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A B S T R A C T

Purpose: It is well known that individuals with hereditary retinoblastoma are at lifelong high
risk for developing subsequent malignant neoplasms (SMN). However, the role that non-RB1
germline variants play in tumorigenesis and SMN risk has not yet been studied. The purpose of
this study is to report the frequency and spectrum of non-RB1 germline cancer predisposing
variants in individuals with retinoblastoma (RB).
Methods: Retrospective data collection from institutional electronic medical records of 94 in-
dividuals seen at our institution with personal history of retinoblastoma, who had undergone
next-generation sequencing germline analysis.
Results: The prevalence of individuals with cancer predisposition was 57% (54/94). Of these
individuals, 76% (41/54) had a pathogenic/likely pathogenic (P/LP) variant only in the RB1
gene, 9% (5/54) harbored a P/LP variant only in a non-RB1 gene, and 11% (6/54) had both. No
difference was found between patients with and without non-RB1 variants when comparing
demographic and clinical characteristics, including time to SMN. Variants were found in 7
different genes, with only 1 variant repeating 3 times.
Conclusion: In this small cohort of patients with retinoblastoma, non-RB1 variants did not
appear to augment tumorigenesis or disease progression. Larger studies are required to deter-
mine associations between specific variants and development of SMN.
© 2024 The Authors. Published by Elsevier Inc. on behalf of American College of Medical

Genetics and Genomics. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

It is recognized that individuals with hereditary retinoblas-
toma (OMIM#180200) are at lifelong high risk for devel-
oping subsequent non-ocular malignancies.1-4 Germline
RB1 variants,4 radiation,2,5 systemic chemotherapy,1,5 and
young age at treatment are important risk factors.6 Pan-
cancer studies have shown that between 8% to 18% of in-
dividuals with retinoblastoma harbor pathogenic or likely
pathogenic (P/LP) variants in cancer predisposition genes
and that 34% to 59% of those variants may be unrelated to
the primary cancer, depending on the study population.7–9 In
fact, in an earlier report of individuals with retinoblastoma,
we found 5 individuals who had pathogenic variants in
cancer predisposing genes other than RB1.10 If and how
these non-RB1 germline variants influence tumorigenesis,
disease progression, and subsequent malignant neoplasms
(SMN) has not yet been studied. The purpose of this study is
to report the frequency and spectrum of non-RB1 germline
cancer predisposing variants from individuals with heredi-
tary (HR) and non-hereditary retinoblastoma (nHR) seen at
our institution.
Materials and Methods

Retrospective data collection from institutional electronic
medical records of 94 individuals seen at Memorial
Sloan Kettering Cancer Center (MSKCC) with a personal
history of retinoblastoma (RB), who had previously under-
gone next-generation sequencing (NGS) germline analysis
using the MSK-IMPACT (Integrated Mutation Profiling
of Actionable Cancer Targets) platform (MSKCC;
NCT01775072).11 Testing was offered to all individuals
undergoing enucleation and those who for clinical reasons
were considered to benefit from broad germline testing. The
study was approved by MSKCC’s Institutional Review
Board/Privacy Board.

MSK-IMPACT is an FDA approved, hybridization
capture-based NGS panel designed to identify known P/LP
germline variants in 90 cancer-associated genes5-7,11 (the list
of genes can be shared upon reasonable request). All the
germline genes that are analyzed are clinically actionable.
Germline variant classification follows the American College
of Medical Genetics and Genomics guidelines.12 Unless
otherwise specified, only P/LP germline variants are reported.
Statistical Analysis

Patients' characteristics among HR, nHR, RB1, and non-RB1
groups were analyzed using χ2 test, Fisher’s exact test, or
Wilcoxon rank sum as appropriate.
Results

Description of the population

In this cohort of 94 individuals with retinoblastoma, 83
(88%) were ≤18 years and 11 (12%) were >18 years.

Participants’ demographics are presented in Table 1.
There was an even distribution of individuals with HR
(52%; n = 49) and nHR (48%; n = 45).

The HR group was defined by those with a germline RB1
variant and/or history of bilateral disease. This included 2
individuals with negative germline RB1 testing and bilateral
disease, 7 with positive germline RB1 variants and unilateral
disease, and 1 person with trilateral disease and a germline
RB1 pathogenic variant. All others were defined within the
nHR group.

Of note, hereditary groups refer to the presence or
absence of P/LP variants in the RB1 gene. Two more groups
are described based on the presence (non-RB1 variant
group) or absence (control group) of P/LP variants in genes
other than RB1.

Prevalence of non-RB1 P/LP variants

Eleven individuals (12%) had variants in a non-RB1 gene; 6
had HR and 5 had nHR. These represent 12% of all in-
dividuals with HR and 11% of individuals with nHR. The
rate of non-RB1 variants was not significantly different be-
tween the 2 groups (Table 1).

Supplemental Table 1 compares clinical and de-
mographic characteristics of patients with and without non-
RB1 variants. No statistically significant difference was
found between the 2 groups from the variables analyzed.

Development of secondary cancers
In an attempt to evaluate any impact on long-term outcomes,
we looked for any association between having P/LP variants
in RB1 and/or non-RB1 genes with the development of SMN
(Figure 1). Only 13 individuals had developed a SMN at the
time of our study, and 5 developed a third cancer. All in-
dividuals who developed SMN except 1 had HR; 3 in-
dividuals also had a non-RB1 variant.

The mean age of SMN diagnosis was 13 years (12 and 24
years in the HR and non-HR groups, respectively).

Frequency of variants in RB1 and non-RB1 genes

The overall prevalence of individuals with cancer predis-
position (individuals with HR and/or those with a non-RB1
variant) was 57% (n = 54), of which 11% (n = 6) had 2
different cancer predisposing variants, 42 (45%) had only an
RB1 P/LP variant, and 5 (5%) had only a non-RB1 P/LP
variant.



Table 1 Demographics and Rate of non-RB1 variants in the HR and non-HR groups

Characteristic
Hereditary,
n = 49a

Non-
hereditary,
n = 45a

Overall,
N = 94a

Sex
Female 22 (45%) 21 (47%) 43 (46%)
Male 27 (55%) 24 (53%) 51 (54%)

Age at time of study (years) 7 (1-45)b 6 (0-24)b 7 (0-45)b

Age at RB diagnosis (years) 1 (0-4)b 1 (0-9)b 1 (0-9)b

Unknown 1 0 1
Race description
Asian-Far East, Indian Subcontinent 7 (16%) 9 (21%) 16 (18%)
Black or African American 6 (14%) 6 (14%) 12 (14%)
Other 4 (9%) 4 (9%) 8 (9%)
White 27 (61%) 24 (56%) 51 (59%)
Unknown 5 2 7

Ethnicity description
Non-Spanish; Non-Hispanic 40 (83%) 35 (80%) 75 (82%)
Spanish NOS; Hispanic NOS, Latino NOS 8 (17%) 9 (20%) 17 (18%)
Unknown 1 1 2

Laterality
Bilateral 41 (84%) 0 (0%) 41 (44%)
Trilateral 1 (2%) 0 (0%) 1 (1%)
Unilateral 7 (14%) 45 (100%) 52 (55%)

RB1 germline variant
Negative 2 (4%) 45 (100%) 47 (50%)
Positive 47 (96%) 0 (0%) 47 (50%)

Germline variant in gene other
than RB1

6
12% (95%CI: 5%, 25%)

5
11% (95%CI: 4%, 25%)

P = .86c

CHEK2 1 0
ERCC3 0 1
FANCC 0 1
MITF 1 0
MSH3 1 1
MUTYH 3 0
NTHL1 0 2

Second Germline variant in gene other than
RB1: TSC2 c.4570-1G>A

0 (0%) 1 (2%)

CI, confidence Interval; NOS, not otherwise specified.
an (%).
bMedian (Range).
cPearson’s χ2 test.
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The frequencies of variants in RB1 and non-RB1 genes
are presented in Table 1. Only 1 patient had reported vari-
ants in 2 non-RB1 genes: a LP variant in NTHL1 and a TSC2
variant, which was later reclassified as variant of uncertain
significance.

Spectrum of variants in the non-RB1 group

A total of 9 non-RB1 heterozygous P/LP variants were found
in 11 individuals; no one had biallelic variants. The variants
were found in 7 different genes, MUTYH, MSH3, NTHL1,
ERCC3, FANCC, CHEK2, and MITF, with 1 variant identi-
fied in each gene except for MSH3 and NTHL1, in which 2
different variants were found (Supplemental Table 3).

All non-RB1 variants in our study were unique, except
for a MUTYH (NM_001128425) variant, c.1187G>A
p.(Gly396Asp), which was found in 3 different individuals,
all of whom had HR. Among them, 2 developed SMN
(osteosarcoma and meningioma at 12 and 32 years,
respectively). Only 1 other individual with a non-RB1
variant developed a SMN, a 23-year-old female with HR
and a MSH3 variant who developed meningioma at age 20.
None of the SMNs seemed to have any correlation with the
respective non-RB1 gene identified on each individual, but
they all have been previously reported as SMN in in-
dividuals with HR (Supplemental Tables 2 and 3).

Similarly, all RB1 variants were different when looking
at the subgroup of individuals with HR in the non-RB1
variant group. The spectrum of RB1 variants within that
group include 2 frameshift, 1 nonsense, 1 splice site, 1 exon-
level deletion (all truncating variants), and 1 missense
variant (believed to retain some residual activity and be



Figure 1 Cumulative incidence of second cancers. Because the
age at second cancer is a censored observation, we used survival
analysis to estimate the rate of SMN diagnosis in each of the groups
and analyze any associations with presence of a non-RB1 variant. The
cumulative incidence of SMN in the overall study population is
presented in Figure 1. The cumulative incidence of SMN was 48% at
15 years in the hereditary group versus 0% in the non-hereditary
group, although the difference was not statistically significant
(P = .07). Likewise, there was no evidence of a significant difference
in the time to second cancer between patients with and without non-
RB1 variants in the overall study population nor within the subgroup
of patients with hereditary disease. Tick marks represent censoring
times. The subgroup of patients with non-hereditary disease was not
analyzed because of the small number of second cancers in that group.
Time to SMN was defined as the time from the age at RB diagnosis to
the age at the first SMN diagnosis. Patients without SMN diagnoses
were censored at the current age. Deaths before the occurrence of
SMN were treated as competing risks. The cumulative incidence of
SMN was estimated using an Aalen-Johansen estimator,13 and the
curves were compared using a Gray’s test.14 Analyses were done
using R v.3.6.3.
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associated with decreased penetrance15-17). All variants are
spread along the RB1 gene from exon 4 to exon 20.18

Clinical, demographic, and molecular information of in-
dividuals with non-RB1 variants can be found in
Supplemental Table 2.
Discussion

This represents the largest cohort of individuals with reti-
noblastoma in which the prevalence of germline non-RB1 P/
LP variants has been reported to date. We found that 12% of
individuals with retinoblastoma harbored a P/LP variant in a
non-RB1 cancer predisposing gene, independent of their
underlying germline predisposition to retinoblastoma. There
was no significant difference of prevalence between in-
dividuals with HR and nHR (12% and 11%, respectively).
Furthermore, our study has an ascertainment bias given by
the nature of the IMPACT test, which was designed to be
performed in individuals with available tumor sample;
therefore, our study population is mainly composed by those
who required enucleation (representing fewer than 5% of all
individuals with retinoblastoma in our institution). No other
treatment modalities or exposures were found to be over-
represented in our study population].

The overall prevalence of individuals with a cancer
predisposition in our study is 57%, which, when compared
with the prevalence of HR (52%), shows that a small but
significant percentage (5%) of individuals with cancer pre-
disposition can be missed if only RB1 directed testing is
performed in persons with retinoblastoma. Considering that
IMPACT only tests for actionable genes, some of these
individuals and their families could be missing from sur-
veillance interventions recommended based on each gene.
These percentage is probably even higher given that (1)
IMPACT only reports variants classified as P/LP and does
not report variant of uncertain significance that may even-
tually be upgraded to pathogenic, and (2) testing was limited
to the 90 gene version of IMPACT, but the current number
of known cancer predisposition genes is significantly higher
and continues to expand. Overall, this represents a signifi-
cant number of persons being missed, considering that our
cohort only represents 5% of the individuals with retino-
blastoma seen at our institution. This supports the benefit of
using broader gene panels for RB patients in the research
setting, to facilitate for future studies to determine any gene
variants that might be enriched in the RB population that
could be considered for clinical testing in patients who
would benefit from a diagnosis (ie, diagnosis would modify
screening and surveillance recommendations).

We found that 11% of individuals with HR (6% of all
individuals) harbored a second P/LP variant in a cancer pre-
disposition gene. We have yet to determine the impact that non-
RB1 variants can have in individuals with HR to understand if
they confer an independently added risk of cancer or if they
interact through common pathways and have disease modifying
roles that could help predict disease outcomes and prognosis.
We did not find any change in the mean age of retinoblastoma
diagnosis when comparing individuals with and without non-
RB1 variants that would suggest a modifying effect in the
development of the primary tumor. Similarly, there was no
significant difference between the same groups in the time to
second cancer diagnosis among the overall study population
nor within individuals with HR. However, these findings were
not statistically significant, likely because of the low rate of
second cancers in our study given a primarily pediatric popu-
lation (mean age of 7 years), with second malignancies typi-
cally developing later in life (reported median range of age is
13-17 years).18-21 Nonetheless, it should be noted that, among
the 6 individuals with HR and a non-RB1 variant, 3 individuals
are older than 10 years (all females) and all have developed a
second cancer (Supplemental Table 3).22–29

All of the genes in which a non-RB1 variant was identified
have a different role in cell regulation. Only 1 is an oncogene
(MITF), and the others are tumor suppressors, each involved in
different mechanisms. Supplemental Table 2 provides infor-
mation on each of the genes, including their role in carcino-
genesis, and the known associated cancer risks. Although most
of the genes in which variants were found are associated with
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autosomal recessive disease, these results provide valuable
information for future family planning. Furthermore, screening
recommendations also changed for some of the individuals
(and their families) in whom the second variant was found in
genes associated with autosomal dominant inheritance.

Given that RB1 not only initiates cancer in the retina but
is also an important mechanism of cancer development in
non-ocular cancers of later development,14,30–34 functional
studies can help determine if germline variants in genes with
specific roles within the cell could somehow play a role in
the pathogenesis leading to the second somatic hit in RB1,
facilitating the development of second cancers. A possible
role of germline MUTYH variants in the pathogenesis of
retinoblastoma has been recently suggested by Newman
et al35 and Akdeniz et al,34 from results of functional studies
from tumor samples of individuals with hereditary retino-
blastoma and germline MUTYH variants, that suggest an
important role of the loss of MUTYH function in the
tumorigenesis of retinoblastoma.33,35 These findings along
with the increased frequency of MUTYH variants in our
cohort (found in half of the individuals with HR and a non-
RB1 variant, with 2 of them who also developed a second
cancer), could suggest a possible interaction between
MUTYH and RB1 with an impact in tumorigenesis.

Further studies are required to identify those genes in
which germline variants are more frequently found in per-
sons with HR to determine good candidate genes for func-
tional assessment, which might provide new insights into
unknown biological mechanisms contributing to disease,
which might help guide management and surveillance
strategies in the future.
Conclusion

We found that 12% of individuals with a personal history of
retinoblastoma harbored a P/LP variant in a non-RB1 cancer
predisposing gene, and 6% of them had 2 different cancer
predisposition syndromes. Although the size of our cohort
limited the analysis in our study, there were no findings sug-
gesting any association between having HR or non-HR and the
presence of a non-RB1 variant and they likely represent 2
completely independent factors. However, further studies are
required to determine possible associations with the presence
of specific variants and the development of second cancers that
could provide a better understanding of tumorigenesis in RB
individuals and influence future management, screening, and
surveillance recommendations.
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