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This paper mainly studies the eradication of the Ebola virus, proposing a scientific system, including three modules for the
eradication of Ebola virus. Firstly, we build a basicmodel combinedwith nonlinear incidence rate andmaximum treatment capacity.
Secondly, we use the dynamic programming method and the Dijkstra Algorithm to set up M-S (storage) and several delivery
locations inWest Africa. Finally, we apply the previous results to calculate the total cost, production cost, storage cost, and shortage
cost.

1. Introduction

The Ebola virus large outbreaks in Africa began in 2014. The
high number of people infected and the highmortality caused
widespread concern in theworld. Ebola virus disease shocked
the world in 1976. It turned up for the first time in two cases
that began the epidemic at the same time [1]. Another one
is in the Democratic Republic of the Congo, which occurred
near the Ebola River in a village [2].

Now the spread of Ebola virus has caused wide public
concern all over the world. In order to make drugs and
vaccine exert the greatest effect which can effectively cure
patients, we propose a scientific system, including three
modules for the eradication of Ebola virus. First, we build
a basic model combined with nonlinear incidence rate and
maximum treatment capacity. Then, we use the dynamic
programming method and the Dijkstra Algorithm to set up
M-S (storage) and several delivery locations in West Africa.
Finally, we apply the previous results to calculate the total
cost, production cost, storage cost, and shortage cost.

We established a practical, sensitive, useful model. For
other manuscripts, we find that iteration, Floyd algorithm,
and genetic algorithm are used to optimize the eradication
of Ebola. Meanwhile, in our model, we consider not only the
disease propagation speed and the drugs required quantity

and the impact of transportation on the treatment but also the
design of a distribution optimization feasible transmission
system [3]. In addition, transmission sites and vaccine and
drug production speed are points we should consider in
building the model. Finally, we can apply our model to
completely eradicate Ebola or at least alleviate the current
tense situation [4].

2. How to Restrain the Spread of Ebola

2.1. Epidemic Model. Considering the production and distri-
bution of drugs and local medical infrastructure, we build
a basic epidemic model with maximum treatment capacity.
How to restrain the spread of Ebola virus is shown in the
following five steps.

Step 1. Build the epidemic model with nonlinear incidence
rate and maximum treatment capacity.

Step 2. The total population changes because of the birth rate
and natural death rate and is classified into 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡),
𝑄(𝑡), and 𝑅(𝑡).

Step 3. Build the improved SEIQT epidemic model.
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Figure 1: Overview of epidemic model.

Step 4. Utilize the equivalent systemof equations to figure out
the basic reproduction number 𝑅

0
. If 𝑅
0
< 1, the epidemic

gets controlled and has a disease-free equilibrium, while it
continues to spread and has endemic equilibrium if 𝑅

0
> 1.

Step 5. Analyze the stability.

2.1.1. Model Preparation. In most of classical epidemic mod-
els, the incidence rate is assumed to be 𝜆𝑆𝐼 (𝜆 is contact rate)
which is a bilinear function of 𝑆 and 𝐼. However, in fact, many
infectious diseases have periodic fluctuations that might
be caused by some external factors such as age structure,
seasonal variations, and time lag or resulted from nonlinear
incidence rate. To fit the actual situation and simplify the
model, it is proper to use nonlinear incidence rate. Liu used
it in the form of 𝛽𝑆𝑝𝐼𝑞 (𝑝, 𝑞 > 0) [5, 6]. In this paper, we set
𝑝 = 1 and 𝑞 = 2.

2.1.2. Model Establishment. We assume that there is no birth
rate or natural death rate and the total population is fixed.The
process of modeling is shown in Figure 1.

Build simultaneous differential equations:

𝑆
󸀠
(𝑡) = −𝛽𝑆𝐼

2
,

𝐸
󸀠
(𝑡) = 𝛽𝑆𝐼

2
− 𝑏𝐸,

𝐼
󸀠
(𝑡) = 𝑏𝐸 − 𝜇𝐼 − 𝐹 (𝐼) ,

𝑅
󸀠
(𝑡) = 𝐹 (𝐼) ,

(1)

associated with maximum treatment capacity:

𝑆
󸀠
(𝑡) = −𝛽𝑆𝐼

2
,

𝐸
󸀠
(𝑡) = 𝛽𝑆𝐼

2
− 𝑏𝐸,

𝐼
󸀠
(𝑡) = 𝑏𝐸 − 𝜇𝐼 − 𝑘𝐼,

𝑅
󸀠
(𝑡) = 𝑘𝐼,

(2)

where 0 ≤ 𝐼 ≤ 𝐼
0
,

𝑆
󸀠
(𝑡) = −𝛽𝑆𝐼

2
,

𝐸
󸀠
(𝑡) = 𝛽𝑆𝐼

2
− 𝑏𝐸,

𝐼
󸀠
(𝑡) = 𝑏𝐸 − 𝜇𝐼 − 𝑘𝐼0,

𝑅
󸀠
(𝑡) = 𝑘𝐼

0
,

(3)

where 𝐼 > 𝐼
0
.
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Figure 2: Total cases of three states in 2014.

From 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑁(𝑡), we can readily get
𝑁
󸀠
(𝑡) = −𝜇𝐼.
At the same time, the function𝑁(𝑡) is the total population

of a region or country, the function 𝑆(𝑡) is individuals who
are susceptible to the disease, the function 𝐸(𝑡) is individuals
who are infected but without paroxysm, the function 𝐼(𝑡) is
individuals who are infectious, the function 𝑄(𝑡) is isolators,
and the function 𝑅(𝑡) is individuals who are removed. The
function 𝐹(𝐼) is individuals who are cured by themedication,
the parameter 𝛽 is proportion of the effective contact in
the total population, and the parameter 𝑏 is proportion of
transformation from being infected to being infectious. The
parameter 𝜇 is mortality due to illness of the infections, and
the parameter 𝛽𝑆𝐼2 is nonlinear incidence rate.

2.2. Improved SEIQR Epidemic Model. First of all, we must
introduce the concept of basic reproductive rate. The basic
reproduction number (sometimes called basic reproductive
ratio and denoted by 𝑅

0
) of an infection can be thought of as

the number of cases that one case generates on average over
the course of its infectious period, in an otherwise uninfected
population [7].

2.2.1. Data Processing. To analyze the spread rate of Ebola, we
collect the data of population and total cases and deaths in
Guinea, Liberia, and Sierra Leone fromMay 27 to November
28 in 2014; see Table 1.

Based on the data in Table 1, we can plot the different
graphs which describe the total cases in Sierra Leone, Liberia,
and Guinea as shown in Figure 2. Moreover, the graphs in
Figures 3–5 reflect the total cases and deaths in those three
countries. It is obvious that both numbers have increased
rapidly since August.

2.2.2. Model Preparation. To fight against Ebola, infectious
individuals tend to be isolated to control the spread of the
disease, so as to form a separate group known as isolators.We
introduce isolators 𝑄(𝑡) to the model, expand the previous
model to SEIQR model, and consider the birth rate 𝛿 and
natural death rate 𝜂. Let 𝜇

1
and 𝜇

2
represent diseased death

rate of infectious patients and isolators, respectively, let 𝑏
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Table 1: The number∗ of population and total cases and deaths in three countries.

Area Guinea Liberia Sierra Leone
Month Population Total cases Total deaths Population Total cases Total deaths Population Total cases Total deaths
May 27, 2014 11.2 million 281 186 4.3 million 12 9 6.1 million 16 5
June 24, 2014 11.2 million 390 270 4.3 million 51 34 6.1 million 158 34
July 27, 2014 11.2 million 460 339 4.3 million 329 156 6.1 million 533 233
August 26, 2014 11.2 million 648 430 4.3 million 1378 694 6.1 million 1026 422
September 25, 2014 11.2 million 1103 668 4.3 million 3564 1922 6.1 million 2120 561
October 24, 2014 11.2 million 1598 981 4.3 million 6253 2704 6.1 million 4017 1341
November 23, 2014 11.2 million 2134 1260 4.3 million 7168 3016 6.1 million 6599 1398
December 28, 2014 11.2 million 2597 1607 4.3 million 7862 3384 6.1 million 9004 2582
∗The date in this table is derived from http://www.who.int/mediacentre/news/ebola/23-october-2014/en/.
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Figure 3: Total cases and deaths in Guinea.
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Figure 4: Total cases and deaths in Sierra Leone.

Total cases

Total deaths

7
2
1

N
um

be
r/

pe
rs

on
s

9000
8000
7000
6000
5000
4000
3000
2000
1000

0

Time/date

27

Ju
ly

Ju
ly

 1
5 23 1 9 7 5 17 3
0 9 7 28

Total casessssssss

Total deaths

M
ar

ch
 3
1

Ap
ril

 
Ap

ril
 

M
ay

 5
M

ay
 

Ju
ne

 1
0

Ju
ly

 2

Au
gu

st 
Au

gu
st 

Au
gu

st 
16

Au
gu

st 
26

Se
pt

em
be

r 
Se

pt
em

be
r 1

7
Se

pt
em

be
r 2

5
O

ct
ob

er
 

O
ct

ob
er

 
O

ct
ob

er
 

N
ov

em
be

r 
N

ov
em

be
r 1

8
D

ec
em

be
r 

D
ec

em
be

r 

Figure 5: Total cases and deaths in Liberia.

represent the proportion of transformation from 𝐸(𝑡) to 𝐼(𝑡),
and let 𝜀 represent the proportion of transformation from
𝐼(𝑡) to 𝑄(𝑡). Combined with 𝛽𝑆𝐼2 and maximum treatment
capacity, the modifying process is shown in Figure 6.

Also build simultaneous differential equations:

𝑆
󸀠
(𝑡) = 𝛿𝑁 − 𝛽𝑆𝐼

2
− 𝜂𝑆,

𝐸
󸀠
(𝑡) = 𝛽𝑆𝐼

2
− (𝑏 + 𝜂) 𝐸,

𝐼
󸀠
(𝑡) = 𝑏𝐸 − (𝜇

1
+ 𝜀 + 𝜂) 𝐼 − 𝐹 (𝐼) ,

𝑄
󸀠
(𝑡) = 𝜀𝐼 − (𝜇2 + 𝜂)𝑄 − 𝐹 (𝑄) ,

𝑅
󸀠
(𝑡) = 𝐹 (𝐼) + 𝐹 (𝑄) − 𝜂𝑅,

(4)

where

𝐹 (𝐼) =
{

{

{

𝑘𝐼, 0 ≤ 𝐼 ≤ 𝐼
0
,

𝑘𝐼
0
, 𝐼 > 𝐼

0
,

𝐹 (𝑄) =
{

{

{

𝑘𝑄, 0 ≤ 𝑄 ≤ 𝐼
0
,

𝑘𝑄
0
, 𝑄 > 𝑄

0
.

(5)

We can find that 𝑆(𝑡) + 𝐸(𝑡) + 𝑄(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑁(𝑡)
and𝑁󸀠(𝑡) = (𝜀 − 𝜂)𝑁 − 𝜇

1
𝐼 − 𝜇
2
𝑄.

2.2.3.Model Solution andAnalysis. Motivated by theworks of
Du and Xu [8] and Sun andMa [9] and the discussions above,
we simplify the model by the equivalent system of equations
with (4) as follows:

𝑆
󸀠
(𝑡) = 𝛿𝑁 − 𝛽𝑆𝐼

2
− 𝜂𝑆,

𝐸
󸀠
(𝑡) = 𝛽𝑆𝐼

2
− (𝑏 + 𝜂) 𝐸,

𝐼
󸀠
(𝑡) = 𝑏𝐸 − (𝜇

1
+ 𝜀 + 𝜂) 𝐼 − 𝐹 (𝐼) .

(6)

Then system (6) has a positive invariant set Π = {(𝑆, 𝐸, 𝐼) ∈

𝑅
3

+
| 0 ≤ 𝑆 + 𝐸 + 𝐼 ≤ 𝛿𝑁/𝜂}.
We obtain the expression of 𝑅

0
:

𝑅
0
=

𝑏𝛽𝛿𝑁

𝜂 (𝜂 + 𝑏) (𝜂 + 𝜇
1
+ 𝜀 + 𝑘)

. (7)
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Figure 6: Overview of improved epidemic model.
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Figure 7: The pictorial diagram of the model.

If 𝑅
0
< 1, then epidemic gets controlled and system (6) has a

disease-free equilibrium 𝐸
0
. If 𝑅
0
> 1, then epidemic contin-

ues to spread and system (6) has an endemic equilibrium 𝐸
∗.

Therefore, decreasing the basic reproduction number is
one of the effective ways to eradicate Ebola or control the
development of epidemic [10–12]. We can do it from the
following aspects:

(i) Increase the value of 𝑘: the speed of drugs production
and distribution will affect the number of people
being cured. Speeding up the drug production as
well as distributing systemically is a powerful control
method.

(ii) Decrease the value of 𝛽: in this condition, the basic
reproduction number will be reduced correspond-
ingly. We will reduce the chances that the Ebola virus
carriers contact the susceptible person.

(iii) Increase the value of 𝜀: we can insulate the Ebola virus
carriers from other susceptible persons.

3. How to Distribute Drugs Faster
and More Reasonable

3.1.The Optimal RouteModel andM-S Transportation Assign-
ment Model. This model is to establish how to distribute
drugs quickly and reasonably. The aim of the first day is
acquiring initial data of each infected district, according to
the number of the infected people of each district to distribute
drugs [13–15] and the number of susceptible people assigned
vaccine. On each of the following days, we need to predict the

number of changes to the distribution of drugs, according to
the model for the infected and susceptible cases [16–19].

The pictorial diagram of the model is given in Figure 7.

(i) The Optimal Route Model. We design the transport speed
without resistance as V. Here the relationships between the
velocity combined with the road level factors and the original
ones are

Ṽ
𝑖
= 𝜇
𝑖
V, where 𝑖 = 𝐴, 𝐵, 𝐶,𝐷, 𝐸,

𝜇
𝐴
= 1,

𝜇
𝐵
= 0.8,

𝜇
𝐶
= 0.5,

𝜇
𝐷
= 0.1,

𝜇
𝐸
= 0.000001.

(8)

First, we use two matrixes which contain the information
of M-S roads’ and each of the area roads’ level data:

𝑈 (𝑀 − 𝑆 󳨀→ 𝑚
𝑖
) ,

𝑈
󸀠
(𝑚
𝑖
󳨀→ 𝑚

𝑗
) ,

𝑈 =(

(

𝜇
1

𝜇
2

.

.

.

𝜇
𝑛

)

)

, 𝑈
󸀠
=(

(

𝜇
11

𝜇
12

⋅ ⋅ ⋅ 𝜇
1𝑛

𝜇
21

𝜇
22

⋅ ⋅ ⋅ 𝜇
2𝑛

.

.

.
.
.
.

.

.

.

𝜇
𝑛1

𝜇
𝑛2

⋅ ⋅ ⋅ 𝜇
𝑛𝑛

)

)

.

(9)
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The velocity combined with the road level factors can be
calculated:

𝑉̃ (𝑀 − 𝑆 󳨀→ 𝑚
𝑖
) ,

𝑉̃
󸀠

(𝑚
𝑖
󳨀→ 𝑚

𝑗
) ,

𝑉̃ = 𝑈 ⋅ V =(

(

𝜇
1V

𝜇
2V
.
.
.

𝜇
𝑛V

)

)

, 𝑉̃
󸀠

= 𝑈
󸀠
⋅ V =(

(

𝜇
11V 𝜇

12V ⋅ ⋅ ⋅ 𝜇
1𝑛V

𝜇
21V 𝜇

22V ⋅ ⋅ ⋅ 𝜇
2𝑛V

.

.

.
.
.
.

.

.

.

𝜇
𝑛1V 𝜇

𝑛2V ⋅ ⋅ ⋅ 𝜇
𝑛𝑛V

)

)

.

(10)

We can also get the distance between the M-S and each
area:

𝐷(𝑀 − 𝑆 󳨀→ 𝑚
𝑖
) ,

𝐿 (𝑚
𝑖
󳨀→ 𝑚

𝑗
) ,

𝐷 =(

𝑑
1

𝑑
2

.

.

.

𝑑
𝑛

), 𝐿 =(

𝑙
11

𝑙
12

⋅ ⋅ ⋅ 𝑙
1𝑛

𝑙
21

𝑙
22

⋅ ⋅ ⋅ 𝑙
2𝑛

.

.

.
.
.
.

.

.

.

𝑙
𝑛1

𝑙
𝑛2

⋅ ⋅ ⋅ 𝑙
𝑛𝑛

).

(11)

After that, we can obtain shortest time data of each
routine. Assume that𝐴⊗𝐵means twomatrix elements’ phase
in the corresponding phase, where

𝑇 = 𝐷 ⊗ 𝑉̃ =

(
(
(
(
(
(

(

𝑑
1

𝜇1V
𝑑
2

𝜇2V
.
.
.

𝑑
𝑛

𝜇𝑛V

)
)
)
)
)
)

)

,

𝑇
󸀠
= 𝐿 ⊗ 𝑉̃

󸀠

=

(
(
(
(
(
(

(

𝑙
11

𝜇11V
𝑙
12

𝜇12V
⋅ ⋅ ⋅

𝑙
1𝑛

𝜇1𝑛V
𝑙
21

𝜇21V
𝑙
22

𝜇22V
⋅ ⋅ ⋅

𝑙
2𝑛

𝜇2𝑛V
.
.
.

.

.

.
.
.
.

𝑙
𝑛1

𝜇𝑛1V
𝑙
𝑛2

𝜇𝑛2V
⋅ ⋅ ⋅

𝑙
𝑛𝑛

𝜇𝑛𝑛V

)
)
)
)
)
)

)

.

(12)

Then we figure out the best routine by using dynamic
programming. We design the transport time between area 𝑘
and area 𝑖 (destination) as 𝑡󸀠

𝑘𝑖
, where 𝑘 = 1, 2, . . . , 𝑛, 1 ≤ 𝑥

𝑗
≤

𝑛, 𝑥
𝑗
̸= 𝑘, 𝑥
𝑗
̸= 𝑖.

When the routine contains one area road,

𝑡
󸀠(1)

𝑘𝑖
= 𝑇
󸀠
(𝑖, 𝑘) . (13)

When the routine contains two area roads,

𝑡
󸀠(2)

𝑘𝑖
= 𝑇
󸀠
(𝑖, 𝑥
1
) + 𝑇
󸀠
(𝑥
1
, 𝑘) , (14)

and so on.
When the routine contains zero area roads,

𝑡
󸀠(𝑛−1)

𝑘𝑖
= 𝑇
󸀠
(𝑖, 𝑥
1
) + ⋅ ⋅ ⋅ + 𝑇

󸀠
(𝑥
𝑛−1
, 𝑘) . (15)

Next we get the shortest transport time between arbitrary
area and destination:

𝑡
󸀠

𝑘
=
{

{

{

0, 𝑘 = 𝑖,

min {𝑡󸀠(1)
𝑘𝑖
, 𝑡
󸀠(2)

𝑘𝑖
, . . . , 𝑡

󸀠(𝑛−1)

𝑘𝑖
} , 𝑘 ̸= 𝑖.

(16)

Finally, we can use Dijkstra Matrix Algorithm to get the
shortest time on the routine between every two areas:

𝐷
(𝑔)
=(

(

𝑡
󸀠

11
𝑡
󸀠

12
⋅ ⋅ ⋅ 𝑡
󸀠

1𝑛

𝑡
󸀠

21
𝑡
󸀠

22
⋅ ⋅ ⋅ 𝑡
󸀠

2𝑛

.

.

.
.
.
.

.

.

.

𝑡
󸀠

𝑛1
𝑡
󸀠

𝑛2
⋅ ⋅ ⋅ 𝑡
󸀠

𝑛𝑛

)

)

,

where 𝑔 = [
lg (𝑛 − 1)

lg 2
] .

(17)

The shortest time betweenM-S and every destination can
be figured out: 𝑡

𝑖
= min(𝑇(𝑘)+ 𝑡󸀠

𝑘
). Of course the best routine

can also be listed:𝐻 → 𝑚
𝑘
→ ⋅ ⋅ ⋅ → 𝑚

𝑖
.

The parameter 𝑚
𝑖
denotes the population of each area,

𝑙
𝑖𝑗
denotes the distance between each area, 𝑀 denotes the

drug transport terminal, and 𝑑
𝑖
denotes the distance between

terminal and each area.

(ii) M-S Transportation Assignment Model. The virus will
infect all the time; every day only deliver a certain amount of
drug in order to guarantee the timeliness of delivery. Given
that the traffic is limited, we can only dispatch the drug from
M-S once a day. Hence the distribution of drugs and vaccines
should be allotted according to the infection number and
arrival time [20–22].
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Figure 8: An area of Ivory Coast.

According to the model preparation, we can easily know
that

𝛼
𝑖
(𝑡) =

𝐼
𝑖
(𝑡 + 𝑡
𝑖
)

𝐼 (𝑡 + 𝑡
𝑖
)
⋅ 𝛾
1
,

𝛽
𝑖
(𝑡) =

𝑆
𝑖
(𝑡 + 𝑡
𝑖
)

𝑆 (𝑡 + 𝑡
𝑖
)
⋅ 𝛾
2
,

𝜃
1 (𝑡) = 𝜃1 (0) + 𝜆1𝜂1 ⋅ ([

𝑡

24
] + 1) − 𝜎

1
𝛾
1

⋅ ([
𝑡

24
] + 1) ,

𝜃
2
(𝑡) = 𝜃

2
(0) + 𝜆

2
𝜂
1
⋅ ([

𝑡

24
] + 1) − 𝜎

2
𝛾
1

⋅ ([
𝑡

24
] + 1) ,

𝛾
1

𝛾
2

=
𝐼 (𝑡) + 𝑄 (𝑡)

𝜙 ⋅ 𝑆 (𝑡)
⋅ 𝜀,

𝛾
1
+ 𝛾
2
≤ 𝛾,

(18)

where 0 ≤ 𝜆
1
, 𝜆
2
, 𝜎
1
, 𝜎
2
≤ 1, 𝑖 = 1, 2, . . . , 𝑛.

According to our previously established model, we select
the Ivory Coast in an area (9 in densely populated areas, a
drug storage station) for data simulation. Limited by lack of
data search, part of the data (population, prevalence, drug
and vaccine production, and storage efficiency) in accordance
with the reality of the situation is assumed; see figure position
distribution and geographic condition (Figure 8winning note
M in place of M-S).

According to the map information, we use the transport
model to calculate the data. We can get the shortest time by
the M-S transport of drugs and vaccines to 9 of this densely
populated area with Table 2. The basic transport rate is V =
60 km/h.

The most efficient routine is in Table 3.
Based on the data in each region, the initial drug inven-

tory is 5000 units. In this inventory, 2000 units are available
every day and 3000 units are used to make vaccines. Besides,
4000 units can be transported when the virus infection
coefficient 𝜑 = 0.8, and 𝜀 = 1 × 106. Because of insufficient
data, the above data and population data and the number of
patients are assumed. Pharmaceutical distribution plans of
each area can be seen in Tables 4 and 5.
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Figure 9: Storage capacity of the model with allowed shortages.

From the simulation results, we spend a total of 42 days on
complete control of the epidemic.Thenumber of infections in
the region is not on the increase.Then the supplies of vaccine
and drug need to be sustained.

The parameter 𝛼
𝑖
(𝑡) is the amount of drugs distribution

in each region, 𝛽
𝑖
(𝑡) is the amount of vaccine distribution in

each region, 𝛾 is the massive daily freight, 𝜑 is the spread of
the virus, 𝜀 is the equilibrium coefficient, 𝛾

1
is the daily traffic

volume of drugs, and 𝛾
2
is the daily traffic volume of vaccine.

3.2. Medicine Storage and Transport Model. In this section,
we will find what kind of storage solution can make the
minimum total cost. Given the drug in the corresponding
point of storage, we set up the storage model, then we
integrate transport vaccine and drugs production costs, and
we can get the minimum total cost solution.

3.2.1. Model Preparation. Combining with the general eco-
nomic ordering quantity model, we should not only consider
the relationship between the transport from the pharmaceu-
tical production department to storage and the affected areas
needing drugs but also allow the inventory shortage situation.
The rate of transport of drugs is 𝑃, and the rate of drug
demand in the affected area is 𝐷 (𝑃 > 𝐷). Production sector
starts to deliver drugs to storage starting from 0.Then at time
𝑡
1
, the actual rate of 𝑃 and 𝐷 is increasing; after that, the

demand reaches the maximum shortage. After the maximum
shortage, we restore supply from that point to supplement
shortage and start a new cycle for the drug store. Figure 9
shows a schematic view of the corresponding period [23–27].

3.2.2.Model Establishing and Solving. We suppose that a cycle
length of time for storage is 𝑡

1
+ 𝑡
2
+ 𝑡
3
+ 𝑡
4
and use OC, CC,

and SC to express preparation cost, storage cost, and shortage
cost in a storage cycle, respectively. TC represents the average
total cost per unit of time.

By analysis, OC, CC, and SC can be given as

OC = 𝐶
𝐷
,

CC = 1
2
𝑆
1
𝐶
𝑃
(𝑡
1
+ 𝑡
2
) ,

SC = 1
2
𝑆
2
𝐶
𝑆
(𝑡
3
+ 𝑡
4
) .

(19)
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Table 2: The shortest time of the transport line.

Destination 1 2 3 4 5 6 7 8 9
Hours 1.04375 0.985417 1.516667 3.650417 3.750417 2.770833 1.754167 2.34375 3.079167

Table 3: The most efficient routine.

Destination 1 2 3 4 5 6 7
Routine 𝑀→ 1 𝑀 → 2 𝑀 → 3 𝑀 → 1 → 2 → 3 𝑀 → 1 → 2 → 3 → 4 → 5 𝑀 → 6 𝑀 → 7 𝑀 → 7 → 8 𝑀 → 7 → 8 → 9

Table 4: Transport schedule on the first day.

City Population Patients Drugs Vaccine
1 511154 112 41 471
2 12211 11 5 14
3 121233 0 0 132
4 56454 0 0 55
5 64441 1 1 63
6 2023756 2133 767 1930
7 68782 12 65 161
8 124144 0 0 291
9 468444 0 0 457

Table 5: Transport schedule when the epidemic is controlled.

City Population Patients Drugs Vaccine
1 511154 131 48 495
2 12211 11 5 14
3 121233 0 0 139
4 56454 0 0 68
5 64441 0 0 79
6 2023756 1683 662 2513
7 68782 4 663 348
8 124144 0 0 700
9 468444 0 0 3337

So the average total cost per unit of time can be obtained
as

TC = OC + CC + SC
𝑡
1
+ 𝑡
2
+ 𝑡
3
+ 𝑡
4

=
𝐶
𝐷
+ 0.5 ⋅ 𝑆

1
𝐶
𝑃
(𝑡
1
+ 𝑡
2
) + 0.5 ⋅ 𝑆

2
𝐶
𝑆
(𝑡
3
+ 𝑡
4
)

𝑡
1
+ 𝑡
2
+ 𝑡
3
+ 𝑡
4

.

(20)

From Figure 9, we can get

𝑆
1
= (𝑃 − 𝐷) 𝑡

1
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2
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1
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2
,
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𝑡
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,

𝑡
3
+ 𝑡
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𝑃
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𝑡
3
,

𝑡
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+ 𝑡
2
+ 𝑡
3
+ 𝑡
4
=

𝑃

𝑃 − 𝐷
(𝑡
2
+ 𝑡
3
) ,

𝑄 = 𝐷 (𝑡
1
+ 𝑡
2
+ 𝑡
3
+ 𝑡
4
)

=
𝑃𝐷

𝑃 − 𝐷
(𝑡
2
+ 𝑡
3
) .

(21)

Restoring data, each length of time can be given as

𝑡
∗

3
= √

2𝐶
𝐷
𝐶
𝑆
(1 − 𝐷/𝑃)

𝐷𝐶
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𝑃
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𝑆
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𝑆
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𝐶
𝑆
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(22)

With generation into the TC we can get the minimum cost:

TC∗ = √
2𝐷𝐶
𝐷
𝐶
𝑆
𝐶
𝑃
(1 − 𝐷/𝑃)

𝐶
𝑃
+ 𝐶
𝑆

, (23)

where 𝐶
𝐷
denotes the cost of preparations before transport-

ing drugs, 𝐶
𝑃
means storage fee of unit drugs in unit time,

and 𝐶
𝑆
means economic losses caused by drug shortages in

unit time.
After obtaining the sum cost of the average fee, storage

fee, and loss fee in the unit of time, the final total cost
can be obtained after adding the corresponding medicine
manufacturing cost and transportation cost.
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4. Conclusions

In summary, we can enlarge the drugs and vaccine supply to
control the epidemic. As we can see, the index of 𝛾 is over one,
which means increasing 𝐴 is more efficient in decreasing the
virus spread velocity [28]. In addition, when the epidemicwas
controlled, focusing on the medicine research can be better
than the expansion of production on drugs and vaccine. If
we can provide more helpful things to people, we do believe
that Ebola will be erased in this world [29–33]. By the way,
reducing the cost in producing as well as puttingmoremoney
on the researching is a sustainable plan to face the future that
the viruses will become variants.
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