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Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)

are standard indexes for determining disinfection effectiveness. Nevertheless, they are

static values disregarding the kinetics at sub-MIC concentrations where adaptation,

growth, stationary, and death phases can be observed. The understanding of these

dynamic mechanisms is crucial to designing effective disinfection strategies. In this

study, we studied the 48 h kinetics of Bacillus cereus and Escherichia coli cells

exposed to sub-MIC concentrations of didecyldimethylammonium chloride (DDAC). Two

mathematical models were employed to reproduce the experiments: the only-growth

classical logistic model and a mechanistic model including growth and death dynamics.

Although both models reproduce the lag, exponential and stationary phases, only the

mechanistic model is able to reproduce the death phase and reveals the concentration

dependence of the bactericidal/bacteriostatic activity of DDAC. This model could

potentially be extended to study other antimicrobials and reproduce changes in

optical density (OD) and colony-forming units (CFUs) with the same parameters and

mechanisms of action.

Keywords: dynamic modeling, disinfection, didecyldimethylammonium chloride (DDAC), B. cereus, E. coli,

bacteriostatic, bactericidal, sub-MIC concentration

1. INTRODUCTION

Designing effective disinfection strategies relies on understanding the mechanism of action
(bacteriostatic, bactericidal, or both) and at which concentrations, using the well described and
standardized minimum bactericidal concentration (MBC), minimum inhibitory concentration
(MIC), or even others such as the non-inhibitory concentration (NIC) (Lambert and Pearson, 2000;
EN-1276, 2009; ISO-20776-1, 2019).

Standard indexes of effective disinfectant concentrations are, however, endpoint static values,
usually measured after 18 or 24 h of incubation and starting from a fixed inoculum without
considering the inoculum effect and disregarding the bacterial kinetics (Mouton and Vinks, 2005;
García and Cabo, 2018). Note that, even when effective supra-MBC treatments are applied, the
kinetics of time-kill curves change with the disinfectant dose, as it has been widely analyzed in the
literature using mathematical models (Gyrk and Finch, 1998; Peleg, 2021).

On the other hand, understanding the kinetics of ineffective disinfection treatments is also
critical to prevent the emergence of resistance in bacteria. The non-volatile disinfectant may end
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on the environment at sub-MIC concentrations (Holah et al.,
2002; García and Cabo, 2018; Ribič et al., 2020) with the
corresponding emergence of resistant strains to the used
disinfectant or even other antimicrobials as antibiotics (Capita
and Alonso-Calleja, 2013; Nordholt et al., 2021), being nowadays
especially relevant due to the overuse of disinfectants during the
current SARS-CoV-2 pandemic (Pedreira et al., 2021). Moreover,
even when supra-MIC treatments are applied, growth may
be observed due to many practical problems as interfering
substances or bacterial formation of biofilms (Simões et al., 2010;
Araújo et al., 2013).

Mathematical models analyzing the sub-MIC treatments,
nevertheless, are only focused on non-disinfectant antimicrobials
such as antibiotics or toxic substances or particles (Liu et al.,
2005; Vázquez et al., 2011; Theophel et al., 2014) and are only-
growth models disregarding any decrease in bacterial population
numbers (Chatterjee et al., 2015). Models combining net growth
and death rates are needed since sub-MIC kinetics curves show
lag, exponential, stationary, and death phases and those models
can help to determine if a disinfectant works by increasing the lag
phase, decreasing the growth rate (bacteriostatic), increasing the
death rate (bactericidal), or a combination of both mechanisms
depending on its concentration.

The main urge to model sub-MIC kinetics is for quaternary
ammonium compounds (QACs), non-volatile disinfectants with
the risk to promote resistance (Kampf, 2018a). They are cost-
effective disinfectants with detergency properties, and thus,
they can be used as single-stage cleaning and disinfection
agents in low soiling conditions. QACs are widely employed in
industry, household a and even cosmetics products as detergents,
emulsifiers, softeners, disinfectants, or floating agents (Zhang
et al., 2015). This family comprises several amphiphilic cationic
surfactants with a general structure of N+R1R2R3R4X-, where R
represents a hydrogen atom, an alkyl group, or other functional
groups, and X represents an anion (Buffet-Bataillon et al., 2012).

Didecyldimethylammonium chloride (DDAC) is a commonly
employed QAC formed by two alkyl chains each comprising of 10
(C10, didecyl) carbon atoms. UE legislation also includes under
the name of DDAC such mixtures comprising C8 (octyl), C10,
and C12 (dodecyl) chains, with at least 90% of C10 chains (EURL-
SRM, 2016). DDAC is commonly found in the formulation of
healthcare products and household cleaners/sanitizers as well as
in the disinfection of surfaces and equipment in the food and feed
areas both alone and in mixtures with other detergents (Lim and
Chung, 2014; EURL-SRM, 2016). DDAC is especially common
in the dairy industry, where it is widely used for disinfection of
all kinds of surfaces on milking equipment, milk storage tanks,
and machines and even in the disinfection of udders in order to
prevent mastitis (EURL-SRM, 2016). When employed correctly,
DDAC is considered safe to operatives and consumers and causes
minimal corrosion of common materials, particularly compared
to oxidative disinfectants.

Didecyldimethylammonium chloride is antimicrobial acting
on the bacterial membranes and showing bacteriostatic and
bactericide activity depending on its concentration and the
growth phase of the population (Yoshimatsu and Hiyama, 2007;
Kampf, 2018a). The MIC values for DDAC vary among species

and isolates but its application at the recommended dosage in
commercial disinfectants seems to be not always enough to
inactivate all types of pathogens (Ramzi et al., 2020). In general,
most bacteria isolated from food have MIC values ranging from
0.5 to 6.0 mg L−1 (Kampf, 2018a). However, MIC values up to
1,024 mg L−1 for DDAC and others QACs have been reported in
bacteria isolated from retail meats in China (Zhang et al., 2016)
and the USA (Zou et al., 2014).

Large DDAC MIC values could be related to the ability
of bacteria to acquire resistance when exposed to sub-MIC
concentrations, as have been observed in Escherichia coli, with an
increase of 1.5 to 3-fold in MIC value (Kampf, 2018a). Moreover,
DDAC could promote cross-resistance to other disinfectants and
antibiotics (Langsrud et al., 2003; Walsh et al., 2003; Soumet
et al., 2016; Kampf, 2018b). The presence of these sub-MIC
disinfectant concentrations on surfaces can be explained as a
consequence of an incorrect calculation of the disinfectant work
concentration, the employ of expired or inappropriate stored
substances (with the consequent decrease in efficiency), the lack
of a successful pre-disinfection cleaning to remove organicmatter
(responsible of inactivation of disinfectant substances) or an
irregular spreading (Capita et al., 2019).

The aim of this study is to motivate the need for new
mechanistic models to study disinfection at sub-MIC treatments
and demonstrate the insight gained by this analysis. The case
study is the evaluation of the effect of DDAC on the growth
of the common foodborne pathogens E. coli and Bacillus cereus
(LeeNari et al., 2014) using measurements of optical density
(OD) and colony-forming units (CFUs/ml). Two models are
compared, the classical logistic only-growth model, where the
DDAC effect is described using the Weibull functions, and a
new mechanistic model that describes explicitly the mechanisms
of adaptation, growth, and death using the Hill equations for
the disinfectant effect. The mechanistic model shows a better
goodness-of-fit for OD growth and is analyzed and extended
to reproduce growth with both usual measurements (OD and
CFUs/ml) and to understand DDAC treatment.

2. MATERIALS AND METHODS

2.1. Bacterial Strains and Culture
Conditions
Nonpathogenic surrogates strains of B. cereus (CECT 495) and
E. coli (CECT 102) were purchased to Colección Española de
Cultivos Tipo (CECT, Universidad de Valencia, Spain). Both
B. cereus and E. coli are common foodborne pathogens and were
chosen by their differences at cell wall level, respectively Gram-
positive and Gram-negative. Stock cultures were kept at -80◦C in
culture media supplemented with 25% (v/v) glycerol.

The culture media selected for the dose-response assays was
meat-peptone broth (MPB) containing 5 gL−1 meat extract
(Scharlau SL, Barcelona, Spain), 10 gL−1 neopeptone (BactoTM.
BD Biosciences, Franklin Lakes, NJ, USA), and 5 gL−1 NaCl
(Emsure R©, Merck KGaA, Darmstadt, Germany) in distilled
water. DDAC (98 % purity; ABCR GmbH & Co KG, Karlsruhe,
Germany) was added to the media to obtain the different
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desired concentrations for sub-MIC treatments. The pH was
adjusted to 7.2 and the media was finally sterilized by autoclaving
(121◦C/15 min). Dose-response assays were performed in 300
mL Erlenmeyer flasks containing 180 mL of MPB. Flasks were
inoculated with 900 µL from a 21 h culture and incubated in an
orbital shaker (200 rpm) at 30◦C (B. cereus) or 37◦C (E. coli). A
previous screening was carried out to know the range of DDAC
concentrations with partial inhibitory effect under our specific
experimental conditions. The resulting DDAC concentrations
selected were 0.5, 0.75, 1.00, 1.50, 2.00, and 3.00 mg L−1 for E. coli
and 0.05, 0.07, 0.25, 0.80, 1.00, and 1.50 mg L−1 for B. cereus. Each
DDAC concentration was tested by duplicate. At predetermined
incubation times (0, 2, 4, 8, 12, 16, 20, 24, 30, 36, and 48
h), samples from each flask were taken and properly diluted
in peptone-buffered water for OD determination at 700 nm.
For comparative purposes, 1 mL samples from each flask were
several-fold diluted in peptone-buffered solution and 0.1 mL
aliquots were plated by duplicate on agarizedMPB (2%w/v agar),
resulting in a total of four plates per DDAC concentration tested
for each strain. Plates were incubated at previously indicated
temperatures for each strain and manually counted after 24–48
h of incubation.

2.2. Mathematical Modeling of Bacterial
Dynamics at sub-MIC Concentrations
Different types ofmodels have been studied in this study. First, we
compared the performance of two types of models to reproduce
OD growth and inhibition by DDAC: the classical logistic model
with disinfectant inhibition following the Weibull functions and
a dynamic model based on mechanisms of adaptation, growth,
inhibition, and death. Second, we extend the mechanistic model
to account for CFUs growth. Finally, we present the numerical
methods used for the simulation, parameter estimation, and
model analysis.

2.2.1. The Logistic Model With the Weibull Functions

to Describe the Disinfectant Inhibition

The first model applied for the description of DDAC effect on
bacterial growth measured with OD was a bivariate equation
based on the combination of the Weibull function as biocide-
concentration model modifying the most relevant kinetic-
parameters of the reparametrized logistic equation used for the
bacterial growth description (Rial et al., 2011; Vázquez et al.,
2011):

OD = X = Xm

1+ exp
(

2+ 4Vm
Xm

(λ − t)
) (1)

being X, the OD (absorbance at 700 nm, OD700) dependent
on three functions of DDAC concentration (C) describing the
maximum OD (Xm), the maximum growth rate (Vm), and the
lag phase (λ). These functions are assumed that comply with the
Weibull functions as follows:

Xm = X0
m

[

1− Kx

(

1− exp

{

− ln (2)

(

C

mx

)ax})]

(2)

TABLE 1 | Variables and parameters used for the logistic model.

Variables Units

t Time h

X Bacterial concentration measured with absorbance at 700 nm. AU

Xm Maximum bacterial load AU

Vm Maximum growth rate AU h−1

λ Lag phase h

C Concentration of disinfectant mgL−1

Parameters

X0
m Maximum bacterial load without disinfectant AU

Kx Maximum response affecting on Xm 1

mx Disinfectant corresponding to the semi-maximum response

affecting on Xm

mgL−1

ax Shape parameter affecting on Xm 1

V0
m Maximum growth rate without disinfectant AU h−1

Kv Maximum response affecting on Vm 1

mv Disinfectant corresponding to the semi-maximum response

affecting on Vm

mgL−1

av Shape parameter affecting on Vm 1

λ0 Lag phase without disinfectant h

Kλ Maximum response affecting on λ 1

mλ Disinfectant corresponding to the semi-maximum response

affecting on λ

mgL−1

aλ Shape parameter affecting on λ 1

AU, Absorbance units.

Vm = V0
m

[

1− Kv

(

1− exp

{

− ln (2)

(

C

mv

)av})]

(3)

λ = λ0
[

1− Kλ

(

1− exp

{

− ln (2)

(

C

mλ

)aλ
})]

(4)

Parameters meaning and units are summarized in Table 1.

2.2.2. The Mechanistic Model With the Hill Equations

to Describe the Disinfectant Effect

As an alternative to the classical logistic model with the Weibull
functions, we derived amodel based on cell adaptation, substrate-
based growth with inhibition by cell density and death. The idea
can be outlined using the following biochemical reactions:

Adaptation of latent cells to adapted cells Xl
ka−→ X (5)

Substrate-based-growth X + (1/YS) S

(

kg
ki+X

)

−−−−→ 2X

with inhibition by cell density (6)

Death of latent cells Xl
kd−→ 0 (7)

Death of adapted cells X
kd−→ 0 (8)

where Xl and X are, respectively, the OD of latent and adapted
cells and S is the available substrate that is consumed (with yield
coefficient Y) when adapted cells divide. The mass action was
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assumed for all the biochemical reactions (i.e., constant rates,
ka and kd for adaptation and death, respectively, multiplied for
the reactants) with exception of the growth rate. In this reaction,
we included the inhibition by cell density using Michaelis–
Menten kinetics.

The mass balance of the reactions results on the
following equations:

dXl

dt
= −ka Xl − kd Xl (9)

dX

dt
= ka Xl +

(

kg

ki + X

)

SX − kd X (10)

dS

dt
= −YS

(

kg

ki + X

)

SX (11)

OD = (Xl + X)+ αXd (12)

CFUs = β1010(Xl + X) (13)

consisting of three ordinary differential equations (ODEs) and
two types of measurable variables:

• Optical density: sum of the contribution of the latent (Xl) and
adapted cells (X) plus non-lysed death cells as assumed by
Haque et al. (2017). Note that dead cells can be calculated as
Xd = Xl(t = 0)−(Xl+X) and that the percentage of non-lysed
cells is assumed constant and represented by α ∈ [0, 1].

• Colony-forming units: sum of alive cells (latent or adapted)
multiplied by a scale factor.

To understand the effect of the disinfectant on the different
mechanisms, we added dependence of the disinfectant
concentration using the Hill equations:

kg = k0g
IC50,g

γg

Cγg + IC50,g
γg

(14)

ka = k0a
IC50,a

γa

Cγa + IC50,a
γa

(15)

kd = k0d + k∗d
Cγd

Cγd + EC50,d
γd

(16)

where decreasing Hill functions are assumed to model inhibition
of growth and adaptation rates with increasing disinfectant
concentration (decreasing dose-response curves), and an
increasing Hill function is assumed to describe the increase of
the death rate with the disinfectant (increasing dose-response
curve) (Mouton and Vinks, 2005; Santillán, 2008). In these
equations, γ is the Hill coefficient shaping the effect of the
disinfectant (higher values model sharp functions, similar to
step functions with only two possible values, and low values
describe an almost constant function except for a jump at
zero and around 1 simulates a sigmoid curve) and IC50 and
EC50 are the half maximal inhibitory/effective concentration
(disinfectant concentrations at which 50% of the maximum
effect is obtained). Note that without disinfectant the growth
and adaptation velocities correspond with k0g and k0a. In absence

of disinfectant, we allow death at k0
d
to reproduce the final

death phase, whereas k∗
d
scales the effect of the disinfectant. The

variables and parameters are summarized in Table 2.

TABLE 2 | Variables, initial conditions, and parameters used for the

mechanistic model.

Variables Units

t Time h

Xl Optical density of latent cells AU

X Optical density of adapted cells AU

S† Substrate for growth (availability of resources) 1

C Concentration of disinfectant mgL−1

Ka = ka Adaptative specific rate h−1

Kg = kg
ki+X Growth specific rate h−1

Kd = kd Death specific rate h−1

Initial conditions

Xl (t = 0) = OD(t = 0)Initial density of latent cells AU

X (t = 0) = 0 Initial density of adapted cells AU

S(t = 0) = 1 Initial substrate density, normalized to 1 1

Parameters

k0a Adaptation rate without disinfectant h−1

k0g Growth rate without disinfectant AU h−1

k0d Death rate without disinfectant h−1

k∗d Scaling of disinfectant effect on death h−1

ki Inhibition constant due to cell density AU

IC50,a Half maximal inhibitory concentration of

adaptation rate

mgL−1

IC50,g Half maximal inhibitory concentration of growth

rate

mgL−1

EC50,d Half maximal effective concentration on death mgL−1

γa Effect shape of disinfectant over adaptation

rate

1

γg Effect shape of disinfectant over growth rate 1

γd Effect shape of disinfectant over death rate 1

YS Yield coefficient 1/AU

α Contribution of death cells to OD 1

β Scaling factor from OD to CFUs CFUs /AU mL

AU, Absorbance units. † Normalized substrate concentration is considered as the initial

substrate is not identifiable.

2.3. Numerical Methods
For the model simulation, calibration (estimation of unknown
parameters), and analysis, we use numerical methods
implemented in AMIGO2 (Advanced Model Identification
using Global Optimization) software, a multi-platform
toolbox implemented in Matlab (Balsa-Canto et al., 2016b).
The code, with all the selected options for simulation and
optimization, is freely available at https://doi.org/10.5281/
zenodo.5167910.

For the model calibration, we have selected the maximization
of the log-likelihood function, equivalent under common
assumptions [refer to Balsa-Canto et al. (2016a) for details] to
minimize the least-squares function (squares of the residuals)
divided by the standard deviation. In this study, we calculate the
standard deviation for each time-point from the experimental
replicates (refer to calculated standard deviations for each time-
point in Supplementary Figure S1 and calculate the mean for
each bacteria (B. cereus, E. coli) and type of data (CFUs, OD).
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Therefore, the objective is to find the parameters that minimize:

J = 1

σ 2

nexp
∑

j=1

nt
∑

i=1

(Yi,j − Ŷi,j)
2, with σ = σij (17)

where nexp and nt are the number of experiments (seven
including the control without disinfectant for each bacterial
strain) and the number of time data points, respectively, and
being Y , σ , and Ŷ the data, standard deviation, and model
predictions, respectively. Bounds considered for the parameters
were [0, 15] with the exception of α ∈ [0, 1] and β ∈ [0, 100].

The confidence intervals for the parameters were estimated by
±t

γ

α/2

√
Cii, where Cii are the diagonal elements of the confidence

matrix, t
γ

α/2 is given by Student’s t-distributionwith γ the number
of degrees of freedom and (1 − α)100% selected to 95%. The
Cramér-Rao inequality was employed to compute a bound for the
confidence matrix using the Fisher information matrix (Balsa-
Canto et al., 2016a).

To compare the performance among models, we employed
the following well-known indexes: the adjusted R2, the

corrected Akaike information criterion (AICc), and the Bayesian
information criterion (BIC). The three indexes are a function
of the error existing between model and experimental data,
penalizing the number of parameters to be estimated. Indexes
with lower numbers imply better performance.

3. RESULTS AND DISCUSSION

3.1. Modeling Growth Measured With OD
In this study, we compared a classical model (logistic growth
with inhibition using the Weibull functions) with a model
derived from mechanisms (inspired by biochemical reactions of
adaptation, substrate-based growthwith inhibition by cell density
and death).

As explained in section 2.2.1, the classical model describes the
effect of DDAC on bacterial growth based on the combination of
the Weibull function as biocide-concentration model modifying
the most relevant kinetic-parameters of the reparametrized
logistic equation used for the bacterial growth description. We
should mention that the derivative form of this model was used

FIGURE 1 | Performance of logistic model (figures on the left) and mechanistic model (figures on the right) to reproduce optical density (OD) growth of Bacillus cereus

(A,B) and Escherichia coli (C,D) at different Didecyldimethylammonium chloride (DDAC) concentrations (refer to legend). Lines show model output, whereas

experimental data are represented by dots.
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to allow its implementation in the AMIGO2 software, refer to
https://doi.org/10.5281/zenodo.5167910 for details.

On the other hand, the model derived in this study assumes
the followingmechanisms (refer to section 2.2.2 formathematical
details of the model):

• Initially, cells are in a latent state (Xl) without the potential
to divide. The adaptation of latent cells can be interpreted in
terms of the following biochemical reaction:

Xl
kaXl−−→ X

where the specific adaptation rate (or rate per capita) is a Hill-
decreasing-function of the disinfectant concentration ka(C), as
described later, and the total rate follows the mass action law
(Ka = ka X).

• Adapted cells (X) grow if there is disponibility of nutrients
(substrate S) and this growth is inhibited by cell density using
Michaelis–Menten kinetics. The biochemical representation is
as follows:

X + (1/YS) S

kg
ki+X

SX

−−−−−→ 2X

where 1/YS is the yield coefficient, the specific growth rate is
again a Hill-decreasing-function of disinfectant kg(C) and ki
is the coefficient regulating the inhibition due to cell density
(with low values for strong inhibition by large cell numbers).
Note that this inhibition encodes different mechanisms like
the inhibition for the production of waste in a cell cycle. This
biochemical reaction describes both the exponential growth
phase and the stationary phase.

• Latent and adapted cells may die:

Xl
kd Xl−−→ 0

X
kd X−−→ 0

Death occurs with a specific rate dependent on a Hill-
increasing function on the concentration of disinfectant kd(C).
Note that death may be active during the whole dynamics
and determines the death phase when this rate surpasses the
growth rate (negative cell growth).

• Cellular adaptation, growth, and death are assumed to
depend on DDAC concentration. As adaptation and growth
rates commonly decrease with disinfectant concentration, we
selected a decreasing dose-response curve, whereas for death
an increasing dose-response curve was assumed. For the shape
of the dose-response, we employed the Hill Equations (14–
16): standard functions on pharmacodynamics selected due to
their flexibility and their mechanistic interpretation, providing
estimations of half maximal inhibitory/effective concentration
of the disinfectant over the different mechanisms (Regoes
et al., 2004).

• Optical density includes the direct contribution of the latent
and adapted viable cells plus some contribution [to be
estimated, as previously assumed in Haque et al. (2017)] of

TABLE 3 | Performance of both models to reproduce the data (measured in terms

of the Adjusted R2, AICc, BIC) and estimated parameters.

B. cereus E. coli

Logistic

model

Mechanistic

model

Logistic

model

Mechanistic

model

Adj. R2 0.97 0.98 0.99 1.00

AICc 3,116.59 1,831.19 16,229.24 7,152.58

BIC 3,141.37 1,857.59 16,253.38 7,178.28

Parameters X0
m = 5.3 k0a = 15 X0

m = 2.4 k0a = 0.35

Kx = 14 k0g = 0.59 Kx=11 k0g = 0.33

mx = 6.9 k0d = 0.003 mx = 4.2 k0d = 0.023

ax = 1.5 k∗d = 15 ax = 6.2 k∗d = 12

V0
m = 0.33 ki = 0.51 V0

m = 0.19 ki = 0.24

Kv = 1.1 IC50,a = 0.021 Kv = 0.19 IC50,a = 0.71

mv = 5 IC50,g = 15 mv=0.91 IC50,g = 15

av = 0.11 EC50,d = 3.1 av = 15 EC50,d = 3.7

λ0 = 3.2 γa = 1.9 λ0 = 3 γa = 15

Kλ = 10 γg = 0.076 Kλ = 4.7 γg = 0.68

mλ = 3.2 γd = 4.7 mλ = 1.3 γd = 14

aλ = 0.65 YS = 0.16 aλ = 2.9 YS = 0.22

α = 0.32 α = 0.0001

the dead cells (including those viable but not cultivable cells
undetected by plating). Mathematically, this is expressed as
follows where dead cells can be calculated as the initial total
cells [only latent cells Xl(t = 0)] minus latent and adapted
cells at a given time:

OD = (Xl +X)+ αXd = (Xl +X)+ α
[

Xl(t = 0)− (Xl + X)
]

Under these assumptions, we derived a model consisting of a set
of three ODEs plus an algebraic equation defining the measured
variable OD (refer to section 2.2.2). We should mention that
for its implementation in the AMIGO2 toolbox, the derivative
equation of the OD function was implemented. Refer to code for
details at https://doi.org/10.5281/zenodo.5167910.

Figure 1 depicts the performance of the logistic and
mechanistic model to reproduce the growth of B. cereus and
E. coli measured using OD. Both models reproduce the data
trends, with the main difference being the ability of the
mechanistic model to describe the smooth transition to the
stationary phase in B. cereus (Figure 1B) and the initial death
phase for E. coli (Figure 1D). Moreover, the mechanistic model
starts from the experimental initial conditions, whereas the
logistic model allows flexibility for this condition.

Table 3 shows three standard indexes to measure the model’s
ability to reproduce the data penalizing overparametrisation: the
adjusted R2, the corrected AICc, and the BIC. All criteria show
a lower value (despite penalizing the models with many degrees
of freedom) for the mechanistic model, where 13 parameters
were estimated instead of the 12 estimation parameters for the
logistic model.

The mechanistic model was selected for the rest of the study
due to a better goodness-of-fit and its mechanistic insight.
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FIGURE 2 | Performance of mechanistic model to reproduce growth measured with OD [figures on the left, (A,C)] and colony-forming units (CFUs) [figures on the

right column, (B,D)] for B. cereus [first row, (A,B)] and E. coli [second row, (C,D)] at different DDAC concentrations (refer to legend). Lines show model output,

whereas experimental data are represented by dots.

We want to stress that although both models show good
performance, which was only slightly lower for the classical
model, the insight from the mechanistic model was determinant
to make the decision. Mechanistic models allow a deeper study of
the process and (as shown in the next section) can be extended to
account also for CFUs by adding only one extra parameter.

3.2. Extending the Mechanistic Model to
Reproduce Growth Measured With CFUs
Both OD and CFUs are related standard methods to
measure bacterial concentration dynamics but differ in their
interpretation. OD is a fast method but is affected by many
factors, including dead cells in the medium with intact cell
wall (Stevenson et al., 2016), making estimations of alive cells
unreliable, whereas CFUs provides reliable estimations of viable
cells, but it is experimentally time-consuming. Estimations
using only CFUs were tested with both logistic and mechanistic
models (data not shown), with better estimations for the
mechanistic model for including the death phase observed in
the data.

We extended the mechanistic model derived in this study to
explain both, OD and CFUs data. Let us recall here the OD
variable:

OD = (Xl + X)+ αXd

being a function of latent, adapted, and dead cells. For the
modeling of CFUs, we consider only alive cells (either latent or
adapted):

CFUs = β 1010 (Xl + X)

with β 1010 a scaling factor transforming OD to CFUs.
Figure 2 shows how assumed mechanisms are sufficient to

reproduce OD and CFUs using the same adaptation, growth, and
death parameters. The mechanistic model has 14 parameters: 12
common parameters plus α, defining contribution of dead cells
to OD, and β 1010, which represents the difference between OD
(usually one order of magnitude) and CFUs (varying from 10
orders of magnitude for B. cereus and 12 for E. coli).

Table 4 shows the model performance in terms of adjusted
R2, AICc, and BIC. Note that now the model has been
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challenged to reproduce both OD and CFUs with the same
parameters and, although indexes are acceptable for the
measured experimental errors, are worse than when reproducing
only OD. To further analyze that the performance is satisfactory,
we have included the confidence intervals of the estimated
parameters, where the data uncertainty is also considered (refer
to Supplementary Figure S1).

The graphical picture of how adaptation, growth, and death-
specific rates change with DDAC is shown in Figure 3. Note that
growth-specific rate is inhibited by limiting substrates and large
cell density. To simplify the figure, we plotted kg assuming that
resources are not limiting (S is almost constant) and inhibition
by cell density is not relevant, and therefore, Kg ≈ kg .

TABLE 4 | Results (performance indexes and estimated parameters with their

confidence intervals) for the extended mechanistic model to account for both OD

and CFUs growth with DDAC.

B. cereus E. coli

Adj. R2 0.96 0.96

AICc 3,147.29 21,026.27

BIC 3,188.28 21,066.64

Parameters ± CI k0a = 15 ± 63 k0a = 0.68 ± 0.13

k0g = 0.6 ± 0.025 k0g = 0.34 ± 0.0059

k0d = 0.0035 ± 0.0016 k0d = 0.022 ± 0.0015

k∗d = 13 ± 62 k∗d = 15 ± 2.2

ki = 0.54 ± 0.057 ki = 0.29 ± 0.016

IC50,a = 0.023 ± 0.053 IC50,a = 0.65 ± 0.0068

IC50,g = 14 ± 24 IC50,g = 15 ± 2.2

EC50,d = 3 ± 3.3 EC50,d = 3.8 ± 0.05

γa = 1.8 ± 0.22 γa = 12 ± 0.46

γg = 0.078 ± 0.024 γg = 0.71 ± 0.039

γd = 4.8 ± 0.25 γd = 15 ± 0.61

YS = 0.16 ± 0.0067 YS = 0.23 ± 0.0082

α = 0.28 ± 0.027 α = 6.9e-07 ± 0.013

β = 0.33 ± 0.0045 β = 78 ± 0.47

3.3. Discussion
In this study, we derived a new mechanistic model able to
represent the different phases (adaptation, growth, stationary,
and death) at sub-MIC concentrations of DDAC. The logistic
model, the standard model used to quantify growth inhibition
with bacteriostatic antimicrobials, was unable to reproduce
the last death phase of the growth curves. This limitation
was previously detected when modeling the inhibition of
E. coli and Staphylococcus aureus due to silver nanoparticles
(Chatterjee et al., 2015). As with sub-MICDDAC concentrations,
nanoparticles are mostly bacteriostatic but growth curves show a
decline at long times.

The derived model was calibrated from and did reproduce
the two most common measurements of bacterial population
numbers, OD and CFUs, using the same parameters for
adaptation, growth, and death rate. Results show that E. coli
dead cells do not affect OD, probably due to severe cell lysis
and their not appreciable effect in OD measurement (Stevenson
et al., 2016). However, 32% of B. cereus dead cells contribute
to OD. Two hypotheses can explain this estimation: either this
contribution is due to viable but nonculturable cells or either
some cells are non-lysed since B. cereus has more resistance to
lysis than E. coli (Fykse et al., 2003).

The analysis of the developed model confirms the literature
observation that DDAC is bacteriostatic and bactericidal
depending on its concentration and the growth phase of the
microbial population (Yoshimatsu and Hiyama, 2007; Kampf,
2018a). The growth rate is affected in both B. cereus and E. coli.
In B. cereus the growth decreases sharply only by adding low
concentrations of DDAC and remains almost constant afterward
(γg close to zero), as can be seen in Figure 3, being, therefore,
IC50,g irrelevant and with large uncertainty. Although Hill
functions are very uncertain, and not useful to infer exactly
at which concentration is this sharp decrease, the growth rate
should be at least 0.6 h−1 when DDAC= 0mg L−1and 0.4 h−1 for
DDAC = 0.5 mg L−1 (the DDAC concentrations experimentally
tested) to fit the data. In E. coli, growth decreases smoothly when
DDAC increases (γg = 0.078 and IC50,g = 14). This can be also
observed in Figures 3C,D for B. cereus and E. coli, respectively.

FIGURE 3 | Dependence of adaptation, growth (under the assumptions of non-inhibition by substrate availability and cell density), and death specific rates on DDAC.

The bacteriostatic action is seen in the decrease of growth rate (kg) and the bactericidal in the increase of death rate (kd) as a function of DDAC concentration for B.

cereus (A) and E. coli (B). The intersection of growth and death rates gives the minimum concentration of DDAC for which net growth is zero (Coates et al., 2018) for

B. cereus (C) and E. coli (D).
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On the other hand, the bactericidal effect is also detected for both
B. cereus and E. coli despite being the estimated dying rates the
most uncertain model kinetics (as evidenced by the parameter
confidence intervals). Whereas for B. cereus the bactericidal effect
increases smoothly with DDAC concentration (Figure 3C), this
behavior is more abrupt for E. coli.

The model also allows the study of the DDAC changes
in the lag phase, a mechanism that is not considered when
simply classifying a disinfectant as bacteriostatic or bactericidal.
Adaptation is fast in B. cereus (small lag phase) and slow in
E. coli. The model captures this behavior using larger values
of ka for B. cereus (maximum allowed value k0a = 15) than
for E. coli (k0a = 0.35). Note that large confidence intervals
are reported for B. cereus adaptation rate as faster adaptation
rates result in the same dynamics where adaptation is complete
within minutes or seconds at c = 0. Despite both strains
showing the different magnitude of adaptation, the change of
adaptation with DDAC concentration (Figures 3A,B) shows a
similar trend. Whereas for both adaptation is high without
DDAC, when DDAC concentration increases there is a deep
decrease of adaptation, therefore, showing longer lag phases at
high DDAC concentrations.

The analysis of the lag phase with DDAC concentration
is particularly relevant to understanding the implications of
MIC values and how they depend on the growth phase
(Yoshimatsu and Hiyama, 2007; Kampf, 2018a). Lack of growth
after 24 h could be due to different mechanisms: either an
extremely large lag phase or that the death rate is equal or
larger than the growth rate [zero or negative net growth rate,
also commented by Mouton and Vinks (2005) the stationary
concentration]. Assuming no effect of the limiting substrate and
MIC representing the concentration of zero growth rate (Coates
et al., 2018), the model can be used to calculate the MIC using
the intersection of growth and death rate (kg and kd). As shown
in Figure 3C there is net growth of B. cereus for disinfectant
concentrations below 1.39 mg/L and the bacteriostatic effect is
greater at low concentrations of DDAC whereas the bactericidal
effect is higher at larger concentrations. On the other hand
Figure 3D shows a similar trend, but with less bacteriostatic effect
and with a MIC of 2.86 mg/L.

4. CONCLUSION

A new mathematical model capable to reproduce net growth
and death kinetics is derived to study DDAC effects at sub-
MIC concentrations. The model describes DDAC influence on
adaptation, growth, stationary, and death phases and discerns
if the disinfectant is bactericidal, bacteriostatic, or both, and
at which concentrations. The model also considers adaptation,
which is relevant to detect if the absence of growth after treatment
is due to the use of supra-MIC treatments or because there is a

strong delay in the lag phase and bacteria can grow hours later, as
observed in E. coli experiments. The analysis of the model reveals
that DDAC is both bacteriostatic and bactericidal but mainly
bacteriostatic at low sub-MIC concentrations and bactericidal at
large sub-MIC concentrations.

Moreover, the model is able to reproduce the behavior of both
OD and CFUs measurements using the same mechanisms and
it is sufficiently flexible to account for different forms of the
disinfectant effect and could be used to study the mechanisms
of action of different types of antimicrobials, like antibiotics, at
sub-MIC concentrations.
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