second, we examine

the regulatory differences in a pair of paralogous TFs, GalR, and

GalS. In both cases, we find that controlling the TF number enables

unique insight into the fundamental regulatory behavior of these

two groups of TFs.

Results

Transcription factor library

Construction of the titratable TF library is described, in detail, in the

Materials and Methods section and in Fig 1B. Briefly, each of the

194 TF gene is deleted from its native locus, and the corresponding

tf-mCherry fusion gene (with an aek-linker sequence (AEAAA-

KEAAAKA) separating the TF and mCherry genes), is expressed

from a tetracycline-inducible promoter and integrated at the ybcN

locus. The inter-protein linker would likely not interfere with the

bio-activity of the TF and enhance its stability (Arai et al, 2001). In

addition, tetR gene is integrated at the gspI locus and the constitutive

gene product (TetR) will repress the expression of the TF until the

inducer, anhydrous tetracycline (aTC) is present. Upon addition of

aTC, the TF gene is expressed and is tracked by measuring the

mCherry levels at a given aTC concentration (histogram in Fig 1C

shows the single-cell level distribution of mCherry fluorescence for

one representative TF, RcsB).

There are at least 198 genes of E. coli listed as transcription

factors in RegulonDB (Santos-Zavaleta et al, 2019). Our titratable TF

library consists of 194 pairs (TF knockout and the corresponding

titratable strain) of strains in total. The TFs included in our library

can be classified into seven functional categories (Appendix Fig

S2A): (i) transcriptional repressors (53 genes), (ii) transcriptional

activators (39 genes), (iii) dual-regulators (74 genes), (iv) histidine

sensor kinase of the two-component system (18 genes), (v) DNA-

binding regulator of the toxin/antitoxin system (eight genes), (vi)

multi-functional regulator (four genes), and (vii) pseudogenes (one

gene). There are at least two pseudo TF genes (gatR and glpR) in E.

coli genome. Of these two pseudogenes, gatR is inactivated by an

“IS elementâ” inserted in the middle of the gene (Nobelmann &

Lengeler, 1996), and as such it is not included in our library. On the

other hand, for glpR, several genetic variants are reported in multi-

ple rounds of sequencing. The E. coli MG1655 whole-genome

sequence listed in NCBI has a single nucleotide insertion causing a

frame-shift mutation. However, the glpR gene amplified from our

lab stock of E. coli MG1655 does not contain this insertion (alleviat-

ing the frame shift), and hence that variant is included in our

library. Despite repeated trials, the construction of relE, toxin gene,

from a native toxin/antitoxin pair was unsuccessful. It is possible

that even the “leaky” levels of RelE are enough to overwhelm the

native expression of the toxin, RelB. As a result, relE and relB are

also excluded from this library. Finally, the TF alaS is essential and

the corresponding knockout is not available in the keio collection

(Baba et al, 2006; Yamamoto et al, 2009) and, as such, we did not

create a titratable strain for alaS.

Oftentimes, altering the growth condition is used as a way to

control TF copy number in E. coli via changes in gene dosage,

protein dilution, and network regulation (Kroner et al, 2019).

However, these approaches do not always enable full control over a

wide range of TF concentrations. For example, Appendix Fig S2D

shows data from Schmidt et al (2016) measuring protein copy

numbers over a wide range of growth conditions, it is clear that

many TFs are not well controlled in this fashion, and oftentimes,

growth rate is a poor predictor of TF copy number. By expressing

TFs from a controlled tetracycline-inducible promoter (at a common

genetic locus), we eliminate many of the native transcriptional regu-

latory network features that otherwise influence the number of TFs

and create a precise control of the TF copy number through induc-

tion (Fig 1D and Appendix Fig S2E).

Quantification of TF copy number

The mCherry fusion allows for the direct quantification of absolute

TF copy number based on the proportionality between fluorescent

signal (I) and the number of fluorophores (N), I = vN. The arbitrary

fluorescence signal measured from a microscope or flow cytometer

can be converted to the number of fluorescent proteins by estimat-

ing the calibration factor, v. The techniques to measure v typically

involve measuring either the fluorescence of a single molecule in

photobleaching experiments (Weiss, 1999; Sugiyama et al, 2005;

Garcia et al, 2011) or the measurement of a larger molecule that

contains a fixed number of fluorescent protein (Dundr et al, 2002;

Cherkas et al, 2018). An alternative method for quantifying TF copy

number from fluorescence signal involves measuring fluctuations

around the mean of a stochastic event that involves the fluorescent

protein; two examples include measuring fluorescence level dif-

ferences of two daughter cells immediately after division

◀ Figure 1. Design of titratable transcription factor library.

A Potential applications of titratable TF library.
B Schematic representation of the titratable transcription factor library strain. TF is deleted from its native locus and expressed from the ybcN locus as a mCherry

fusion construct and under the regulation of a tetracycline-inducible promoter.
C Histogram represents single-cell levels of TFs for increasing concentration of the inducer, aTC. Representative TF used here is RcsB.
D Box plot shows the distribution of mCherry levels for all the TFs in our library, at a given concentration of aTC. The central mark of the box plot is the median, the

edges of the box are the 25th and 75th percentiles, the whiskers are the most extreme data points, and red symbols are the outliers. Two biological replicates were
performed for each sample. Total number of cells analyzed per sample is listed in the source data file.

E Representative microscopic images showing different features of the strains as a result of TF titration. For instance, there is a significant change in length and
mCherry signal for different levels of aTC in CysB library strains. DhaR, NrdR, and RcdA show localized mCherry signal.

Source data are available online for this figure.
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(Fig 2A; Rosenfeld et al, 2006; Brewster et al, 2014) or measuring

fluctuations in the fluorescent bleaching trajectory of fluorophores

in a single-cell (Nayak & Rutenberg, 2011; Kim et al, 2016; Bakker &

Swain, 2019). In our library strains, we used fluctuations in

the partitioning of fluorescence signal between the daughter cells (I1
and I2) to measure the calibration factor for nine strains (see Fig 2B

and Materials and Methods “Estimation of calibration factor”) and

hence the number of TFs. The estimate of v is based on the assump-

tion that the TF-mCherry proteins are randomly distributed between

the two daughter cells upon division. In general, we find that the

calibration factor for each TF is similar (within � 2-fold of the mean

of the calibration factor for the nine TFs, see the yellow shaded

region in Fig 2C). Determining the calibration factor for all 194 TFs

would be laborious and the actual value of v depends heavily on

experimental settings (microscope optics, exposure times, etc), we

chose to use the mean of the nine measured calibration factors to

estimate the number of TFs in each strain throughout the library.

However, it is important to note that there may be cases where this

estimate is significantly off. As such, the measurement of the TF

number for other strains should be thought of as an estimate; if

precise knowledge of TF numbers in a specific strain is required, an

individual measurement in that specific library strain should be

made. In Fig 2D, we show the response of the titratable library

strains to aTC. We observed a 100–1,000 fold increase in TF

numbers (or simply mCherry signal intensity) as aTC concentration

is increased (Fig 2D). In Fig 2E, we compare the maximum
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Figure 2. Estimations of TF number.

A Representative images taken before (top) and after (bottom) one cell division in order to calculate the stochastic fluctuation in fluorescence distribution between the
daughter cells, I1 and I2.

B Plot showing the sum (I1 + I2) and squared difference ((I1−I2)2) in fluorescence of the daughter cell pairs for nine different TFs. Refer to Appendix Fig S5 for raw data
and binned values for individual TFs. Two different replicate measurements are performed per TF strain.

C Measured calibration factor for nine different TF strains in our library. Blue and red points correspond to two different replicates. Error bar represents 95% confidence
interval of individual fits. The dashed line and shaded area represent the mean value and standard deviation of the calibration factor for all TFs. Source data are
available online for this figure.

D The data in Fig 1D are converted to absolute TF numbers using the estimated mean calibration factor.
E Comparison of the TF copy number at maximum induction with the measured protein copies/cell in the work by Schmidt et al (2016). For the box plots in (D and E),

the central mark is the median, the edges are the 25th and 75th percentiles, the whiskers are the most extreme data points, and the red symbols are the outliers. Two
biological replicates were performed for each sample. Source data are same as that used in Fig 1D.

Source data are available online for this figure.
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induction level of TFs in our library to the measured TF numbers

per cell, under 20 different growth conditions for E. coli from the

work of Schmidt et al (2016). The vast majority of these data points

are above one, indicating that our induction strains are capable of

reaching to and beyond the physiological concentrations of most

TFs.

Physiological effects of TF titration

Transcription factors are directly (or indirectly) involved in rewiring

the function of clusters of genes within the cell. Clearly, there will

be physiological consequences for altering the concentration of

some of the TFs. For instance, some TFs such as Crp, ArgR, CysB,

and MetJ are critical for essential metabolic pathways, and under-

producing or deleting these TFs may seriously affect the fitness of

the corresponding strains under certain induction conditions. On the

other hand, some TFs such as Nac and PdhR may be toxic when

expressed at high concentrations (Mediati et al, 2018). The physio-

logical effects of different TFs might be influenced by the growth

media (for instance, in Appendix Fig S7 shows the impact of dif-

ferent carbon sources on the growth of the library strain expressing

H-NS). Here, we will use the growth rate in glucose minimal media

as a proxy to evaluate the fitness or physiological effects due to the

titration of each TF. The steady-state growth rate of each TF library

strain is measured in different aTC concentrations and normalized

to the growth rate of wild-type in the corresponding aTC concentra-

tion. Hierarchical cluster analysis results in six major clusters of

growth phenotypes (Fig 3A). Furthermore, we calculate the correla-

tion coefficient between growth rate and aTC concentration for each

library strain (Fig 3B). The correlation coefficients are roughly

trimodal with one peak around negative correlation values, one near

zero, and the final less-defined peak for positive correlations. The

majority of strains show a negative growth correlation with aTC.

Importantly, this is not due to aTC toxicity; the gray-shaded box in

Fig 3B shows the correlation between wild-type growth rate and

aTC concentration. We also validate that there is no correlation

between total mCherry levels and the growth rate (red shaded box,

Fig 3B). It is evident that the higher correlation between TF copy

number and growth rates is primarily due to the physiological

consequence of TF expression and not due to protein overexpres-

sion or aTC toxicity.

In Fig 3A, the top-most cluster in blue corresponds to TF strains

that grow faster than wild type at most aTC concentration. A few

genes of this cluster including McbR, BluR, and CsgD are involved

in regulating biofilm formation. PurR, a regulator of purine metabo-

lism, exhibits the fastest growth rate with a doubling time of 41 � 2

min. The second cluster, in red, has two bigger nodes. Top nodes

include TFs whose knockouts grow slower than or equal to wild-

type and TF titration helps enhance the growth rate. Some of the

TFs in this cluster exhibit a positive correlation between TF copy

number and growth rate (Fig 3B, lateral panel (ii): MlrA, AscG, and

LrhA). The bottom node includes TFs with knockouts growing faster

than wild type and TF titration retards the growth rate exhibiting a

negative correlation between TF copy number and growth rate

(Fig 3B, lateral panel (i): LldR, and NimR). The third cluster

includes TF strains that show overall reduced growth compared

with wild type. The slowest doubling time in this cluster is 89 min

for the TF, MntR involved in sensing heavy metal, manganese. In

this cluster, the growth rates across different aTC concentration are

fairly constant; however, there are exceptions (such as Fig 3B,

lateral panel (i): MalI, Fis, HprR, and lateral panel (ii): Fur, PspF,

and AcrR) where we see a good correlation between growth rate

and TF copy number. The fourth cluster in purple includes TFs with

knockouts and the lowest aTC concentrations growing faster than

the wild type. Further increase in aTC causes a reduction in growth

rate (Fig 3B, lateral panel (i): ArcA). Strains with extreme growth

defects are part of the green and cyan clusters. In the first node of

the green cluster are TF strains where the knockout shows "no

growth" or reduced growth and expression of just enough TF is suf-

ficient to rescue the growth rate. All TFs of the amino acid metabolic

pathway (ArgR, CysB, MetR, MetJ, and LysR) belong to this cluster.

In the second node are TF strains, which show a drastic decrease in

growth rate upon TF titration. The slowest doubling time measured

in this cluster is 115 min for the TF, BglJ (Fig 3B, lateral panel (i):

BglJ). Cyan cluster has only two strains, Nac and PdhR, that stop

growing beyond the 3 ng/ml of aTC in the medium. In summary,

Nac and PdhR are the only two TF strains exhibiting severe growth

defects hampering their use in the titratable TF expression.

Case studies using TF titration library

In the following two sections, we demonstrate how the TF titration

library can be used to dissect the regulatory function of individual

TFs. The library is particularly effective when combined with other

genetic resources that allow for systematic control of promoter

architectures. The vignettes of these sections make use of two

reporter libraries, the Zaslaver’s transcriptional reporter library

(Zaslaver et al, 2004) and a “TF-binding position library” from our

lab which enables controlled movement of a TF-binding site on a

synthetic promoter (preprint: Guharajan et al, 2021).

Case study 1: Regulation by the zinc-responsive TF, ZntR

The architecture of a promoter (i.e., the position, identity, and speci-

ficity of TF- and RNAP-binding sites) is a fundamental indicator of

the overall regulatory activity of a gene. Elucidating the mechanisms

of common promoter architectures can help lay ground rules to

build well-defined genetic parts. For instance, the architecture of

promoters involved in sensing heavy metals such as copper, zinc,

gold, and mercury are very similar across different bacterial species

(Fig 4A). Interpreting the biophysical constraints of such promoter

architectures will help in different biological applications such as in

whole-cell biosensors. The common promoter architecture of heavy

metal-responsive genes involves a single TF-binding site acting as

the spacer between the −10 and −35 promoter sequence making the

length of the spacer sequence unusually longer, i.e., 19–20 bp,

whereas the optimal spacer length for E. coli σ70 promoter is 17 bp

(Ansari et al, 1992; Yona et al, 2018; Fig 4A). This architecture is

common for the MerR family of TFs in E. coli (such as the metal-

responsive TFs, cueR, and zntR, responding to copper and zinc,

respectively) and is also found in TFs from other organisms such as

bltR of Bacillus and merR of transposable elements (Brown et al,

2003; Fig 4A). According to previous studies, the mechanism of acti-

vation of these promoters involves a distortion of the promoter DNA

upon binding of the co-factor bound TF which can realign the −35
and −10 boxes and recruit RNA polymerase in order to initiate
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A Physiology of TF titration
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transcription. However, these studies involved mutating or truncat-

ing the spacer sequence which in turn will abolish the TF-binding

site (Brown et al, 2003). Under this context, the precise input-output

function of these types of promoters can often be difficult to tease

apart, hence we examined the zinc-responsive TF, ZntR from our

library, as a model TF to understand the properties of MerR family

of TFs. The only known function of ZntR is in regulating the expres-

sion of ZntA, a transmembrane protein that mediates the export of

zinc and other heavy metals. Less is known about the regulations of

ZntR in E. coli, although according to the proteomic studies by

Schmidt et al (2016) the concentration of ZntR is roughly 40–60
copies/cell under different physiological conditions. ZntR uses zinc

as a co-factor, although it also can weakly recognize other heavy

metals like cadmium (Brocklehurst et al, 1999). Accumulation of

zinc (and other heavy metals) inside the cell could be deleterious to

the cell hence, we want to keep the native ZntA (zinc exporter and

the only known target gene for ZntR) intact and just clone the PzntA
promoter to a reporter plasmid (low copy SCS101 plasmid main-

tained at roughly four copies per cell; Shao et al, 2021) to study the

regulatory profile of ZntR. Using the titratable TF library strain for

ZntR along with the PzntA reporter plasmid, we are able to indepen-

dently control both the co-factor and the TF copy number while

quantitatively measuring PzntA regulation.

In line with the ground rule for the common genetic architecture

of the MerR family of TFs (Fig 4A), the PzntA promoter contains the

binding site for ZntR as the spacer sequence between the −35 and

−10 box for RNAP binding (Fig 4B). The length of spacer sequence

in this promoter is 19 bp. Measurements for constitutive expression

(in ZntR knockout strains) from the PzntA promoter are relatively

very low. To understand the natural response function of ZntR to

activate the PzntA promoter, we measured the response of promoter

PzntA to different zinc concentrations in a standard laboratory strain

(MG1655), as seen from the black dashed curve in Fig 4C. We see

that ZntR has a zinc-dependent regulatory function that is not

simply “inactive” to “active” but instead it changes from a repressor

to an activator with zinc. It is important to note that we only control

zinc concentration in the media rather than the intracellular concen-

tration, in practice the levels of internal zinc are complex, as the

primary zinc exporters are changing with zinc and zinc is being

bound by several metallo-regulatory proteins in the cell including

RNAP (Chanfreau, 2013). However, the PzntA promoter clearly

responds to the titration of external zinc and shows repression at

low zinc levels and activation at higher zinc concentrations with a

maximum fold change of 10 when compared to the expression from

a zntR knockout strain at the same zinc concentration. We next

tested the effect of zinc titration in our library strain for several fixed

TF copy numbers (solid color curves in Fig 4C). Repression of the

PzntA promoter by ZntR can be small (roughly 10% or so) for low

concentrations of TF and up to roughly 2-fold in the presence of

hundreds of TFs. Our library strains reveal a very interesting feature

of this circuit; while the repression levels seen at low zinc concen-

trations strongly depend on the number of TFs in the cell, activation

of the promoter by the TF is largely independent of the total number

of TFs; the curves collapse for concentrations above roughly 1 µM
of zinc (also see Appendix Fig S3A for a plot showing fold change as

a function of TF copy number for varying zinc). This means that the

overall activated response of this system is robust to the TF level.

As described above, regulation by the MerR family of TFs is

thought to be accounted for the unusual spacer length. We wanted

to examine ZntR regulatory function on a stronger promoter with an

ideal spacer length. In Fig 4B, we show how we integrated the ZntR-

binding site as a spacer sequence into a common synthetic promoter

derived from the lac operon, PDL5 (Brewster et al, 2012); replacing

the spacer sequence of PDL5 with those from PzntA creates a

promoter, PDL5*. Constitutive values (in the absence of ZntR) from

PDL5* are 40 times higher than from PzntA (see Fig 4D). Importantly,

the −35 and −10 boxes of PDL5* are very similar to the PzntA
promoter with only a single nucleotide change in the −35 box and

two changes in the −10 box (see “asterisk” signs between the

sequences in Fig 4B). The data for the regulation of PDL5* by ZntR

are shown as dotted lines in Fig 4C; we once again see repression

for a given number of TFs, which is alleviated by zinc. The addition

of zinc relieves the repression of PDL5* slightly, but we no longer see

clear activating behavior, i.e., fold change did not increase above 1.

Next, we questioned the regulations of ZntR at locations other

than being the spacer sequence for the promoter. We measured

ZntR regulatory function at two locations immediately downstream

of the promoter (centered at +16.5 and +21.5). From previous work

on a handful of TFs, we anticipate that TFs regulate at these loca-

tions through pure steric hindrance where the fold change will be

repressive and a reflection only of a single parameter, the occupancy

of the TF (Ptashne et al, 1980; Ackers et al, 1982; Brewster et al,

2014; Forcier et al, 2018; preprint: Guharajan et al, 2021). In Fig 4E,

we show the fold change for these two binding locations as a func-

tion of TF copy number both without added zinc (solid line) and

with 100 µM zinc (dashed line). Significantly, the regulation both

with and without zinc is the same, which implies that the presence

of zinc does not alter the affinity of the TF for the binding site; this

also suggests that the regulatory shift of ZntR with zinc at the native

binding location emanates from a change in the regulatory function

of the bound TF rather than a change in its occupancy. Fitting a

simple steric hindrance model of regulation (described in the next

◀ Figure 3. Physiology of the titratable library strain.

A Cluster analysis of growth rates of the library strain in different concentration of aTC. The growth rate used here is normalized to the growth rate of wild-type
MG1655 measured in similar aTC concentration. (Refer to Appendix Fig S8 for individual clusters and their corresponding labels).

B Histogram showing the correlation between growth rates and the estimated TF copy number. Shown in gray shades is the correlation for wild-type MG1655 in differ-
ent aTC concentration, and shown in red shades is the correlation between growth rates and total mCherry. Lateral panel shows representative examples of strains
showing high correlation between growth rates and TF copy number. The gray bar represents physiological TF copies/cell measured by Schmidt et al (2016). The pan-
els are colored to match the grouping in the clustergram in (A). The red dashed line represent growth rate of corresponding TF knockout strain. Error bar for growth
rate is the standard deviation of three biological replicates, and the error bar for TF copy number is the standard error calculated from single-cell data. Total number
cells analyzed are listed in the source table.

Source data are available online for this figure.
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subsection for “Regulatory role of paralogous TFs”) to these data

enable measurement of the TF-binding affinity (Garcia & Phillips,

2011), which is the sole-free parameter of the thermodynamic

model. We find a binding affinity of −13.8kBT, roughly equivalent in

strength to LacI binding to the LacO2 operator (Brewster et al,

2014). Clearly, the regulatory function of ZntR, even in this small

number of examples (as spacer sequence for a stronger or weaker

promoter or at the steric hindrance location on a stronger

promoter), is incredibly flexible; naturally, it is capable of providing

zinc-dependent regulation that switches function from repression to

A Promoters regulated by MerR TF family

TF Organism Co-factor -35 Spacer/Binding Site -10 Regulation

ZntR E. coli Zinc TTGACT CTGGAGTCGACTCCAGAGT TATCCT Activation

CueR E. coli Copper TTGACC TTCCCCTTGCTGGAAGGTT TAACCT Activation

MerR Tn21 Mercury TTGACT CCGTACATGAGTACGGAAG TAAGGT Activation

GolS Salmonella Gold TTGACC TTCCAACACTGGCAAGGTC CAGACT Activation

CueR Salmonella Copper TTGACC TTAACCTTGCTGGAAGGTT TAACCT Activation

BltR Bacillus 
subtilis

Multidrug TTGACT ATACGGTAACCATATACCT TATGAT Activation

G Predicted response of
 ZntR regulation

C Promoter response to zinc

TTGACTCTGGAGTCGACTCCAGAGTGTATCCTTCGGTT

TTTACTCTGGAGTCGACTCCAGAGTGTATAATGTGTGG* ** ** ***
PzntA
PDL5*

D Constitutive levels

r0/r = 0.1

r0/r = 3.8

F Kinetic model of ZntR regulation
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Figure 4. Regulation mediated by ZntR and zinc.

A Table showing the signature regulatory motif of the common MerR TF families in different bacteria. TFs of the MerR family have their binding site acting as a spacer
between the −35 and −10 boxes for RNAP binding.

B Shows the sequence of PzntA and PDL5* with ZntR-binding site as the spacer. Shown in green is the −35 element and in magenta is the −10 element. The sequence of
ZntR binding site is underlined.

C Response curve for the PzntA promoter in wild-type (black dashed line) and in ZntR library strains (with fixed TF concentration (solid line)) for different concentration
of zinc. The dotted lines are the response of the modified PDL5* promoter with ZntR-binding site as the spacer. TF numbers in the legend represent the mean of the TF
concentration from the binned value for the corresponding curve.

D Constitutive values of PzntA and PDL5* measured in ZntR knockout strain.
E Regulatory curves when the binding site for ZntR is downstream of the native promoter of PDL5. The ZntR-binding site acts as pure repressor independent of the zinc

concentration when present outside the core promoter element.
F Simple kinetic model used to decipher the key regulatory features of ZntR–zinc-mediated regulations. The reporter here is the transporter gene, E. r0 is the basal

expression from the promoter for E, and r is the acceleration brought about when the promoter for E is bound by an active TF (TF* or zinc–TF complex).
G The output of the kinetic model when the ratio of r0/r is altered. When r0 is less than r, there is repression at lowest zinc concentrations that is dependent on TF copy

number and activation at higher concentrations similar to the response form PzntA promoter (solid lines in C). When r0 is greater than (dotted line) r, there is strong
repression and weak activation, and this regulatory feature is similar to that observed for PDL5* promoter with ZntR-binding site (dotted line in C). Note that we only
make qualitative match between the model and the experimental data. For all the experimental results associated with this figure, single-cell fold change is calcu-
lated independently for the three biological replicates, and all the single-cell data are binned. Each data point corresponds to the mean of single-cell data in the given
bin, and error bars are the standard error of the data points in the given bin.

Source data are available online for this figure.
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activation depending on zinc, but it also can serve at unique loca-

tions with respect to the promoter, as a TF whose function is insen-

sitive to zinc availability.

To explore which attributes of the regulatory system enabled key

features such as the robust TF number-independent activation or

TF-dependent repression seen in Fig 4C, we built a simple kinetic

model. The basic features of the model are detailed in Fig 4F and in

the Materials and Methods section. The basal expression of the

target gene occurs at rate r0 in the absence of the TF and when the

TF-zinc complex is bound, it acts as an activator increasing expres-

sion to a rate r. However, when zinc-free TF is bound, it acts as a

repressor capable of shutting off expression entirely. Zinc import is

proportional to the external concentration whereas export is propor-

tional to the concentration of ZntA in the cell. The results of Fig 4E

allow us to estimate the binding energy and hence the ratio of on

and off rates of DNA binding of ZntR (kon=koff ¼ expð�ΔϵÞ=Nns),

which we set equal regardless of TF-state (bound or unbound by

zinc; Refer to Appendix Fig S3B for model behavior when

kon=koff ¼ expð�ΔϵÞ=Nns is altered). We solve this model for

steady-state and calculate the fold change of the target gene (the

zinc transporter itself) as a function of effective zinc concentration

(see Materials and Methods for the description of effective zinc

concentration). The kinetic parameters used in the model are listed

in Appendix Table S1. The steady-state solutions require only two

free parameters to account for (r0 and r) while other parameters

could be derived from the experiments (kon/koff and γ). Interest-

ingly, when we consider the role of different promoters in this prob-

lem, we associate changes to the promoter with changes to r0 and

possibly r. Since, we did not alter both the sequence and the loca-

tion of the TF-binding site (proxy for not altering the rate of activa-

tion by TF, r), we kept the value of r fixed and changed the basal

rate r0 proportionately. We plot to fold change as a function of effec-

tive zinc concentration for different ratios of r0 and r in Fig 4G. The

solid lines in Fig 4G show many of the important features from our

measurement of PzntA regulation; we see TF-dependent repression

and activation that is mostly copy number-independent. Changing

the promoter to PDL5*, we expect r0 to increase 38 fold (see Fig 4D).

As shown in the figure the model predicts that the TF can switch

between the two observed behaviors (strong to weak repression or

strong repression to strong activation) simply by tuning the rate of

basal expression (r0) relative to the active TF-bound rate of expres-

sion r. This implies that ZntR acting on a strong promoter will

exhibit stronger repression/weaker activation whereas a weaker

promoter will exhibit weaker repression/stronger activation. Consis-

tent with our model the measured constitutive value for PDL5* is

roughly 35–40 fold higher than for PzntA Fig 4D. The dash lines in

Fig 4G show the predictions from our model for regulation of PDL5*
assuming the only change to the system is in r0. while this does not

perfectly capture the PDL5* data from Fig 4C (specifically at low

zinc) qualitatively the two responses are similar. We introduced

random mutations to the PDL5* in the −35 and −10 boxes and

consistent with our model, we see weaker repression/stronger acti-

vation for mutations that weaken constitutive expression and

stronger repression for mutations that strengthen the constitutive

expression (see Appendix Fig S3C). These data clearly capture an

interesting feature of the TF; the promoter-specific behavior did not

require a fundamental change in TF function, only in the basal

expression of the promoter.

Case study 2: Regulatory role of paralogous TFs

The phenomenon of paralogous TFs, TFs within an organism that

arises from gene duplication and divergence, is common throughout

living systems (Reece-Hoyes et al, 2013; Voordeckers et al, 2015).

Bacteria are particularly susceptible to this thanks to their propensity

for lateral and horizontal gene transfer. Isorepressors are groups of

TFs that share higher homology in the DNA-binding domain and form

overlapping regulons such that they regulate identical (or similar)

sequence motifs. Some examples from E. coli include pairs of TFs such

as GadW and GadX, and GalR and GalS but examples of isorepressor

trios, also exist such as MarA, SoxS, and Rob. Although these TF sets

recognize similar consensus sequence motifs, their actual regulatory

functions may differ at both quantitative and qualitative levels.

Since our library strains can be extended to allow multiple

single-gene deletions, we aimed to measure the differences in regu-

lation between isorepressors, GalR, and GalS. To do this, we

knocked out the paralogous TF in each of the GalR and GalS library

strains (i.e., we knocked out GalR in the GalS library strain and vice

versa). We then measured five native GalR-GalS responsive promot-

ers in these strains at a range of induction levels. The native

promoters each have between 1 and 6 binding sites for GalR/GalS.

The response of each of these promoters to titration of GalR or GalS

is shown in Fig 5A. We find that four of these promoters have quali-

tatively similar responses to GalR and GalS, although the difference

in magnitude of each response varies slightly with some promoters.

On the other hand, the promoter for GalR (orange curve, Fig 5A), is

activated with GalR and repressed with GalS. Interestingly despite

both TFs being categorized as repressors, we see significant levels

of activation in response to GalR and GalS for some of these promot-

ers especially, PgalP (yellow curves, Fig 5A). It is perhaps unclear

from the data in Fig 5A if the difference in regulation arises from the

distinct TF function of each Gal paralog or if it is simply the result of

differential affinity for the promoters.

We next tested four distinct binding site sequences; two sites that

natively regulate PgalP (BS1 and BS2), one site from PgalS (BS3), and

the last from PgalR (BS4) for regulatory differences in response to

GalR or GalS. The natural location of these sites is at −243.5 for

BS1, −61.5 for BS2 and BS3, and +8.5 for BS4. We measured fold

change for each individual GalR/GalS-binding site placed at different

locations along with a synthetic promoter. In this case, the binding

site we introduce represents the only known TF-binding site on the

promoter. Similar to our approach with ZntR, we first introduce

each binding site directly downstream of the promoter. These data

are shown in Fig 5B. The data for both TFs at each of the four bind-

ing sites fit well to the pure steric hindrance model of regulation

allowing us to infer the binding energy of each sequence for either

TF. The inset to Fig 5B compares these affinities and demonstrates

that for each site GalR binds stronger than GalS. Interestingly,

though, the rank order of sites is different for the two TFs; for both

TFs BS1 is the weakest followed by BS4; however, BS2 is the highest

affinity site for GalR while BS3 is the highest affinity site for GalS.

These results indicate that the binding consensus for GalR and GalS

are not the same.

Next, we infer the regulatory effect of GalR/GalS at other binding

locations on the promoter. For this, we use a general model of gene

regulation that quantifies the regulatory role of the TF (preprint:

Guharajan et al, 2021),
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Fold change ¼ 1þ FCmax expð�ΔϵÞNTF=Nns

1þ NTFexpð�ΔϵÞ=Nns
; (1)

where FCmax represents the maximum fold change at saturating TF

concentration, expð�ΔϵÞ is the binding affinity measured as in

the previous plots and NTFexpð�ΔϵÞ=Nns is the effective TF

concentration, i.e., TF copy number normalized by the binding site

affinity. Importantly, the steric model fit to that data are recovered

by setting FCmax = 0. Figure 5C shows the fold change as a func-

tion of TF copy number for both GalR and GalS binding to each of

the four binding sequences at binding locations upstream ranging

from −52.5 to −89.5. Each of these data sets fits well to the model
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Figure 5. Quantitative and qualitative differences between the isorepressors GalR and GalS.

A Plot showing the response of GalR (i) and GalS (ii) to native promoters regulated by the isorepressors. Refer to Appendix Fig S4A for direct comparison of regulation by
GalR and GalS.

B Regulatory curves for binding sites (BS1, BS2, BS3, and BS4) in GalR (i) and GalS (ii) at position +12.5 relative to the TSS. The insert in (i) shows the binding sequence
of the four motifs analyzed in this study. Nucleotide common to all four binding sites are in red. Nucleotide found in at least three sequences are in blue and in at
least two sequences are in green. Unique nucleotide is in black. The insert in (ii) shows the inferred-binding affinity for different binding sites in GalR and GalS.

C Plot showing fold change as a function of effective TF concentration, NTFexpð�ΔϵÞ=Nns. Analysis of the regulatory curves for BS1, BS2, BS3, and BS4 at different
locations (−52.5, −54.5, −58.5, −64.5, −72.5, −79.5, −96.5, and +12.5) relative to the TSS indicate different qualitative features of the TFs at different binding location.

D FCmax values at different binding locations for GalR (i) and GalS (ii).
E Shows a comparison of FCmax values of GalR and GalS at a given binding location. Data in each quadrant represent the unique features of GalR and GalS for the four

binding sites. The lower quadrant (showing repression in both) is extended to Appendix Fig S4D, to show locations with very low FCmax. The FCmax corresponding to
+12.5 is zero. For all the experimental results associated with this figure, single-cell fold change is calculated independently for the three biological replicates, and all
the single-cell data are binned. Each data point corresponds to the mean of single-cell data in the given bin, and error bars are the standard error of the data points
in the given bin. Error bars on the fits correspond to the 95% confidence interval of the fit.

Source data are available online for this figure.
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with FCmax, the regulatory function of the TF, as the sole fit param-

eter. Figure 5D(i,ii) show the regulatory role of each binding site

for GalR (i) and GalS (ii) as a function of binding location. Surpris-

ingly, we see several cases where one binding site at a position

causes activation whereas a different sequence causes repression

(i.e there are points both above and below the black dashed line at

1 in Fig 5D(i,ii)). Figure 5E compares the regulatory effect for GalR

and GalS. Data points fall in one of the four quadrants of this plot,

the upper right and bottom left quadrants are for binding

sequences that have the same qualitative role for GalR and GalS

regulation at that location. On the other hand, points in the top left

and bottom right quadrants have different qualitative regulatory

functions for GalR and GalS; we see that the activation by GalR

and repression by GalS is the most common form of differential

regulation between the two TFs. Finally, data points that fall along

the one-to-one dashed line have an identical quantitative regulatory

function with either GalR or GalS. Clearly, despite having similar

binding recognition, GalR and GalS can function as qualitatively

different proteins beyond merely a preference for a given binding

sequence and this difference depends on both binding sequence

and binding location.

Discussion

Genetic libraries have become an essential experimental resource in

functional genomics. The primary goal of such genome-wide mutant

collections is the unbiased study of all genes to reveal how each is

involved in the dynamics and robustness of a given cellular process.

In particular, there is a rich assortment of such libraries available in

E. coli including a single-gene deletion library (the keio collection

Baba et al, 2006; Yamamoto et al, 2009), a transcriptional reporter

library (the Zaslaver library; Zaslaver et al, 2006), and the ASKA

open reading frame clones (the ASKA library; Kitagawa et al, 2005),

among others. These mutant libraries have served as a stand-alone

tool to address fascinating biological problems. For example, the

keio deletion library has helped identify essential and nonessential

genes across different growth conditions and facilitated the recon-

struction of metabolic networks with higher precision (Orth et al,

2011; Fuhrer et al, 2017) and the transcriptional reporter library has

been instrumental in obtaining the precision and dynamics in

promoter activity under different extracellular perturbations

(Zaslaver et al, 2004). Similar libraries have been constructed in

other organisms; for instance, single-gene deletion libraries exist for

many bacteria such as Bacillus subtilis (Koo et al, 2017), Pseu-

domonas aeruginosa (Jacobs et al, 2003), and Acinetobacter baylyi

(Berardinis et al, 2008) and also eukaryotic organisms such as

Saccharomyces cerevisiae (Smith et al, 2011; Chong et al, 2012;

Giaever & Nislow, 2014). Importantly, these libraries have also

played crucial roles in unexpected ways, for instance the keio

library has been an essential tool in the study of modulating host-

microbe interactions in dietary and drug responses of C. elegans

(Watson et al, 2014; Garc�ıa Gonz�alez et al, 2017; Rosener et al,

2020).

The titratable TF library introduced here is designed as a readily

available genome-wide tool that enables quantitative control of indi-

vidual TFs in E. coli (Fig 1A). Classic techniques for studying TF

function rely on completely knocking out or over-expressing a given

TF in order to infer the regulatory or physiology role. The resource

introduced here provides the ability to control a TF in order to

observe its role as a function of its concentration, which is measur-

able thanks to a fluorescent fusion to the TF. Circumventing natural

TF copy number control is particularly important since TF genes are

typically auto-regulating, which makes TF control difficult; here the

TF is expressed entirely from a synthetic promoter that can be

induced with the small molecule aTC.

Many established tools, such as ChIP-seq and SELEX, have been

developed for the purpose of determining where TFs bind and to

which sequences they prefer to bind. Our library is designed to be a

complementary tool aimed at aiding studies seeking to determine a

TFs regulatory function once bound (Fig 1A). The titratable TF

library is versatile and can be combined with other single-gene

mutant library collections such as the transcriptional reporter library

(Zaslaver et al, 2006), the keio single-gene deletion library (Baba

et al, 2006), or the isolated regulatory position sweep library devel-

oped in our lab previously (preprint: Guharajan et al, 2021) in order

to make controlled measurements of TF regulation. The ability to

isolate and control the expression of individual TFs allows for char-

acterization of the role of individual TFs without entanglement from

their physiological function or role in higher-order network effects

such as autoregulation (Potvin-Trottier et al, 2016; Ali et al, 2020).

Similar strategies have previously enabled thorough characteriza-

tion of individual TFs (Garcia & Phillips, 2011; Brewster et al, 2014),

our library enables these approaches on a TF-wide level (Fig 1A).

We have demonstrated this use with two case studies examining

regulation by the zinc-responsive TF, ZntR, and the paralogous TFs,

GalR and GalS. In both cases, we were able to isolate and quantify

TF function through the use of the appropriate TF titration library

strains. Another crucial tool in both of these studies is the presence

of a quantitative model to interpret the data; the TF titration library

enables the characterization of gene regulation in a simplified

system where TF number is under control, which, in turn, enables

simpler models with fewer parameters that are not intrinsic to the

TF itself. For instance, in both examples, we measured regulation of

the studied TFs immediately downstream of the promoter as a way

to infer the affinity of our TFs to a binding site, in one case this

demonstrated that the binding affinity of ZntR is independent of zinc

concentration. Crucially for this case, knowing the affinity is not

enough to predict regulation, you must also know the regulatory

effect of the TF once bound. This is where our methodology of TF

characterization shines.

In the other example presented here, we measure regulation for

TF-binding downstream of the promoter, which demonstrated the

differences in binding affinity of GalR and GalS to specific binding

sequences. This is a crucial step towards disentangling affinity from

function. As a result, we could quantify how the TF function of the

two paralogs differed in terms of not only their affinity for specific

sequences but also in their function when bound to those

sequences.

Immense progress has been made in genetic circuit design using

TFs from a single family of TFs (Nielsen et al, 2016; Chen et al,

2020). Overall, the goal of improving the repository of well-

characterized TFs to include a greater diversity and more orthogo-

nality has the potential to enable genetic circuit design of more

complex responses with overall simpler architectures with fewer

parts. Ideally, this library can be used to not only gain an
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understanding of natural regulation but to also improve our under-

standing of the general input-output function of TF regulation and

expand the toolkit of synthetic biology (Fig 1A).

Materials and Methods

Construction of TF library

Escherichia coli MG1655 is the parent strain used in our library

construction. Single-gene deletions of TF genes in the Keio library

(with BW25113 as parent strain) are moved by P1 transduction

into E. coli MG1655 expressing constitutive TetR at the gspI locus,

and the kanamycin cassette associated with the keio knockout is

flipped using the frt flippase expressed from the pCP20 plasmid.

These strains serve as no fluorescence (and no TF) control strains

for the corresponding titratable TF strain in our library. Unless

otherwise stated, all steps are performed in 96-well plates.

Primers to amplify TFs are designed using customized matlab

codes. Individual TF genes are cloned by Gibson assembly into

pSC101 plasmid between the Ptet and aek-linker-mCherry

sequence. Gibson clones were confirmed by sequencing and used

as a template to amplify the Ptet-tf-aek-mCherry fusion gene for

integration at the ybcN locus. Chromosomal integration is assisted

by the lambda red recombinase proteins (exo, beta, and gamma)

expressed from pKM208 (Murphy & Campellone, 2003) in wild-

type MG1655. Successful integrants were confirmed by sequencing

and moved by P1 transduction into the corresponding TF control

strains. Initial versions of the library are constructed with the

mCherry sequence (here then referred to as mCherrywt) that was

later reported to have an internal start codon (preprint: Fages-

Lartaud et al, 2021). Having such an aberrant isoform might inter-

fere with the accurate quantification of the TF copy number.

Hence, the mCherry sequence of the original library was system-

atically modified to have a substitution of amino acid, methionine

(ATG) at position 10 with a leucine (CTG). Unless otherwise spec-

ified, all mCherry measurements are based on the mCherry vari-

ant, M10L (Refer to Appendix Figs S1A, and S4B and C) for the

comparison of mCherry fluorescence from mCherrywt and mCher-

ryM10L. Expression of additional cognate genes might be needed

for TFs requiring modifications (such as the phosphorylated TFs,

Appendix Fig S6).

Growth characteristics

For each experiment, 10 different TFs from the library (no TF

control and the corresponding titratable TF strains) and wild-type

MG1655 are grown in 96-well plates to characterize the growth and

mCherry fluorescence in M9-minimal media supplemented with

glucose. The strains are grown overnight in LB and diluted 104-fold

into M9-minimal media with different aTC concentrations (0, 1, 3,

5, 7, 9, and 15 ng/ml) and grown in 2 ml volume 96-well plates at

37°C and 250 rpm until it reaches OD600 of 0.4. Ten microlitres of

these cells are then diluted into 190 µl of the same media in 300 µl
volume 96-well plates and transferred to a plate reader with an auto-

mated setting (TECAN MPro-200). OD600 values and mCherry fluo-

rescence are measured every 30 min for up to 20 h. The growth rate

is then calculated in the exponential phase of growth. Background

subtracted OD600 values are log-transformed and a polynomial fit is

performed over a sliding window. A plot of the fit values across the

sliding window gives characteristic regimes: a noisy regime for the

lag phase, a distinct peak in the growth phase, and a plateau for the

stationary phase. The maximum of the peak value corresponds to

the growth rate of the particular strain. The growth rates of the test

strains are normalized by the growth rate of MG1655 (grown in the

same aTC concentration as the test strains) measured on the same

day. Normalized growth rates are used in hierarchical clustering to

determine different characteristic features of TF titration on growth

rates.

Estimation of calibration factor

The calibration factor, v, for the conversion of mCherry fluores-

cence to TF copy number is quantified as described in Brewster et

al (2012), by measuring the stochastic fluctuations in fluorescence

partitioning during cell division. Briefly, cells expressing the TF-

mCherry fusion protein are grown as described in the section for

Microscopy, and just before imaging 100 µl of cells from different

aTC concentrations are pooled together and washed twice with

M9-glucose minimal media containing no aTC to stop any further

production of mCherry. Cells are then spotted on 2% low melting

agarose pad made with M9-glucose minimal media. All samples

are imaged on an automated fluorescent microscope (Nikon TI-E)

with a heating chamber set to 37°C overnight. Phase images are

captured for roughly 100 fields and their positions are saved for

later. These phase images (named as Lineage tracker) will serve

as a source file for lineage tracking of the daughter cell pairs (I1
and I2). After one doubling time (roughly 1 h or depending on the

doubling time for different TFs), the microscope stage was

returned to the same field of view using the saved position matrix

and is imaged again (and named as daughter finder) now using

both phase and mCherry channels. The exposure time for

mCherry channel was set to 1 s and all nine TFs were measured

simultaneously with identical experimental settings. For partition

statistics to estimate the calibration factor cells saved as daughter

finder are segmented using a modified version of Schnitzcells code

(Rosenfeld et al, 2005). Daughter pairs (I1 and I2) are picked

manually by matching the segmented daughter finder with the

phase image in the lineage tracker. The mean pixel intensity and

area of the daughter pairs are obtained using region props. The

background fluorescence is estimated as described in Ali et al

(2020) using the inverse mask of individual frames. The sum and

squared difference in fluorescence are estimated from the total flu-

orescence of the daughter cells after division. The resulting single-

cell measurements are binned for summed fluorescence values

and fitted with a binomial distribution function to obtain the cali-

bration factor v for nine different TFs used in this study. Only TFs

that do not follow a volumetric partitioning during division can be

counted by this technique and to do so the TFs are assumed to be

distributed randomly on the chromosome. Clearly as shown in

Fig 1E, there are TFs (such as DhaR and NrdR) that are localized

in the cell and might not follow random partitioning during divi-

sion. Such TFs cannot be counted by this technique. In addition,

calibration factors for TFs that require co-factor or other modifi-

cations (Appendix Fig S2B and C) might be challenging to

measure in this manner.
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Estimation of absolute TF numbers for the entire library

For mCherry measurements, titratable library strains are grown

overnight in LB and diluted 104-fold into M9-minimal media with

different aTC concentrations (0, 1, 3, and 7 ng/ml) and grown in

2 ml volume 96-well plates at 37°C and 250 rpm until it reaches

OD600 of 0.2–0.4. Cells are then washed twice in 1X M9-minimal

media with no sugar and supplemented with spectinomycin to

ensure cells are arrested and there is no more protein synthesis.

Cells are then spotted on 2% agarose bed made with 1X-M9-

minimal media with no sugar (and with spectinomycin) and imaged

using conditions identical to that for calibration factor measure-

ments described above. Six beds are imaged per sample in both

phase and mCherry channel. Phase images are segmented using a

modified version of Schnitzcells code (Rosenfeld et al, 2005). Mean

pixel intensity of the mCherry fluorescence and pixel area of the cell

is obtained using region props, an inbuilt function in matlab. Back-

ground fluorescence is calculated using wild-type strain MG1655.

Total fluorescence is calculated by multiplying the background-

subtracted mean pixel intensity with the total pixel area of the cell.

mCherry fluorescence is further converted to protein copy number

per cell by dividing by the mean of the calibration factor v (as esti-

mated above for nine TFs). Each data point is a mean of single-cell

mCherry values of the given TF grown at the specified aTC concen-

tration. Error bars are the standard error in single-cell fluorescence.

Roughly, 150–1,000 cells are analyzed per sample. The data from

Schmidt et al (2016) are used to compare the TF copies to the physi-

ological concentration. The growth and culture conditions between

our work and the work of Schmidt et al (2016) have few variations,

which might cause discrepancy in the actual physiological concen-

tration of TFs. We grow cells in 200 µl volume in a 96-well plate

shaking at 250 rpm whereas in the work of Schmidt et al (2016)

cells were grown in 50 ml volume in 500 ml baffled flasks shaking

at 300 rpm. In addition, the M9 media used in this study does not

have any supplements (other than the carbon source) whereas in

Schmidt et al (2016) the media is supplemented with trace elements

and thiamine.

Microscopy and data analysis

ZntR knockout strain (no TF control strain) is used as an autofluo-

rescent strain for microscopic measurement and the same strain

transformed with the corresponding reporter plasmid serves as the

constitutive strain. The ZntR-TF-titration strain from the library is

directly transformed with different ZntR reporter plasmids. For

GalR-GalS reporter assays, the autofluorescence control strain is a

double knockout of galR and galS and the constitutive strain is the

double knockout strain transformed with the reporter plasmid. The

titratable-TF-mCherry fusion construct for GalR and GalS from the

library strain collection is P1-transduced into the double knockout

control strain to make the corresponding titratable library strains.

These strains are then transformed with the corresponding reporter

plasmids for binding assay. mCherrywt variant is expressed in

strains used for the measurements related to GalR and GalS. The

difference in TF copy number accounted for by the internal

isoform in mCherrywt is corrected using the linear correlation

between mCherrywt and mCherryM10L variants as shown in

Appendix Fig S4B and C.

For microscopic analysis, control strains and their respective

constitutive and titratable strains are grown overnight in LB media

and diluted 105-fold into fresh M9-minimal media supplemented

with glucose and different concentration of aTC. These strains are

grown for 16–18 h until it reaches a OD600 of 0.2–0.3. For experi-

ments with zinc as a co-factor, 0.1 M stock of fresh zinc sulfate is

added to the media at a concentration of 125 µM and serially diluted

to the desired zinc concentrations. As zinc sulfate is volatile the

stocks are stored at −20°C and thawed right before use. We observe

significant degradation of zinc even when stored at −20°C and

hence comparisons are usually made for experiments performed

with the same batch of zinc. Unless otherwise specified, the aTC

concentration used for all microscopic experiments are 0, 0.25, 0.5,

0.75, 1, 1.25, 1.5, 1.75, 2, 2.5, 3 ng/ml and 300 µl cells are grown in

2 ml-deep well 96-well plate. Once in steady state, cells from dif-

ferent aTC concentrations are pooled and washed twice with 1X PBS

and spotted on 2% low melting agarose pad made with 1X PBS. The

constitutive strains and autofluorescent strains are processed the

same way as the pooled library strain and all samples are imaged on

an automated fluorescent microscope (Nikon TI-E) with a heating

chamber set at 37°C. For constitutive and autofluorescence sample,

15 unique fields of view are imaged resulting in roughly 100–300
cells per sample. For pooled titration strains, 40 unique fields are

imaged per sample resulting in 1,000–2,000 cells per sample.

Segmentation of individual cells is performed using a modified

version of the matlab code, Schnitzcells (Rosenfeld et al, 2005). We

use this code to segment the phase images of each sample to identify

single cells. Mean pixel intensities of YFP and mCherry signals are

extracted from the segmented phase mask for each cell using region

props, an inbuilt function in matlab. The autofluorescence is calcu-

lated by averaging the mean intensity of the autofluorescence strain

in both mCherry and YFP channels and is subtracted from each

measured YFP or mCherry value. Total fluorescence for each chan-

nel is obtained by multiplying the mean pixel intensity with the area

of the cell. Fold change in expression for a given binding site is calcu-

lated by the ratio of total fluorescence of strains expressing the TF to

the strains with no TF. Fold change is also calculated for the TF

strains to the knockout expressing target YFP constitutively, without

any regulation by the TF. The final fold change is the ratio of fold

change with regulation and without the regulation. mCherry values

are converted to TF numbers using the measured calibration factor

for each individual strain. The values are binned for TF number. For

each experiment, three independent measurements are made and

binned for TF number. Each data point is the mean and standard

deviation of the binned value of each independent experiment.

Kinetic modeling

Based on the observation in Fig 4D, we built a simple kinetic model to

explore the regulatory features of ZntR (TF) mediated regulation of a

promoter that drives the expression of ZntA transporter (E). In the

model, external zinc (Zincout) is transported inside the cell with a rate

βin whereas the exporter facilitates the export of internal zinc (Zincin)

outside the cell with a rate βout. We assume that the TFs inside the cell

can either be zinc bound (TF*) or free (TF). The basal expression from

a TF-free promoter (Poff) and a TF*-bound promoter (P∗on) are r0 and r,

respectively. We further assume that the free TF-bound promoter

(Poff) completely represses the promoter. Here, by modulating the
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values of r with respect to the basal expression rate r0, we can study

the effect of different promoter strengths, e.g., for a saturating zinc

concentration, a promoter with r > r0 will act as an activator whereas

a promoter with r < r0 will act as a repressor. The set of ordinary dif-

ferential equations (ODEs) describing the dynamics of the system is

given below.

d½Zincin�
dt

¼ βin½Zincout� � βout½Zincin�½E� � γ1½Zincin�½TF� þ γ2½TF∗�;
d½TF∗�
dt

¼ γ1½Zincin�½TF� � γ2½TF∗� � kon½TF∗�½Poff� þ koff½P∗on�;
d½Pon�
dt

¼ kon½TF�½Poff� � koff½Pon�;
d½P∗on�
dt

¼ kon½TF∗�½Poff� � koff½P∗on�;
d½E�
dt

¼ r½P∗on� þ r0½Poff� � γ½E�;
(2)

with the following constraints,

½Poff� þ ½Pon� þ ½Pon�∗ ¼ 1;

½TF� þ ½TF∗� þ ½Pon� þ ½P∗on� ¼ ½TF total�;
½TF∗� þ ½P∗on� þ ½Zincin� þ ½Zincout� ¼ ½Zinctotal�:

(3)

Here, γ1 and γ2 are the rates at which the TF binds and unbinds

intracellular zinc. Pon and P∗on are the concentrations of promoters

bound by TF and TF*. γ is the degradation rate of the transporter, E.

For simplicity, the transporter (E) itself is the reporter gene here. In

Fig 4D, we show that the fold change versus TF curves are similar,

which tells us that the binding affinity (kon and koff) of TF and TF*

to the promoter is the same or equivalently, both the TF and TF*

bind DNA with a rate kon and unbind with a rate koff. The right-

hand side of the above equations is set to zero in order to obtain the

steady-state values of each component. Interestingly, the steady-

state solutions require only few free parameters, r, r0, and experi-

mentally observed parameters, the ratio kon/koff and the degradation

rate γ = log(2)/cell cycle. In Fig 4G, we plot the fold change of the

exporter (E) as a function of effective intracellular zinc concentra-

tion (Zoutγ1βin/γ2βout).

Data availability

This study includes no data deposited in external repositories. All

essential data are available as Source Data. Primers used in the

library construction are listed in Table EV1.

Expanded View for this article is available online.
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