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Abstract

Analyzing the microbiome of diverse species and environments using next-generation sequencing techniques has
significantly enhanced our understanding on metabolic, physiological and ecological roles of environmental
microorganisms. However, the analysis of the microbiome is affected by experimental conditions (e.g. sequencing errors and
genomic repeats) and computationally intensive and cumbersome downstream analysis (e.g. quality control, assembly,
binning and statistical analyses). Moreover, the introduction of new sequencing technologies and protocols led to a flood of
new methodologies, which also have an immediate effect on the results of the analyses. The aim of this work is to review
the most important workflows for 16S rRNA sequencing and shotgun and long-read metagenomics, as well as to provide
best-practice protocols on experimental design, sample processing, sequencing, assembly, binning, annotation and
visualization. To simplify and standardize the computational analysis, we provide a set of best-practice workflows for 16S
rRNA and metagenomic sequencing data (available at https://github.com/grimmlab/MicrobiomeBestPracticeReview).
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Introduction
The recent advances in high-throughput sequencing helped to
unfold the most abundant living material, the ‘microbiome’,
and its associations to different environments. The microbiome
exists as an essential component of diverse habitats including
air, soil, water and the gut of simple and complex organisms
[1, 2]. It plays crucial roles in metabolic processes of both abiotic
and biotic systems including mineral recycling and breakdown,
nitrogen fixation, as well as modulation of host immune
responses and production of vitamins and secondary metabo-
lites [3, 4]. Eventually, recognition of the diverse roles of microbes
in numerous biotic and abiotic systems has expanded the scope
of microbiology beyond laboratory-grown cultures. It might

have helped to redefine the previously conceptualized idea of
‘holobiont’ that incorporates specific host–microbe symbiotic
associations into a more generalized and inclusive ‘hologenome’
[5–7]. Hologenome describes the genetic totality of host genes
and symbiotic/mutualistic microbial genes that get affected
simultaneously under environmental stress [8]. Studies on
understanding the roles of the hologenome got boosted with
advancements in next-generation sequencing (NGS) that helped
to precisely identify microbial species and associated metabolic
pathways [5, 9, 10]. In the past 15 years, the Human Microbiome
Project and Earth Microbiome Project together with NGS
immensely improved the areas of novel genome predictions,
genetic associations, pathogen identifications and clinical
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Figure 1. An illustration of targeted amplicon and metagenomic sequencing approaches. A schematic overview demonstrating diverse sample types along with

commonly utilized sequencing platforms, as well as systematic and stepwise data processing steps.

diagnostics [11, 12]. Nonetheless, there have been concerns
about the reproducibility of published microbial sequencing
data that consist of large amounts of unknown sequences, also
referred to as ‘dark matter’ [11, 13]. Erroneous sample handling,
variation in sampling size, choice of DNA extraction methods,
as well as computational analyses (e.g. quality filtering tools
and assemblers) might lead to inconsistent results. In addition,
the lack of standardization of laboratory and computational
protocols introduces various biases, which then might lead to
non-comparable results.

This review discusses both the experimental and computa-
tional challenges in acquisition and analysis of 16S rRNA and
metagenomics data while focusing on the advantages, limita-
tions and best practices for data handling and analysis. The
article begins with a review of gene amplicon and metage-
nomic sequencing methods and their experimental challenges
followed with a best-practice bioinformatics analysis workflow
for standardizing the analysis, as well as for achieving robust-
ness and reproducibility.

NGS-based microbial genotyping
The two most commonly used methodologies for microbial iden-
tification and genotyping are based on gene amplicon/marker
genes (e.g. 16S rRNA) and shotgun metagenomics (Figure 1).

Gene amplicon sequencing

Over the past 25 years, gene amplicon sequencing has been
the primary technique to study phylogeny and taxonomy of
complex microbiomes that were earlier considered challenging
to characterize [14]. For bacteria, archaea, fungi and mycobacte-
ria, several specific marker/target genes are identified that are
extensively used for amplicon sequencing. Most marker genes

are functionally conserved across phylogenetic distances and
thus also serve as a molecular clock for studying evolutionary
transitions and changes. The most commonly used target gene
for bacterial identification is 16S rRNA (or 16S rDNA), which is
the gold standard in microbial typing [15, 16]. The 16S rRNA gene
encodes prokaryotic small 30S subunit of the 70S ribosomal com-
plex in most bacteria and archaea. Interestingly, the prokaryotic
16S rRNA gene is distinct from its eukaryotic homologue, the
18S rRNA gene that encodes the small eukaryotic ribosomal
subunit (40S). The highly conserved 16S rRNA gene implies its
crucial role in cellular function and survival and thus forms the
basis of obtaining precise genomic classification of known and
unknown microbial taxa. Additionally, it is easier to sequence
16S rRNA genes even for exceedingly large sample sizes, due to
its relatively short size (∼1542 bp). The gene sequence consists of
highly conserved primer binding sites along with nine variable
regions (V1–V9). Most of the 16S rRNA-based genotyping proto-
cols use V5–V6, V3–V4, or V4 hypervariable regions to identify
and catalogue microbial profiles [17, 18]. Alternatively, the V3
region is a better choice for community profiling of Archaea by
polymerase chain reaction (PCR)–denaturing gradient gel elec-
trophoresis. Other variable regions, including V1–V2 and V3–V4,
have been utilized for genotyping archaeal species in complex
microbial communities [19]. Unlike bacteria, identification of
gene targets in pathologically important yeast and fungi is still
not well determined. The fungal rDNA is composed of coding
and noncoding spacer regions [20, 21]. The coding region consists
of 18S, 5.8S and 28S units along with several noncoding regions
consisting mainly of internal transcribed spacers (ITSs) and
intergenic sequences. ITS variable regions have been the most
commonly used gene target for fungal genotyping. However,
uneven lengths of these ITSs induce errors and biases, such as
preferential amplification and sequencing, often leading to an
incorrect estimation of abundance [21].
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Nonetheless, 16S rRNA-based NGS has been successfully
used in characterizing microbial communities associated
with various milieus including soil, water sources and the
human gut (Figure 1). More recently, 16S rRNA-based NGS
analysis has helped to identify changes in microbial com-
munity structures along with its associated alterations in
community functions. It helped remarkably in the estimation
of soil and water contamination, as well as to gain a deeper
understanding of several gut-associated diseases, including
Crohn’s disease, ulcerative colitis, diabetes and gastrointestinal
cancers [22–27].

Metagenomics

Metagenomics refers to direct genetic analysis of genomes
obtained from different environments [28]. The term metage-
nomics is often used inaccurately in conjunction with 16S rRNA
gene sequencing. While 16S rRNA sequencing utilizes a marker
gene approach and does not target the whole genome, metage-
nomics on the contrary is a culture-independent genomic
analysis of microbes taken directly from the environment
using a genome-wide shotgun sequencing approach [29, 30].
Metagenomics comprehensively catalogues all microorganisms
present (unculturable and culturable, known and unknown) in
complex environmental samples (Figure 1). In contrast to the
unimodal phylogenetic analysis based on the diversity of a single
gene, for instance, the 16S rRNA gene, metagenomics systemizes
multimodal genetic composition of microbial communities and
hence provides a better taxonomic resolution and genomic
information [31, 32]. Metagenomics helps in associating function
to phylogeny besides creating evolutionary profiles of the
microbial community structure. Importantly, it also helps to
identify viruses that are otherwise hard to detect through a
single-gene targeting approach, due to its high genetic diversity
and its inability to discern common genetic links [33]. In the past
few years, modern NGS has slowly replaced classical Sanger
sequencing as a preferred tool for metagenomics shotgun
sequencing. Both 454/Roche and Illumina/Solexa systems were
extensively used for analyzing metagenomic samples from a
multitude of environments [34].

Despite the recent advancements in sequencing technologies
and computational analysis tools, many factors might lead to
biases and errors. These errors and biases could be broadly clas-
sified into experimental and computational challenges. Figure 2
shows a general overview of common experimental and compu-
tational challenges that are discussed in detail in the following
sections.

Experimental challenges and solutions
Study design/experimental design

A good study design helps in limiting erroneous and obscure
trends often observed in several microbiome-based studies. In
general, any hypothesis should primarily be supported by metic-
ulous literature driven evidence and preliminary testing using
small-scale/pilot studies to avoid uncertainty in biological sig-
nals, trials and failures. A rationalized study design will certainly
help to improve data processing and to eliminate confounding
effects [35]:

• Number of samples: Selecting a significant sample size
remains a key step, especially when the final outcomes are

used for clinical settings and interpretations. It has been
reported that the microbial load varies between biological
replicates existing under similar conditions [36]. This
variability between similar samples makes it challenging to
identify weak biological signals, especially when the effective
size is unknown or small. In most cases, results with small
sample sizes do not precisely represent general population-
based outcomes. Importantly, sample sizes should always be
kept fixed and should not be altered during the study [37].
Hence, choosing appropriate sample sizes based on statistical
principles can certainly help to avoid biases and spurious
interpretations.

• Controls: Controls are needed to identify whether a signal
is real and not just a stochastic or spurious result. An
appropriately controlled experiment consists of two or more
scenarios: one producing observations without interferences,
while the others remain targeted manipulations [38, 39].
Unfortunately, it is still a difficult task to obtain proper
controls in many cases, especially in clinical trials where the
microbial composition gets affected by age, gender, ethnicity,
diet, genotype and several other lifestyle factors. In animal
studies, additional factors, such as animal strains, facilities,
housing conditions, handling and breeding, could also
affect the microbial profile [40]. Several studies have shown
that co-housed animals could act as hidden confounding
factors due to coprophagy [41, 42]. Thus, it is essential
to replicate a co-housing study making sure not to co-
house animals of different genotypes, which might have
different phenotypic appearances. On the other hand, it
has also been found that genetically identical mice in
different facilities exhibit different bacterial profiles [42].
Nonetheless, one should try to control and document as
many factors as possible to create a detailed metadata file
(Supplementary Table S1). These factors could later be used in
statistical downstream analyses to account for confounding
factors [43, 44].

• Cross-sectional and longitudinal studies: A cross-sectional
study incorporates comparative analyses of two groups, e.g.
healthy versus disease or treatment versus placebo. These
studies are less complex to design and perform and do not
essentially require long follow-ups. However, a significant
drawback of such studies is that observed differences are not
directly attributed to a single effect/treatment and could be
due to various additive or multiplicative effects [45]. It is well
known that a microbiome could be altered based on many
environmental factors that include lifestyle and diet. Hence,
from a statistical perspective, it is better to perform longitudi-
nal studies, where the same sample is studied under different
controlled conditions [46]. However, it is equally important
to cautiously plan identical sample collection times for each
replicate to avoid biases. Despite the advantages associated
with longitudinal studies, only a few reliable methods are
available for downstream analyses [47].

• Metadata: Metadata are an information catalogue containing
details of all the samples used in an experiment. Gener-
ation of metadata is one of the most critical steps before
any downstream analysis could be performed. Apart from
serving as a sample reference sheet, it also helps to avoid
false interpretation of results and highlights the effective
size of individual factors. The use of metadata is needed in
several modern statistical comparison tools [48]. An example
metadata sheet is provided as Supplementary Table S1 for
reference.
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Figure 2. A schematic overview outlining various experimental and computational challenges associated with 16S rRNA-based and shotgun metagenomic sequencing.

Sample collection and handling

Handling of environmental samples after collection is a crucial
aspect in nucleic acid-based sequencing methods for comparing
the composition and diversity of microbial communities. In fact,
sample collection could be a significant confounding factor that
might affect the results and interpretations of a study [49]. The
most common problem is variability in the amount of microbial
DNA present in different environmental samples. For example,
skin samples contain comparatively less microbial biomass than
gut samples, and hence collecting enough samples remains a
crucial factor for the final sequencing outcomes. In the following
we list some parameters which should be considered during
sample collection and handling:

• Contamination: Maintaining a proper sample environment
during sample collection is important, since changes in
temperature, humidity, or other factors could alter or
contaminate samples [49]. Additionally, the proximity
of different samples could lead to cross-contamination,
which might later generate spurious results. Furthermore,
minimizing the time of sample collection and using aseptic
laboratory resources, including gloves, masks and head
covers, help to reduce contamination [50].

• Transportation: Transit conditions and duration can influence
the quality and quantity of extracted nucleic acids. The
microbial composition is unstable from the point of sample
collection, and thus immediate freezing is considered as a
must. It has been shown that the interim period between
sample collection and storage can lead to several issues
in later phases of the analysis [51]. Thus, it is crucial to
maintain constant storage conditions during transporta-
tion for all samples to avoid inconsistent freeze–thaw
cycles. Additionally, several chemical preservation methods
are widely accepted for sample collection from remote
locations [52, 53].

• Storage and safety: Several studies have assessed the
effect of storage conditions on compositional changes in

microbial samples. Comparing 16S rRNA profiles, it has
been shown that short-term (14 days) storage temperature
has an insignificant effect on the microbiome structure
and diversity in samples [54]. Another study on human
fecal microbiota showed that rapid refrigeration at −80◦C
conserves microbiota diversity that is significantly altered
by dry storage at 4◦C [53]. Hence, it is equally important to
maintain consistent storage conditions for obtaining optimal
nucleic acid yields before sequencing.

Nucleic acid extraction

The choice of DNA/RNA isolation methods could cause biases
during sequencing, which in turn affects downstream analysis.
Importantly, the extraction method should effectively capture
all types of microbes. For example, DNA isolation from gram-
positive bacteria is harder, due to their thick peptidoglycan cell
walls [55]. There are two major extraction methodologies: (i)
mechanical lysis/bead beating and (ii) chemical lysis [56]. Bead-
beating methods are considered to produce superior yields if
done optimally. Thus, for complex bacterial samples, a ‘bead-
beating’ step could be performed before standard nucleic acid
extraction. However, vigorous bead beating should be avoided
since it can shear nucleic acids and eventually affect library
preparation steps later.

Nucleic acid preparation

For single marker/target gene NGS approaches, amplification
using barcode primer pairs, purification, and preparation of
purified DNA libraries are done before sequencing. Illumina
MiSeq provides a limited output (15 Gb) and is mainly used for
amplicon sequencing as it provides longer reads (2× 300 bp)
with a much lower sequencing cost compared to other high-
throughput sequencers [57]. Interestingly, Illumina also offers
shotgun sequencing which generates short reads up to 1.5 Tb
per run. Multiple DNA isolation methodologies are available that
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differ based on fragmentation methods and efficiently generate
sequencing libraries. Widely used DNA isolation kits for the
Illumina platform include Nextera DNA Flex, Nextera XT and
TruSeq DNA PCR-Free [58]. Nextera DNA Flex supports both large
and small genome sizes with input DNA amounts of 100–500 ng
and 1–500 ng, respectively. It utilizes bead-linked transposomes
that simultaneously generate consistent fragment sizes and tag
the input DNA. Up to 96 multiplexed metagenomic samples can
be sequenced using unique dual indexing during library prepa-
ration. Another popular kit, Nextera XT, utilizes an engineered
enzyme-mediated fragmentation methodology and requires as
little as 1 ng of input DNA samples. Using this method, up to
384 uniquely indexed samples can be pooled and sequenced
together. On the other hand, TruSeq DNA PCR-Free as the name
suggests is a PCR-free workflow and utilizes mechanical DNA
fragmentation and adapter ligation. This method also requires
little amounts of input DNA (∼1 ng).

Unfortunately, short-read-based NGS techniques have
limited applications in analyzing polyploid genomes due to
pure applicability of their algorithm to metagenomics data.
In this context, third-generation sequencing platforms like
Pacific Biosciences RS II/Sequel and Oxford Nanopore MinION
sequencing technologies prove to be more efficient due to
longer read sizes, species-level resolution and absence of
DNA amplification-based biases [59, 60]. Pacific Biosciences RS
II/Sequel has improved extraction procedures that incorporate
enzymatic lysis of DNA with a cocktail of enzymes that results
in the extraction of longer DNA fragments. Additionally, in
comparison to PacBio RS II, the PacBio Sequel has raised
DNA output from ∼0.5–1 Gb to ∼5–10 Gb [61]. Nevertheless,
conventional glitches like collection, preservation and transfer
can still retrograde sample quality and have caused a multitude
of problems in exploring clinical samples and samples from
extreme environments. Subsequently, another third-generation
sequencing technology, the Oxford Nanopore MinION, reliably
addresses these issues [62, 63]. Launched in 2014, it is portable
(size of a USB stick) and provides the agility to sequence samples
from extreme conditions. Nonetheless, read lengths produced
by the MinION nanopore sequencer rely mostly upon input
fragment lengths that again require meticulous extraction and
purification procedures.

Sequencing and computational challenges
Recent developments in sequencing technologies have resulted
in an exponential increase in new methods, algorithms and
computational tools for functional annotations and analyses
[64]. However, several computational challenges still exist due to
the complexity of the underlying biological data, lack of proper
metadata information and scarcity of standard data formats and
computational resources for high-volume data (Figure 2) [65, 66].
Since most of the biological interpretation of sequencing data
relies on these tools, proper benchmarking, open-source avail-
ability, simplification of the installation process and a proper
user interface should help to ensure reproducibility and inter-
pretability of the results. This is important, since using different
tools for similar analyses often results in different and non-
comparable results, interpretations and biases. Hence, it is cru-
cial for research projects that are heavily dependent on bioin-
formatics tools to access and utilize these tools conscientiously.
There are various computational tools for 16S rRNA sequencing
data [67, 68], as well as for short-read metagenomics data (e.g.
Critical Assessment of Metagenomic Interpretation (CAMI)) [69, 70].
In the following sections, we provide an overview of current

challenges in amplicon and metagenomic sequencing analysis
followed by a best-practice workflow on how to optimally con-
duct such analyses.

Challenges for amplicon sequencing analysis

One of the main difficulties for gene marker-based analysis
is to distinguish sequencing errors from real nucleotides. For
this purpose, two major tool categories exist: (i) operational
taxonomic unit (OTU)-based (QIIME and Mothur)[159–160] and
(ii) amplicon sequence variant (ASV)-based (DADA2, Deblur,
MED,and UNOISE) [158, 177–179] tools (Figure 1). OTU-based
methods resolve sequencing errors by clustering the reads based
on a predefined identity threshold (commonly 97%) into OTUs
[71]. On the other hand, ASV-based tools utilize a denoising
approach on biological sequences before the introduction of
amplification and sequencing errors [72]. Several comparative
studies between these two methods have suggested that OTUs
provide lower taxonomic resolution as compared to ASVs and
a choice between these two can broadly impact alpha diversity
estimations [73, 74–78]. In this review, we describe a stepwise
systematic workflow for 16S rRNA using OTU- and ASV-based
methods, in the forthcoming section.

Challenges of metagenomic sequencing analysis

A rapidly growing number of tools and algorithms available
for metagenomic analyses have made the choice of the most
appropriate methods highly challenging. Major steps involved
in typical metagenomics data analyses are assembly and bin-
ning, followed by taxonomic and functional profiling (Figure 1).
In the following subsections, these steps are comprehensively
discussed followed by a description of a systematic workflow
containing optimal tools and algorithms.

Quality control

Quality control is an essential prerequisite that involves quality
trimming and contamination removal from raw reads. While
quality trimming filters raw reads for low-quality and adapter
sequences, contamination removal detects and efficiently
removes host-associated sequence contaminations from reads.
Both steps are crucial for producing an optimal assembly.
Trimmomatic, sickle, BBTools and DeconSeq are widely used
tools that utilize bowtie and BWA for quality trimming and
contamination removal [74–77]. Next, a variety of read lengths
generated from an environmental sample are processed through
either short-read or long-read metagenomic analyses depending on
the study design.

Challenges in short-read metagenomics

The primary advantage of short-read sequencing is its ability
to generate billions of reads in a massively parallel manner
within a single run. The Illumina sequencing platform is a short-
read technology that produces high read counts at compara-
tively lower costs. In Illumina sequencing, an adapter-ligated
DNA library is captured using surface-bound complementary
oligonucleotides and later amplified into distinct, clonal clus-
ters by bridge amplification (Figure 3A). Sequencing is done in
multiple cycles by imaging a fluorescently labeled reversible
terminator after each dNTP addition, which is then cleaved to
allow incorporation of the next base. This process minimizes
errors due to a base-by-base sequencing protocol that enables
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Figure 3. Major short-read and long-read sequencing technologies. (A) Illumina sequencing involves initial trimming, adenylation of the blunt ends and ligation of

specific adapters to DNA molecules. Following this library, fragments are amplified in situ on flow cell surfaces through bridge amplification and produce sequencing

clusters. Finally, reversible dye terminator sequencing step is implemented where single-nucleotide addition reactions and presence of blocking group at the 3′-OH

(of the ribose moiety) help to identify sequencing clusters through a reporter fluorescent signal. (B) PacBio sequencing involves a circular consensus sequencing (CCS)

SMRTbell technique. Herein, ligation of hairpin adapters to each end of a duplex DNA molecule forms a closed loop, which is sequenced in a zero-mode waveguide

(ZMW), fluorescence-based readout of nucleotide incorporation. Each strand in the duplex DNA is sequenced together in multiple passes, and the consensus sequences

from both strands are incorporated. (C) Nanopore sequencing involves ligation of hairpin adapters at one end of duplex DNA molecule before initiating nanopore

sequencing of the linked original DNA strands. The blockades in ionic current through the nanopore are optimally quantified as DNA base sequences.

accurate data acquisition. In the following, a stepwise metage-
nomics processing workflow is discussed along with suggestions
of optimal tools and algorithms.

Assembly

Significant challenges in analyzing complex environmental
samples comprising multiple genomes (bacteria, fungi, viruses,

archaea) include sequencing errors, presence of intergenomic
and intragenomic repeats and uneven sequencing coverage
[78, 79]. The assembly step fairly subjugates these issues by
stitching reads into longer fragments, referred to as contigs,
followed by reconstructing the individual genes and species.
Reads can be either paired-end reads, mate pairs, or single-
end reads based on the choice of adapter ligation [80].
Further, the complexities and challenges for metagenomics
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assembly are elevated by an uneven abundance of multiple
genomes in samples originating from the same conditions.
Hence, the choice of the assembly algorithm remains critical
for optimal downstream analysis. For a typical metage-
nomics assembly, commonly used assemblers include MegaHit,
metaSPAdes, RayMeta, MetaVelvet, IDBA-UD, SOAPdenovo2 and
Omega [81–87].

Interestingly, most of these assembly algorithms were
initially developed for single-genome assemblies but have
been extended for a much broader usage. Apparently, the
choice of the right algorithm for a given dataset has become
difficult due to numerous comparative reports on these different
assemblers [88, 89]. Several efforts have been made to improve
assembly statistics and identification of dedicated metagenomic
assemblers. The four most widely used assemblers are MegaHit,
metaSPAdes, RayMeta and IDBA-UD. All four algorithms are
open-source metagenome assemblers based on De Bruijn graphs
[90]. A major advantage of De Bruijn graphs is that assembled
reads contain fewer errors and errors can be easily corrected
prior to assembly. On the other hand, the IDBA assembler
iterates through increasing k-mer sizes, trimming the graph
and integrating bubbles/loops along the way. It utilizes several
depth-relative k-mer thresholds for eliminating erroneous k-
mers in both low-depth and high-depth regions. Similarly, while
RayMeta is a single k-mer assembler, both metaSPAdes and
MegaHit iteratively analyze k-mer lengths to find the optimal
value. While metaSPAdes incorporates read coverage during
assembly, MegaHit has a comparatively rapid and memory-
efficient implementation. Both assemblers are preferred for
complex microbiome profiling tasks [91].

Gene prediction

Several methods for predicting genes from metagenomic DNA
fragments are available that are widely used. These predic-
tion algorithms are broadly categorized into homology-based,
model-based and machine learning-based methods [92]. Cur-
rently, gene prediction tools such as GeneMarkS, Glimmer3 and
Prodigal exhibit significantly high accuracy (>97%) in detecting
validated protein-coding ORFs [93–95]. Nevertheless, their accu-
racy in identifying the ORF-start sites could still be improved
(∼90%) [93]. This is mainly because genes escaping the detec-
tion are the genes with sequence patterns that do not match
any species-specific model [96]. Additionally, another critical
accuracy measure, the false-positive rate (FPR), requires a rather
difficult assessment for ruling out wrongly predicted genes. A
robust way of detecting false positives based on a two-factor
assessment has been recently proposed that involves (i) iden-
tifying large overlaps with known genes located on the oppo-
site strand and (ii) comparing with genes predicted in random
sequences [97].

Contig binning

In order to reconstruct genomes using heterogeneous sequenc-
ing data, contig grouping based on an individual genome of
origin or metagenomics binning is done. Traditionally, binning
is performed by aligning contigs against reference datasets, but
recently more efforts were directed toward unsupervised clus-
tering [98]. Hence, binning algorithms can be further categorized
as either taxonomy-dependent or supervised binning that uti-
lizes taxonomic information from a reference database or unsu-
pervised binning where sequence clustering is performed using
statistical properties and/or contig coverage [99]. In supervised
or taxonomy-dependent binning, contig classification reduces

the search space, and thus slower alignment or phylogenetic
methods can be executed. In this context, the widely used tool
Taxator-tk utilizes Basic Local Alignment Search Tool (BLAST)
and PhyloSift for identifying similarities to marker genes (such
as 16S rRNA) using the Hidden Markov model profiles [100].
Similarly, other tools including HMMER and PhyloPythiaS(þ)

assign reads to bins by utilizing an support vector machine
model trained on a reference database [101, 102].

On the other hand, unsupervised binning mostly relies on
sequence features without a priori information on genome
sets present in a sample. For instance, MetaCluster bins
reads by a dual grouping algorithm, where it first groups
reads using long unique k-mers (k > 36) followed by merging
groups based on similar tetranucleotide or pentanucleotide
distributions [103]. In the next round, 16 mer frequencies
are utilized to bin contigs from low-abundance species.
Apart from these, three other metagenomic contig binning
algorithms include MaxBin, CONCOCT and MetaBAT. MaxBin

considers nucleotide composition and contig abundance
information for binning through an expectation–maximization
(EM) algorithm that precisely clusters metagenomic contigs
into bins consisting of contigs from a single species [104].
On the contrary, CONCOCT uses Gaussian mixture models
for clustering contigs by combining both tetranucleotide
frequencies and differential abundances covering multiple
samples for binning [105]. Thus, it amalgamates information
from both sequence composition and coverage, across multiple
environmental samples. Similarly, MetaBAT utilizes pairwise
collation of contigs by calculating probabilistic distances
based on tetranucleotide frequencies. Binning of contigs is
then done by a k-medoid clustering algorithm and modeled
on interspecies and intraspecies distances in the sequenced
genomes [106].

Taxonomic classification

For identifying the taxon of each sequence, most metagenomic
classification tools match sequences (reads or contigs) to known
microbial genome databases. Due to the rapidly increasing size
of sequencing datasets, the canonical BLAST-based alignment
of sequences to GenBank has become impracticable [89]. Several
metagenomics classifiers are available that provide faster
analyses at the expense of sensitivity. These classifiers utilize
a variety of approaches including simple read alignments, k-
mer mapping in whole genome sequencing reads, alignment of
marker genes only, or generating translated protein sequences
and their alignment to protein databases [107]. Perhaps, marker
gene approaches allow faster taxonomic assignments, due to
their comparatively smaller sequencing data that can be aligned
against databases incorporating full genomes of maximum
species. Eventually, several fast aligners like Bowtie2 [108] and
HMMER [109] are utilized by several other tools, such as MetaPhlAn
[110], Phylosift [111] and mOTU [112]. Another tool, GOTTCHA,
employs 24 unique base-pair fragments indexed with BWA
(Burrows–Wheeler alignment)–mem (maximal exact matches)
that helps to generate either a presence-/absence-based binary
classification or complete taxonomic profiles [113].

On the contrary, for metagenomics data, Kraken was the
first algorithm that provided fast identification of all reads and
relied on exact k-mer matches between lowest-common ances-
tor (LCA) of every taxon [114]. Another tool CLARK utilizes a mod-
ified approach of keeping only species or genus-level k-mers and
discarding the rest of the k-mers that map to higher taxonomic
classifications [115]. Apart from these, few other tools, such as
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Centrifuge [116], MEGAN6 [117], taxator-tk [100], DUDes [118]
and Taxonomer [119], also exist for taxonomic classifications of
metagenomics data. While Centrifuge is a compact, metage-
nomics classifier that utilizes Burrows–Wheeler transform with
FM index for indexing a genome database, both MEGAN6 and
taxator-tk extensively use the outputs of local sequencing
algorithms including BLAST [120], DIAMOND [121], or LAST [122].
On the other hand, DUDes is an unambiguous classifier that uti-
lizes the output of read aligners such as BWA–mem for interpreting
taxonomic abundances in samples [118]. Similarly, Taxonomer
is a rapid and ultrasensitive classifier that first bins reads into
broad ranges, followed by their separation into species-level
messenger RNA (mRNA) transcript profiles [119].

Functional classification

Functional classification of metagenomics data is vital for inves-
tigating the functional and metabolic roles of microbiome mem-
ber species, as well as their variations under different condition-
s/treatments. Overall, tools for functional classification share
common features with tools used for whole genome analyses
(Figure 3). These tools and approaches can be classified into four
major categories, viz., homology-based, motif- or pattern-based,
context-based and other functional predictions:

(i) Homology-based tools: This is one of the earliest approaches
for which predicted protein sequences are matched to ref-
erence protein sequences, such as NCBI RefSeq [123], UniProt
[124] and SMART [125]. Both IMG/M [126] and MG-RAST

[127] servers allow query matching with other databases,
including clusters of orthologous groups (COGs) [128], Pfam
[129] and TIGRFAM [130]. Significant disadvantages of this
approach are long computation times and high error rates
(∼15%), due to database propagation.

(ii) Motif- or pattern-based tools: This approach is suitable for
short reads and complex samples that could not be matched
using homology-based approaches. Databases like PROSITE
[131], PRINTS [132], or InterPro are utilized to screen common
motifs in metagenomic sequences. IMG/M does most of the
motif-/pattern-based annotations but with low statistical
significance and high false-positive rates.

(iii) Context-based tools: Novel metagenomic sequences that
do not share any homology nor pattern or motif from the
two previous approaches are processed using a context-
based annotation. This approach mainly utilizes genomic
neighborhoods for screening metagenomic sequences. Both
IMG/M and SmashCommunity are commonly used context-
based mapping algorithms [133].

(iv) Other functional predictions: Putative annotations of novel
metagenomic sequences are usually performed using
specific tools for predicting functional properties, such as
carbohydrate-active enzymes (CAZy), protein localizations
(PSORT, CELLO), lipoproteins (DOLLOP, Lipo, SignalP),
insertion sequences (ISsaga) and virulence factors (VFDB,
MvirDB) [134–137].

Metagenomics challenges with long reads

Long reads are crucial for deciphering genomic regions that
remain inaccessible to short-read sequencing, due to the
presence of repeated sequences. Apparently, it also helps in
sequencing entire RNA transcripts and provides precise informa-
tion on the existence of specific isoforms [138]. Although second-
generation sequencing technologies, such as Roche 454 and Ion

Torrent, generate effectively longer read lengths (∼700–1000 bp),
they are usually not preferred, because of high sequencing
costs and the generation of homopolymers. Illumina platforms
provide higher accuracies and are more cost-effective; however,
they only provide limited read length (∼2× 300 bp). At present,
both Pacific Biosciences single-molecule real-time (SMRT)
and Oxford Nanopore Technologies sequencing platforms are
preferred due to their longer read sizes of 15–100 and ∼1000
kilobases, respectively [60, 139].

PacBio sequencing

PacBio is a third-generation sequencing platform that utilizes
sequencing by synthesis workflow like Illumina, except that it
is a single-molecule real-time (SMRT) sequencing technology
(Figure 3B). The PacBio-produced SMRT technology employs (a)
an SMRT Cell in the form of zero-mode waveguide that allows
observation of individual fluorophores and maintains a high
signal-to-noise ratio, (b) fast and accurate synthesis reaction by
phospho-linked nucleotides and (c) real-time, continuous light
pulse-based signal detection. This results in an accurate and
very high-throughput DNA sequencing at a low cost. Another
huge advantage of PacBio is its ability to produce much longer
reads ranging between 10 and 50 kbp with an average read
accuracy of ∼85% [140]. Currently, in comparison to PacBio RS
II, the new PacBio Sequel System shows a significant increase
in read lengths (∼0.5–10 Gbp). The recent incorporation of a
hybrid error correction method (PBcR—PacBio corrected reads)
led to an improved read accuracy from 80% to 99.9% [61, 141].
Additionally, the hierarchical genome assembly process (HGAP)
has ended the requirement of high-quality reads to reconstruct
the genome [142]. In this method, the longest read among the
datasets is selected as a ‘seed’, and all other reads are mapped
against it. Later, a preassembly is done to convert the seed
reads into precise preassembled reads that can be used for
a genome assembly. Finally, a refinement of the assembly is
done by using the initial reads which generate a consensus read
sequence. Although the assembly of SMRT reads with HGAP
produces a precise assembly of high-coverage regions, it subse-
quently fails to reconstruct low-coverage regions from complex
communities. More recently, a postprocessing step using
BIGMAC (breaking inaccurate genomes and merging assembled
contigs) was introduced, where both contigs and original reads
were simultaneously used for an improving de novo assembly
[143]. Overall, the PacBio platform is highly advantageous for
studying de novo genomes, transcriptomes and direct epigenetic
characterizations.

Also, for complex microbial populations, PacBio offers full-
length gene profiling of ITS or 16S rRNA regions. It can also effec-
tively perform full-length transcriptome profiling of eukaryotic
samples in a row at once [144, 145]. Interestingly, a compar-
ative study combining Illumina short reads and PacBio long
reads from Marine sponges showed that the hybrid approach
and phylotype-specific bins helped to improve the assembly
quality and statistics and could be used as a complementary
technique for variant calling in SMRT [146]. Moreover, low-depth
SMRT data can also precisely reconstruct taxonomic profiles of
complex communities and can also generate highly accurate
closed genomes, as demonstrated in a study on human skin
metagenomes [147]. Also, a few other recent reports showed that
PacBio shotgun metagenomics could precisely identify dom-
inant species from low diversity microbial communities and
can also effectively recover rare genomes as compared to other
short-read platforms [148, 149].
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MinION nanopore sequencing

Several conventional issues like collection, preservation and
transfer could decrease the quality of valuable samples. This has
created a roadblock in exploring clinical samples and samples
from extreme environments. This issue has been resolved to
a reasonable extent by another third-generation sequencing
platform, the Oxford Nanopore MinION™ DNA sequencer [150].
The MinION system incorporates a protein nanopore embedded
on an electrically resistant polymer membrane wherein an ionic
current is passed through the nanopore by setting a voltage
across this membrane (Figure 3C). A characteristic disruption in
current when a DNA or RNA strands or single nucleotides are
driven through the nanopore allows sequences to be read out
in real time resulting in longer read lengths. Importantly, the
MinION system is a handheld, portable system that provides
the agility to sequence samples from extreme conditions. Many
recent studies prove the agile applicability of MinION sequenc-
ing, including characterizing of Ebola virus samples in its recent
outbreak in West Africa, studying Zika virus in northeast Brazil,
or the multilocus sequence typing genotyping of vancomycin-
resistant Enterococci [63, 151]. At present, MinION provides >10
Gbp yield per flow cell with >10 times longer read coverage of
even low abundant genomes (<1%) [151, 152]. Notably, higher
error rates (∼30%) observed for early MinION systems have been
reduced to a moderate range between 2 and 13%. But large-scale
applications of MinION are still limited due to higher error rates
compared to shotgun sequencing, low coverage and high level of
interrun variabilities.

Nonetheless, recent papers have suggested a hybrid approach
for MinION metagenomics applications. These studies showed
that challenges in metagenomics cannot solely be solved using
longer reads but that more accurate reads are required for a
better resolution. Recently, hybrid approaches were frequently
applied for whole genome assemblies of clown fish and Saccha-
romyces cerevisiae genomes [153, 154]. Moreover, investigations on
gut metagenomes of patients undergoing antibiotic treatment
and studies on identifying native forms of multiple RNA viruses
also utilized a hybrid approach for obtaining microbiome data
[155, 156]. Eventually, the emerging sequencing technology and
the need for hybrid methodologies have led to the development
of BusyBee, a reference-independent binning Web tool that
accepts Illumina-assembled contigs and long reads from PacBio
and MinION [157].

Computational best-practice protocol for microbiome
acquisition

To simplify the process of conducting such studies, we imple-
mented a best-practice workflow. These standardized protocols
will help to obtain more robust and reproducible analyses for
target gene and shotgun metagenomic sequencing data. An
overview about the individual steps of the workflow is presented
in Figure 4.

All scripts and a detailed documentation are available on
GitHub under the following link (https://github.com/grimmlab/
MicrobiomeBestPracticeReview).

Target gene approach

Raw reads are quality filtered and processed by either OTU-based
(mothur) [159] or ASV-based (DADA2) [158] methods utilizing a
dissimilarity threshold (left panel, Figure 4) are used for OTU-
based data processing and analysis in the section below:

(i) Taxonomy: The OTU table generated from the processed
reads is used for profiling microbial abundance present
in the sequencing data. Microbial communities are iden-
tified through a rigorous protocol that results in multiple
pangenome alignments using customized databases such as
SILVA, Greengenes and RDP of various genes families.

(ii) Functional annotation: Using the output from mothur or
DADA2, the functional profile of identified microbial commu-
nities can be predicted using Tax4Fun or PICRUSt [161, 162].
While Tax4Fun is an R-based algorithm utilizing SILVA as
reference, PICRUSt is a bioinformatics pipeline that clusters
protein sequences based on KEGG or COG gene families and
16S rRNA gene copy numbers. Both provide approximation of
functional profiles in a given dataset.

(iii) Data visualization: The resulting OTUs and the dissimilarity
indices can be then utilized for assessing differences within
and among samples and visualized using R Bioconductor

package phyloseq [163].

Shotgun metagenomics approach

This approach comprehensively catalogues all genes from a
diverse pool of microbial genomes present in a sample. Current
sequencing platforms are broadly classified as either short-read
(250–300 bp; Illumina) offering higher sequencing depths or long-
read (500–4000 bp; PacBio and Oxford Nanopore) technologies
offering better contig assembly. Eventually, either of these
still relies on optimal sequence processing including proper
assembly:

(i) Quality filtering: Metagenomic sequencing harbors large
heterogeneity in the reads as compared to the target
gene approach. Heterogeneity in metagenomics reads
mostly pertains to poor quality or ancillary adapter/hairpin
sequences that are removed during the quality filtering
steps. For short-read sequencing platforms such as Illumina
and Solexa, both paired-end and single-end reads could be
optimally trimmed using Trimmomatic,Sickle and BBTools.
Apart from dedicated modules for trimming short-read
sequences, it can well be utilized for long-read sequences
too. The quality-filtered processed reads are further passed
through the assembly-based and reference-based analysis (right
panel, Figure 4).

(ii) Reference-based analysis: This analysis mostly involves
alignment with databases (NCBI or a customized repository
like SILVA) to generate taxonomic catalogue of the commu-
nities:

(a) Taxonomy: Compositional profiling of communities from
metagenomic sequencing data can be optimally done by
either using unique clade-specific marker genes iden-
tified from 3000 reference genomes (MetaPhlAn) or by
exact alignments of k-mers alongside a classification
algorithm (Kraken).

(b) Functional annotation: The functional profiling of
metagenomic communities can be optimally performed
using HUMAnN2 or Megan pipelines. HUMAnN2 imple-
ments a biphasic alignment screen with MetaPhlAn,
followed by functionally annotated pangenomes of the
identified species. Megan does annotations using seed
classifications through KEGG orthology and COG/NOG
classifications. For long reads the DIAMOND sequence
aligner can be used alone or with Megan to perform
pairwise and frameshift alignments.

https://github.com/grimmlab/MicrobiomeBestPracticeReview
https://github.com/grimmlab/MicrobiomeBestPracticeReview
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Figure 4. Best-practice protocol for the acquisition and analysis of targeted amplicon and shotgun metagenomics data from sequencing to functional annotation. The

basic flow of experimental steps followed by downstream preprocessing and analysis steps is shown. At each step, the optimal tools utilized during the process are

shown as well. All scripts are available at https://github.com/grimmlab/MicrobiomeBestPracticeReview.

(iii) Assembly-based analysis: This is a more comprehensive
analysis utilizing de novo assemblers for metagenomic
sequencing data. The three most optimal assembling
algorithms are MegaHit,MetaSPAdes and MetaIDBAdescribed
in preceding sections (right panel, Figure 4).

(a) Contig assembly: The assembled reads are clustered into
contigs and evaluated by MetaQUAST [164] that compares
them with metagenome assemblies based on alignments to
close references.

(b) Assembly statistics: This step is a prerequisite of remap-
ping/coverage calculations and comparative analysis. SAM
(Sequence Alignment Map) tools optimally perform sorting
and indexing alongside alignment generation. Similarly, for
very large genomes, BBMap could be preferred that can
equally handle both short- and long-read sequences from
Illumina, PacBio, or MinION.

(c) Comparative analysis: Comparative analysis incorporates
algorithm-based gene predictions and metabolic pathway

https://github.com/grimmlab/MicrobiomeBestPracticeReview
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identifications. Prokka annotates the data by predicting
genes using Prodigal and then performs functional
annotation on these genes [165]. For homology search
Prokka uses CDD, PFAM and TIGRFAM databases on
prodigal translated protein output. Further, the MinPath

algorithm [166] could be implemented for biological
pathway reconstructions based on protein family
predictions.

(d) Binning: Following remapping and coverage calculations,
binning or grouping of generated contigs is done before fur-
ther downstream analysis. Either MetaBAT with an adaptive
binning algorithm or MaxBin that utilizes an EM algorithm
could be used for metagenomic contig binning.

(e) Refinement: Post-binning remapping and refinement steps
are utilized for generating taxonomic profiles and annota-
tion of any novel genomes present in samples. Both CheckM

[167] and bin-refiner [168] are optimally used for esti-
mating genome completeness and contamination. Taxo-
nomic profiles and novel genome identification can be opti-
mally performed using the above-described Kraken [114]
and Diamond algorithms [121] with or without the Megan

pipeline [117].

Downstream and statistical analysis

Analyzing microbial data is challenging due to its large and
multivariate data structure. In general, it is difficult to provide
a best-practice pipeline for straightforward statistical analy-
sis because it highly depends on the core objectives of the
study and the underlying hypothesis. However, there had been
tremendous efforts to develop tools that facilitate these analy-
ses. Two widely used tools for statistical downstream analysis
on microbial data are Calypso [169] and MicrobiomeAnalyst

[170]. Calypso can be used to perform compositional analysis of
large metagenomics datasets with univariate and multivariate
statistical tests and data representations. MicrobiomeAnalyst
provides various options for community profiling, functional
profiling and metabolic network visualization for both amplicon
and shotgun metagenomics data. Apart from these, there are
additional statistical analysis and visualization tools, including
Metaviz and PUMA [171, 172]. In addition, a detailed overview
on statistical analysis for microbial data is described in recent
reviews and book chapters [173, 174, 175, 176].

Future challenges
Current computational developments are expected to produce
efficient and scalable solutions. However, it is still vital to
implement multiple high-throughput strategies to reaffirm
the preciseness of genomic findings. To correctly describe
genomes with their respective environmental functions, biases
in sampling saturation should be addressed by improving
the resolution of genomic analysis. This necessarily requires
more profound analysis of low-complexity communities
through comparatively more modern metatranscriptomics
and metaproteomics technologies. This will help to address
previously unobtainable biological information from micro-
biomes that would eventually aid in creating better therapeutic
and biotechnological applications. Metatranscriptomics is
the analysis of community transcripts isolated directly from
multiple environments showing variability in the microbiome
compositions. Metatranscriptomics data directly correlate with
the taxonomic signature of communities and its function

by profiling mRNA transcripts generated under different
environmental conditions. To aid high-resolution analysis,
higher coverage of genomic information from environmental
conditions by shotgun metagenomics could be fused with meta-
transcriptomics. Metaproteomics on the other hand involves
analysis of microbiome-associated protein profiles providing
information on the function directly under different environ-
mental conditions. Nevertheless, community protein profiling
relies more heavily on the preciseness of metagenomics data.
Mass-spectrometric analysis of different peptides generated
from an environmental sample could be matched with the
predicted proteins from metagenomics analysis. Overall, the
future of both target gene and metagenomics projects not just
relies on emerging computational resources but also on more
in-depth and complementary sequencing methodologies. This
will eventually help in reaffirming the reliability of sequencing
data and for establishing more comprehensive approaches
for delineating the functional profiles of environmental
samples.

Conclusions
Both target gene and metagenomic sequencing approaches
are key to decipher a plethora of roles which are played by
environmental microorganisms. However, both sequencing and
computational methods still suffer from many biases that
are due to errors in sample handling, experimental errors
and downstream bioinformatics analysis. Thus, improvements
in sequencing technologies and the development of new
computational tools and algorithms should always be based on
prior knowledge, e.g. known caveats at each sample processing
step. Factors that potentially influence preprocessing, as well
as downstream analysis of both short-read and long-read data
including sample preparation, sequencing, binning, assembly
and functional annotations, should be catalogued precisely.
Herein, we have attempted to list challenges and best-practice
protocols utilized during microbiome acquisition using 16S
rRNA and metagenomic sequencing. This is important due
to the large and expanding paradigms of computational tools
that have been developed in recent years for analyzing long-
and short-read sequencing data. Here, we provide a workflow
of optimally tested tools available for processing sequencing
samples, estimating microbial abundances, and classification,
assembly and functional annotations. In addition, we also
discussed the experimental challenges with a systematic review
of steps involved in 16S rRNA and shotgun metagenomics.
The experimental challenges mainly account for factors
responsible for contamination in isolated microbial genomes
and resulting variations in microbial profiles. Although gradual
improvisation of these factors has been implemented, extensive
and multilayered, sequencing data remain prone to errors at
various levels. Hence, we believe that utilization and awareness
of integrated methods described here will not just help to
improve the reliability of sequencing outcomes but would
also reduce variability in the data generation and processing
steps.

Key Points
• NGS has revolutionized scalability, speed and cost-

effectiveness to perform a wide range of studies, includ-
ing the analysis of microbial communities associated
with host and environment.
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• For studying microbial composition, target gene and
metagenomic sequencing are commonly used methods
to investigate the composition of both genes and novel
genomes across multiple environments.

• Experimental setup and data analysis are error-prone
tasks, which might lead to high variability in short- and
long-read sequencing and data analysis.

• Standardizing sequencing data acquisition and data
analysis is crucial for obtaining comparable and repro-
ducible results. This article provides an overview about
experimental and computational challenges, including
best-practice protocols for amplicon and metagenomics
data analysis.
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