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ABSTRACT: In this paper, we introduce two simple
quantum dynamics methods. One is based on the popular
surface-hopping method, and the other is based on rescaling of
the propagation on the bath ground-state potential surface.
The first method is special, as it avoids specific feedback from
the simulated quantum system to the bath and can be applied
for precalculated classical trajectories. It is based on the
equipartition theorem to determine if hops between different
potential energy surfaces are allowed. By comparing with the
formally exact Hierarchical Equations Of Motion approach for
four model systems we find that the method generally
approximates the quantum dynamics toward thermal equili-
brium very well. The second method is based on rescaling of the nonadiabatic coupling and also neglect the effect of the state of
the quantum system on the bath. By the nature of the approximations, they cannot reproduce the effect of bath relaxation
following excitation. However, the methods are both computationally more tractable than the conventional fewest switches
surface hopping, and we foresee that the methods will be powerful for simulations of quantum dynamics in systems with complex
bath dynamics, where the system−bath coupling is not too strong compared to the thermal energy.

■ INTRODUCTION

Dissipation in quantum systems is a phenomenon playing a role
in many physics and chemistry problems. An accurate
description of quantum dynamics is thus crucial for under-
standing many physical and chemical phenomena. Such
phenomena include photosynthesis, vibrational energy redis-
tribution, and photoisomerizations. A popular approach to this
problem is rooted in coupling a system described by a quantum
mechanical approach with a bath described at a more
approximate level of the theory.1,2 Since Ehrenfest proposed
the first such approach3 numerous alternatives have been
proposed. The Hierarchical Equations Of Motion (HEOM)
theory4−6 and the QUAsiadiabatic Propagator Path Integral
(QUAPI) method7 stand out as two formally exact methods.
These methods, while accurate, are computationally prohib-
itively demanding as the size of the quantum system and bath
increase. A popular alternative is the Surface Hopping family of
approximations8 with the so-called Fewest Switches Surface
Hopping (FSSH) as proposed by Tully9,10 as the most
common approximation. Numerous other approximate meth-
ods for quantum dynamics in open systems have been
developed and tested.1,11,12,12−37 The key motivation for this
paper is to develop simple approximate quantum dynamics
algorithms that allow treating sizable and complex systems, for
which the formally exact methods are computationally too
expensive or too complicated to formulate.

In the following, a brief overview of the most popular of the
currently existing methods for calculating quantum dynamics is
given. Currently, one of the most popular quantum dynamics
approaches is the HEOM. It was developed for different types
of bath coordinates including overdamped5,6 and under-
damped37 Brownian oscillator modes. Combinations of
essentially arbitrary Gaussian baths can be modeled. However,
for every added bath mode the computational cost of the
HEOM increases. Significant work has been made to make this
method computationally more tractable including approxima-
tions made in the hierarchical expansion used to treat the
bath38 and development of efficient GPU codes.39 The key
limitations of this method are, thus, that it scales very
unfavorably with systems size and that it is limited to Gaussian
bath dynamics. The bath is treated in a stochastic manner, and
the bath density of states must be preparametrized.
For weakly coupled systems perturbative approaches for

quantum dynamics as that developed by Redfield40 and
modifications of this41 have become popular. A perturbative
approach developed by Sumi is based on a generalization of
Förster energy transfer to multichromophoric systems.42−45

These approaches are computationally rather cheap but limited
by their perturbative nature and not applicable to degenerate
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systems, where the energy gap between the donor and acceptor
become small compared to the coupling in which the
perturbation is made. These methods further build on the
assumption of Gaussian dynamics and a stochastic description
of the bath.
The Surface Hopping approach proposed by Tully9,10 is

simply a postulated solution to solve quantum dynamics even
recent attempts have been at least partially successful in a
formal derivation.46 In essence, the system−bath interaction is
treated in such a way that the bath at all times only feels a force
from a specific state of the system, and through carefully chosen
stochastic “hops” between these states trajectories are obtained,
where correlations between bath and system are preserved.
From our perspective, one of the powerful points of Surface
Hopping is that it allows the calculation of quantum dynamics
using bath trajectories. It is therefore not limited to Gaussian
dynamics, and it can describe systems with very anharmonic
bath modes and systems, where the notion of a bath density of
states is not valid. This also allows a quite simple analysis of the
correlation between bath and system dynamics.47 Still, because
of the nature of the method, quite a few fundamental questions
on the application and details of how to apply the method exist,
and many adapted versions of the method have emerged.8,48−54

The method has still proven useful for studying many chemical
problems, and it has, for example, been implemented in the
Newton-X software package.55 A particular drawback of the
method is that it requires the simultaneous solution of the
explicit quantum and classical dynamics, which for large
systems can be rather time-consuming.
Alternatively, the quantum dynamics can be propagated on

the bath potential energy surface corresponding to the ground
state,56 equivalent to Ehrenfest dynamics without quantum
feedback.3 This type of approach has recently been
implemented to model linear absorption and two-dimensional
spectroscopy with quite some success57−62 and will here be
denoted the Numerical Integration of the Schrödinger
Equation (NISE) approach. An important advantage of the
NISE method is that it can be applied to systems with arbitrary
bath dynamics, including baths with multiple underdamped and
non-Gaussian63−66 modes without any additional computa-
tional cost of the quantum propagation. As long as a trajectory
of a time-dependent Hamiltonian can be constructed the
method can be applied. Furthermore, non-Condon effects67

including effects of simple rotations can be trivially included in
spectral calculations.68 The method scales very favorably with
system size,60 and it is applicable to simulate spectroscopic
observables of systems consisting of hundreds of coupled
chromophores69−73 and treat more than 1 × 105 coupled
quantum states needed to simulate two-dimensional infrared
and sum-frequency generation spectra of proteins.60,74 The
obvious drawbacks are that as in this method the quantum
system feels the classical bath the propagation of the classical
bath does not depend on the state of the quantum system. The
quantum dynamics thermalize to an infinite temperature and
bath relaxation, for example, causing spectral Stokes shifts are
absent.75

The goal of the present paper is to develop computationally
tractable methods for approximate quantum propagation at
finite temperatures. The methods should allow the use of
arbitrary bath dynamics, be applicable to large systems, and
have approximately correct thermalization. For the first
approach, the basic idea that will be elaborated on in the
Methods Section is that from the equipartition theorem we

know how much thermal energy is available on average in each
bath coordinate. We will use this knowledge to determine when
a hop is allowed in a Surface Hopping algorithm. We will
neglect any feedback of the quantum system on the classical
bath allowing the use of precalculated classical trajectories. A
key assumption for this approximation to apply is that the
dissipation of energy within the classical system is faster than
the frequency of attempted surface hops in the Surface
Hopping algorithm. This approximation will potentially solve
the thermalization problem but obviously not the bath
relaxation problem, for example, leading to Stokes shifts. We
will denote the new Surface Hopping approach the Simple
Equipartition Surface Hopping (SESH) approach. While the
number of Surface Hopping approximations is very large8 to
the best of our knowledge this approximation has not been
presented before. We further define an adapted NISE approach
using simple rescaling of the nonadiabatic couplings. This
approach will be denoted the thermalized numerical integration
of the Schrödinger equation approach (TNISE). We foresee
that such methods may be particularly useful for calculating
two-dimensional infrared76 (2DIR) and two-dimensional UV/
visible77 (2DUVvis) spectra for large systems, which explicitly
depend and report on the quantum dynamics of the excited
states. Here we will test the new models against the exact
HEOM method for coupled two-level systems, which has
become a standard test for approximate quantum propagation
methods.5,12,15,21,54

The outline of the remainder of this paper is as follows. In
the Methods Section, we will briefly discuss the basic coupled
two-level models used for testing the new approximations, the
HEOM and NISE implementations used for comparison will be
summarized, and the new SESH and TNISE methods will be
described in detail. In the Results Section, we will compare
results for these methods for four different situations mimicking
typical problems, where the new methods may be applicable.
These are two problems for vibrational dynamics and two
problems for electronic excitations. Finally, the conclusions will
be presented along with a discussion of the potential
applications of the new methods.

■ METHODS
We will consider a simple system of coupled two-level systems
described by the Hamiltonian

σ σ= | ⟩⟨ | + | ⟩⟨ | Δ +

+ | ⟩⟨ | + | ⟩⟨ |

H t x t x t

J

( ) 1 1 ( ) 2 2 ( ( ))

( 1 2 2 1 )
1 E 2

(1)

Here, the wave functions for the two sites are |1⟩ and |2⟩, while
the difference in the energy between the two sites is ΔE. As the
dynamics of the quantum system does not depend on the
absolute energy of the sites the average energy of site 1 was set
to 0. The site energies fluctuate depending on the bath degrees
of freedom, x1, and x2, with a coupling constant, σ. The two
sites are coupled with coupling constant J, which for simplicity
is assumed constant. The model and the involved parameters
are also illustrated in Figure 1.
The bath degrees of freedom were treated as an overdamped

Brownian oscillator characterized by a Gaussian distribution of
the bath coordinates x1 and x2. The connected frequency time-
correlation function is Cij(t) = ⟨σxj(t)σxj(0)⟩= σ2 exp(−t/τ)δij
= 2kBTλ exp(−tγ)δij. Here i and j enumerate the sites. The
memory can be characterized by either of the complementary
parameters τ or γ, and the fluctuation magnitude can be
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characterized by either σ or temperature and reorganization
energy λ. The correlation function is illustrated in Figure 1. For
the surface hopping and NISE simulation, trajectories of the
fluctuating bath coordinates were constructed using a simple
stochastic approach outlined in ref 68 ensuring the correct
overdamped Brownian oscillator behavior. The Brownian
oscillator dynamics is formally a solution to the equation of
motion:

η= − +
x t

t
x t f t

d ( )
d

( ) ( )i
i (2)

where the magnitude of the fluctuations of the white-noise
random force term f(t) determines the magnitude of the
fluctuations in the coordinate xi.

78,79 While we will use this
model in the present paper to allow comparison with the
HEOM method, it is important to realize that presented new
methods do not depend on how the fluctuating frequencies are
generated. The bath dynamics can thus be represented by
virtually any stochastic or statistical model or may arise from
frequency models80−86 connected with molecular dynamics
simulations.
For the HEOM implementation, we followed ref 5 and

validated the implementation by comparing with the data
presented in that paper. That implementation neglected fast
fluctuation effects resulting in contributions from Matsubara
modes at low temperature and is only valid when ℏ/τ< kBT.
The implementation of the NISE procedure followed ref 17,
while the Surface Hopping implementation followed ref 87 with
the specific changes outlined below.
In the SESH method, a primary (ϕP(t)) and an auxiliary

(ϕA(t)) wave function are used. Initially, the two are identical,
and they are chosen to be identical to one of the instantaneous
eigenstates of the Hamiltonian. The time-dependent Schrö-
dinger equation determines the dynamics of the primary wave
function. Therefore, it fulfills the equation

ϕ ϕ= −
ℏ

t
t

i
H t t

d ( )
d

( ) ( )
P

P
(3)

To solve this, the primary wave function is propagated in the
diabatic site basis avoiding diverging nonadiabatic couplings,
which may arise if propagating in the instantaneous adiabatic
basis. For this propagation short time steps Δt are used
assuming that the Hamiltonian can then be considered constant
resulting in the wave function update:

ϕ ϕ

ϕ

+ Δ = − Δ ℏ

≡ + Δ

t t iH t t t

U t t t t

( ) exp( ( ) / ) ( )

( , ) ( )

P P

P
(4)

Here defining the time-evolution operator U(t + Δt,t). The
auxiliary wave function is propagated by first assuming an
adiabatic change. As a first step, the auxiliary wave function at
time t + Δt is chosen as the instantaneous eigenstate ϕi

E(t + Δt)

of the Hamiltonian at time t + Δt maximizing the overlap with
the auxiliary wave function at time t. Then the possibility of a
surface hop is considered following the standard FSSH
protocol. A hopping probability for transferring to another
instantaneous eigenstate ϕj

E(t + Δt) is given by

ϕ δ ϕ δ ϕ

ϕ ϕ

ϕ ϕ

= − ⟨ + | + − ⟩

× ℜ
⟨ + Δ | + Δ ⟩

⟨ + Δ | + Δ ⟩
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j

i
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If the probability is negative it is nullified. Then a random
number η between zero and one is generated, and a hop is
executed to the state j if

∑ ∑η≤ <
< −

→
>

→P P
k j

i k
k j

i k
1 (6)

This is all according to the FSSH protocol. One of the key
differences with the new approximation arises when a hop is
accepted according to this criterion. In the FSSH protocol, a
check will be performed if sufficient kinetic energy is available
in the bath mode along the nonadiabatic coupling vector, and
in the case of a jump the energy difference connected with the
jump will be exchanged with the bath. In this approach, we
deliberately want to use a pregenerated bath trajectory.
Alternatively, we use the assumption that the kinetic energy
available in any given bath mode is given by the equipartition
theorem. We further assume that the energy dissipation in the
bath is faster than the time between hops in the system. The
kinetic energy available for hops can, thus, be considered to be
independent of any previous successful hops. A second random
number, ξ, is, thus, generated by taking the absolute value of a
Gaussian distribution with standard deviation of kBT mimicking
a random kinetic energy. If the kinetic energy required for
moving from the instantaneous eigenstate corresponding to the
present auxiliary state to the state ϕj

E(t + Δt) is smaller than ξ
the hop is accepted, and the auxiliary wave function for the time
t + Δt is changed to ϕj

E(t + Δt). In contrast to the FSSH
algorithm nothing is done to the bath trajectory, neither in the
case of an accepted nor in the case of a refused hop.49 This is
obviously an approximation that will fail in the cases of
numerous successive upward hops that all require energy from
the same bath mode. The other part of the present
approximation is the neglect of the force exerted by the
quantum system on the classical bath coordinates x at every
time step as given by Fx(t) = ⟨ϕA(t)|dH/dx|ϕA(t)⟩. The
consequence of neglecting this force is the loss of the inclusion
of a Stokes shift induced by the bath. In contrast to the FSSH
surface hopping the SESH algorithm outlined above does not
ensure conservation of energy of the whole system.
We further develop an approximate thermalizing version of

the NISE approach. The starting point for this is the equation
for propagating the wave function in the adiabatic basis:58

∑̇ = −
ℏ

ϵ −c t
i

t c t S c t( ) ( ) ( ) ( )j j j
k

jk k
(7)

where cj is the wave function coefficient for each adiabatic basis
function (instantaneous eigenstate), ϵj is the eigenvalue
corresponding to that adiabatic basis function, and Sjk is the
nonadiabatic coupling, which is defined Sjk ≡ ⟨ϕ̃j(t)|ϕ̇̃k(t)⟩. In
this formulation of the nonadiabatic dynamics on the ground-
state potential energy surface, the meaning of the two terms is

Figure 1. Dimer of two-level systems is illustrated with the energy gap
ΔE between the excitations, the coupling between the two sites J, and
the bath-induced energy fluctuation magnitude σ.
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quite simple. The first term accounts for the phase acquired
with time for each individual instantaneous eigenstate, while the
nonadiabatic coupling accounts for population transfer between
these states. We know that the predicted equilibrium
populations will be equal according to the high-temperature
limit in this case, and to correct for this incorrect thermalization
we redefine the nonadiabatic coupling. For simplicity, we define
the propagation in matrix form:

ψ ψ

ψ

̃ + Δ = ̃ + Δ + Δ ̃

= −
ℏ

ϵ + Δ Δ + Δ ̃†⎜ ⎟
⎛
⎝

⎞
⎠

t t U t t t S t t t t
i

t t t C t t C t t

( ) ( , ) ( , ) ( )

exp ( ) ( ) ( ) ( )

(8)

Here ψ̃(t) is the wave function in the adiabatic basis, the matrix
Ũ(t + Δt,t) is the adiabatic propagation, and S(t + Δt,t) is the
nonadiabatic propagation, which can be formulated in terms of
the eigenvector coefficient matrices C at times t + Δt and t. We
now redefine the nonadiabatic matrix with a temperature
correction:

δ

δ

+ Δ = + Δ

× − −
ϵ + Δ − ϵ

+
| + Δ |

⎛
⎝
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⎛
⎝
⎜⎜

⎞
⎠
⎟⎟
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S t t
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(1 )exp
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4

( )

jk
T

jk

jk
j k

jk
k

jk

B

(9)

In this way transfer requiring energy from the bath is slowed,
and transfer dumping energy to the bath is enhanced. The
motivation of the scaling is that downward transfer should be
faster than upward transfer with a ratio determined by the
Boltzmann factor to reach equilibrium. The scaling factor is
motivated by making the scaling factor mathematically
equivalent for upward and downward transfer. The factor
four in the exponent arise as the scaling is for the wave function
propagation and as the populations are proportional to the
square of the wave function the scaling of the population
transfer will include a factor 2. This is obviously an ad hoc
choice of scaling similar in spirit to previous methods.15 Nk is
chosen to normalize the problem such that Nk

2 + ∑j≠k|Sjk
T(t +

Δt,t)|2 = 1. Care must be made that if the order of the
eigenstates is swapped between two successive steps the new
eigenstates are matched to maximize the overlap. Despite the
normalization performed by rescaling the diagonal elements of
the nonadiabatic coupling matrix the matrix is not unitary
anymore, and the wave functions are renormalized after every
propagation time step. When the temperature is infinite the
correction term will become unity, and the normal NISE
approach will be recovered.
In summary, we expect that the new approximations may

work well when the reorganization energy is small compared to
the temperature (λ ≪ kBT), where it may approximate the
thermal relaxation well. In this case, the Stokes shift caused by
the coupling with the bath is significantly low compared to the
witdh of the frequency distributions of the site energies and the
effect on the population transfer, thus, negligible. In contrast
the simpler NISE method neglects both the thermalization and
the Stokes shift. Still, this method has proven quite successful
for predicting vibrational energy redistribution, for example, in
the OH-stretch manifold of water.88,89

■ RESULTS
The new method was tested for different parameters typical for
realistic systems presented in Table 1. For each system, we

calculated the time-dependent probability that a population
created in the highest excited state was still in that state at a
later time. For the HEOM the system Hamiltonian was used to
determine the eigenstates used for this analysis, while in the
SESH and NISE methods the instantaneous eigenstates were
used for this analysis. For the HEOM and NISE further, the
probability of starting at the site with the highest site energy
and still being there at a later time was calculated as well. As the
SESH formulated here only applies to the transfer between
instantaneous eigenstates the site transfer could not be
obtained. For the present simulations, the time step was set
to 10 fs both when solving the HEOM, NISE, and SESH. For
TNISE a smaller time step of 2 fs was employed to guarantee
the correct identification of the eigenstates in successive time
steps. For the hierarchy, a depth of five was found to be
sufficient. For the NISE and SESH methods, 10 000 disorder
realizations of the stochastic bath were used. All simulations
were performed at T = 300 K unless explicitly stated.
We first tested the SESH for parameters similar to those

found for the OH-stretch vibrations of water in acetonitrile.68

In this system, the two local OH-stretch vibrations are on
average identical, and the coupling leads to a low-frequency
symmetric mode and a high-frequency asymmetric mode (ΔE <
|J| < σ < kBT). The population dynamics of an initially excited
asymmetric mode is followed in Figure 2a. On the one hand,
for the NISE, TNISE, and SESH methods, the population of
the instantaneous eigenstate is provided, while for the HEOM
the population of the average eigenstate is provided, as this
method is intrinsically treating the whole ensemble and does
not allow looking at the instantaneous eigenstates. The SESH
on the other hand at least as implemented here only allows
excitation of the instantaneous eigenstates. Despite this
difference, the TNISE, SESH, and HEOM populations are
very similar, and they decay to the same final thermalized
population, while the NISE method exhibits slower dynamics
and decays to the high-temperature approximation 50%
population. At short times the TNISE and SESH decay a bit
faster than the HEOM. This is here attributed to the difference
between the instantaneous and average eigenstates. In the site
representation presented for the NISE, TNISE, and HEOM in
Figure 2b the quantum dynamics is essentially identical. The
small differences observed here between the NISE and HEOM
methods are well in line with the fact that FTIR and 2DIR
spectra for this system match the experimental observations for
this system when modeled with the NISE approach.63 This is
not so surprising, considering that both the reorganization

Table 1. Parameters Selecteda for Two-Level Pair Systems
Designed to Mimic Realistic Systems

system J (cm−1) ΔE (cm
−1) σ (cm−1) τ (fs)

water in MeCN68 −43 0 60 50
amide I/amide II92 36 70 25 50
FMO105 −106 140 150 140
LH2123 47 300 100 100

aReferences are given to papers on which these parameters are based.
The temperature was set to T = 300 K corresponding to a thermal
energy of 208.5 cm−1.
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energy and the energy gap between the eigenstates are smaller
than the thermal energy.
We proceeded to model a system with an amide I mode

coupled with an amide II mode. This mimics the most
important relaxation channel from the amide I band of
proteins76,90 and, in particular, of the N-methylacetamide
molecule35,76,91−98 used for parametrizing and benchmarking
protein models. The two amide modes are separated by ∼70
cm−1, which is still smaller than the thermal energy at 300 K (σ
< |J| < ΔE < kBT). The population of the amide I eigenstate
following initial excitation of this mode is presented in Figure
3a, and the results from the three methods are quite similar.
Again the NISE population approach is at 50% occupation at
long times as expected, while the HEOM goes to 40% reflecting
the higher energy of the amide I mode. The initial decay of the
SESH is faster than for the other methods, as was the case for
the water example. The population in the long time limit is
slightly higher than in the HEOM approach but considerably
better than the NISE prediction. For the TNISE approach, the
transfer is essentially identical to that observed in the HEOM
approach. The population dynamics following the excitation of
the isolated amide I vibration is shown in Figure 3b. Coherent
vibrations between the two amide modes in the “site” basis are
observed for both HEOM, TNISE, and NISE. In this case, the
site basis corresponds essentially to the CO-stretch for amide I
and CN-stretch for amide II.91 In contrast to water, the

predictions from NISE and HEOM start to deviate after ∼500
fs, where the HEOM begin to decay toward the correct thermal
equilibrium. The TNISE, in this case, follows the HEOM.
Again the relatively small deviation between the different
methods supports the success of the NISE method in
predicting FTIR and 2DIR spectra of coupled amide I-amide
II systems;99 however, it is also clear that the new SESH and
TNISE methods would provide results in better agreement with
the exact HEOM approach.
The energy differences between electronic states are larger

than those of vibrational states, and more significant deviations
are expected in such cases. The next system to examine is, thus,
a dimer that mimics the states in the much-studied Fenna−
Matthews−Olson (FMO) complex.82,83,100−110 In this case, we
used a dimer with an energy gap of 140 cm−1 and a frequency
fluctuation magnitude of 150 cm−1. As we further consider a
coupling between the sites of −106 cm−1 the energy gap
between the average eigenstates is 254 cm−1 and, thus, larger
than the thermal energy (|J| < ΔE < σ < kBT). Following the
initial excitation of the highest eigenstate in the population of
that state decay as shown in Figure 4a, again the population
predicted by the NISE method approached the 50% high-
temperature equilibrium population at long times. The SESH
and HEOM both end at populations of ∼22%, and the
predicted transfer is approximately twice as fast as for NISE, as

Figure 2. (a) The population of the highest (instantaneous) eigenstate
following excitation of that state for the waterlike parameters according
to the HEOM (red), NISE (blue), SESH (green), and TNISE (dashed
black) approaches. (b) The population of one of the two sites
following initial excitation of that site according to the HEOM (red),
NISE (blue), and TNISE (dashed black) approaches.

Figure 3. (a) The population of the amide I (instantaneous) eigenstate
following excitation of that state for the amide-like parameters
according to the HEOM (red), NISE (blue), SESH (green), and
TNISE (dashed black) approaches. (b) The population of the isolated
amide I vibration following initial excitation of that site according to
the HEOM (red), NISE (blue), and TNISE (dashed black)
approaches.

The Journal of Physical Chemistry A Article

DOI: 10.1021/acs.jpca.7b10380
J. Phys. Chem. A 2018, 122, 172−183

176

http://dx.doi.org/10.1021/acs.jpca.7b10380


the backward transfer from the lowest- to the highest-energy
eigenstate is heavily suppressed. The TNISE in this case only
decays to 30% and does not recover the full thermalization. At
short times, the HEOM exhibit a fast nonexponential decay
feature (T < 100 fs). This is attributed to the use of the average
eigenstate population instead of the instantaneous eigenstate
population in this case. For the site population following the
initial excitation of the highest-frequency site (see Figure 4b)
initial coherent oscillations are observed at early times for both
NISE, TNISE, and HEOM, and again the equilibrium
populations for the two methods deviate due to the high-
temperature approximation employed in the NISE method.
The TNISE relax to a final population between the NISE and
HEOM results. The present results suggest that using the
SESH for modeling quantum dynamics in FMO-like systems
will be a significant advantage as compared to using the NISE
approximation. The recovered results are very close to those
found with the formally exact HEOM method. The TNISE
performs worse even though it does present an improvement
compared to NISE.
We now proceed to look at a more complex bacterial light-

harvesting system, LH2. This system is characterized by two
separate bands denoted the B800 and the B850 bands.111,112

The B800 band is understood to consist of eight or nine weakly
coupled bacteriochlorophyll molecules, while the B850 band

consists of 16 or 18 strongly coupled bacteriochlorophyll
molecules.42,113−126 The number of molecules depend on the
bacterial species.127−129 Here, we again simplify this to a
representative two-level dimer system, with one site represent-
ing a site in the B800 band and a site representing a site in the
B850 band. The gap is set to 300 cm−1, which is larger than the
thermal energy. At the same time, the frequency fluctuations
are set to 100 cm−1, which is also quite large. The relatively
small coupling of 47 cm−1, in this case, means that the
eigenstates are essentially localized on the sites in contrast to
the FMO-like system described above, where the coupling was
comparable to the energy gap (|J| σ < ΔE < kBT). In this case
the quantum dynamics at short times (T < 1 ps) is essentially
identical for the HEOM and SESH approaches (see Figure 5a).

The longtime behavior is, however, different, with the HEOM
predicting a lower equilibrium population. This was also seen
for the amide I−amide II system, albeit to a much smaller
extent. The explanation is that for these systems the
reorganization energy (λ = σ2/2kBT) is non-negligible
compared to the thermal energy, and the final excitation is
localized on one of the sites, which results in a Stokes shift of
this low-energy site in the exact HEOM approach. In the SESH
this effect is not included. For the water model and the FMO
model the excitation on the low-energy eigenstate is much

Figure 4. (a) The population of the highest-energy FMO-like
(instantaneous) eigenstate following excitation of that state for the
amide-like parameters according to the HEOM (red), NISE (blue),
SESH (green), and TNISE (dashed black) approaches. (b) The
population of the highest-energy FMO chromophore following initial
excitation of that site according to the HEOM (red), NISE (blue), and
TNISE (dashed black) approaches.

Figure 5. (a) The population of the highest-energy LH2, B800
bandlike (instantaneous) eigenstate following excitation of that state
for the amide-like parameters according to the HEOM (red), NISE
(blue), SESH (green), and TNISE (dashed black) approaches. (b)
The population of the highest-energy LH2 B800-like chromophore
following initial excitation of that site according to the HEOM (red),
NISE (blue), and TNISE (dashed black) approaches.
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more delocalized, and the Stokes shift present is affecting both
bath coordinates more or less equally, and then the quantum
dynamics is less affected, as the change of the energy gap in the
Hamiltonian is not affected by the lowering of the energy of
both sites. Still, here the SESH provide a considerable
improvement compared to the NISE approach, and we can
easily understand why the applied approximation breaks down
at longer times. For TNISE the decay is between that of the
NISE and the HEOM as was the case for the FMO parameters.
In the real LH2 complex the dynamics is actually much faster
than seen here due to the presence of mixed B800/B850
states,123 when all chromophores are included. It is also known
that the excitation in the B850 band is very delocalized, and the
effect of the Stokes shift is smaller in reality. We finally examine
the quantum dynamics of the site populations predicted by the
NISE, TNISE, and HEOM approaches as presented in Figure
5b. The results are similar for the first 100 fs, after which the
decay in the HEOM become significantly faster than for both
the TNISE and NISE approach. This can be understood as the
time-scale for the bath coordinates is 100 fs, and following this
time the bath has time to respond to the excitation of the
quantum system. The initial effect is that the energy of the
initially excited high-energy state is slightly lowered due to the
bath reorganization, and at the same time the back-transfer of
excitation from the low-energy state is suppressed, as there is
not sufficient energy in the bath to support such transfer.
The temperature dependence was further examined for the

amide I−amide II parameters. The instantaneous eigenstate
populations calculated for four different temperatures are

presented in Figure 6. Both the SESH and the TNISE methods
provide good results down to 150 K, but not at 70 K, where the
thermal energy is smaller than the gap between the eigenstates.
We conclude that the new methods can be safely applied when
the temperature is not too much smaller than the width of the
band. In the present approaches, the bath is assumed to behave
in a classical manner, and it may thus be possible to improve
the agreement using quantum correction factors130,131 to
correct for the quantization of the bath energy at low
temperature.
The TNISE method scaling the elements of the nonadiabatic

coupling matrix is quite similar to the scaling method of Bastida
et al.,15 for which an improved scaling version was presented by
Kleinekathöfer.21 In the methods by Bastida and Kleinekathöfer
a symmetrization of the nonadiabatic couplings was employed
to account for the nonhermitian structure of the scaled matrix,
while here a renormalization of the wave function was used for
the TNISE method. In Figure 7 the present methods are
further compared with the improved scaling method (following
the implementation as described in ref 21) revealing that the
TNISE results are at least for this case in better agreement with
the exact HEOM result. For the site population, the
decoherence of the improved scaling method is clearly too
fast, while the correct thermal equilibrium is reached. The
slower convergence of the SESH method due to its stochastic
nature is evident.
The TNISE, the improved scaling method, and the SESH all

require transformations to the instantaneous adiabatic basis.
This may cause problems when the instantaneous eigenstates

Figure 6. Population of the amide I (instantaneous) eigenstate following excitation of that state for the amide-like parameters according to the
HEOM (red), NISE (blue), SESH (green), and TNISE (dashed black) approaches at 75 K (a), 150 K (b), 300 K (c), and 600 K (d).
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between neighboring times steps need to be matched. This
problem also exists for the original surface-hopping method,
and small time steps may be required, in particular, for systems
involving conical intersections.8 One could consider improving
the behavior, in particular, of the TNISE method by adapting
the temperature dependence of the scaling factor. In the SESH
one could likewise try to use the quantum thermal energy
average. This is, however, not so trivial, as the kinetic energy of
a quantum harmonic oscillator depends on the frequency of the
oscillator and not just on the temperature. More explicit
knowledge on the degrees of freedom is, thus, needed than for
the present approximations, where the bath fluctuations are
effectively treated through one effective bath coordinate. For
anharmonic bath coordinates, the assumptions are even more
complex.
The two new methods for calculating quantum dynamics

with thermalization were found to predict the dynamics quite
well when the system parameters are not too large compared to
the thermal energy. As such the approaches may work very well,
in particular, for modeling thermal relaxation in vibrational
modes or when the thermal effect is just a secondary effect and
not the primary point of interest. The SESH method has two
important drawbacks. First, because of its stochastic nature it
converges quite slowly, and a large number of realizations are
needed. Second, the method, at least as developed here, only
consider the dynamics in terms of instantaneous eigenstates.

Coherent superpositions may be possible to consider
combining the present approach with recently developed
surface-hopping approaches that include coherent super-
positions.46,54 The TNISE method performed very well for
the vibrational systems and required the use of smaller time
steps to guarantee identification of the right eigenstates in the
electronic systems, where the performance was also generally
worse than for the SESH method. Still the TNISE approach is
very simple in implementation, and it converges faster than the
SESH. This will, in particular, be important if the methods are
combined with response function calculations to model
coherent multidimensional spectroscopic signals (see refs 63,
76, 87, 90, 98, 105, 123, and 132−137) and when a large
number of classical coordinates are involved.
The new methods have some similarity to the classical path

approximation (CPA),11 where one first integrates the time-
dependent Schrödinger equation for a predetermined classical
trajectory and then use Tully’s hopping procedure to estimate
populations to make sure one reaches detailed balance. This
method is also only applicable for small reorganization energies.
The SESH should be easy to combine with a recently
developed generalization for treating coherences in the
fewest-switches surface-hopping framework.54

■ CONCLUSIONS
In summary, we developed a new surface-hopping-based
approach for simulating quantum dynamics that accounts for
thermalization and a rescaled NISE approach, both without
explicit feedback to the bath trajectory. The new approaches
were compared for a number of coupled two-level systems
mimicking the expected conditions in typical vibrational and
electronic systems. Clearly, they both considerably improve the
thermalization dynamics as compared to the simple NISE
approach, while the bath relaxation is neglected resulting in
deviations from the exact HEOM results when the reorganiza-
tion energy is large. Here, we only considered very simple
model systems, which can also easily be modeled with the
HEOM approach; the new approaches can both easily be
extended to systems with general Hamiltonian fluctuations,
including fluctuations of the couplings, correlated couplings
between sites, and non-Gaussian fluctuations. They can further
be extended to complex systems including hundreds of coupled
sites69,138 or systems with conical intersections,137 as it is the
case for the simpler but not correctly thermalizing NISE
approach.60 The new SESH method was found to provide the
best overall accuracy especially when the energy gaps are large.
However, this method does converge slower than the new
TNISE method, which will thus be the method of choice when
the energy gaps are smaller than the thermal energy. One other
important limitation of the SESH method is that it treats the
system as always being in an eigenstate, which complicates
implementation for simulating spectroscopic signals.87

The new approaches can be implemented to model pump−
probe, two-dimensional spectroscopies,76,77 and time-resolved
fluorescence139,140 spectroscopies that report on the quantum
dynamics. The methods may further prove useful in the
development of new methods for modeling spectroscopies
involving both vibrational and electronic degrees of free-
dom.141,142 With the development of broad-band laser
sources,143,144 experimental spectra spanning very broad
frequency regions have become available, and the new method
has the potential to allow modeling such spectra. As the
Achilles heel of the methods is that the system−bath

Figure 7. (a) The population of the amide I (instantaneous) eigenstate
following excitation of that state for the amide-like parameters
according to the HEOM (red), NISE (blue), SESH (green), TNISE
(dashed black), and improved scaling (magenta) approaches at 150 K.
(b) The population of the amide I site following excitation of that site.
The same color scheme is used as in (a), but there are no data for
SESH.
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interaction should not be too large compared to the thermal
energy the most straightforward solution to this problem is to
include all strongly coupled modes explicitly in the quantum
Hamiltonian. Obviously, there is a limit for how many degrees
of freedom can be included; however, one could imagine
combining the present approaches with the multiconfiguration
time-dependent Hartree20 method that allows treating very
large quantum systems.
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