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Tuberous sclerosis complex (TSC) is a model disorder for understanding brain
development because the genes that cause TSC are known, many downstream
molecular pathways have been identified, and the resulting perturbations of cellular
events are established. TSC, therefore, provides an intellectual framework to understand
the molecular and biochemical pathways that orchestrate normal brain development.
The TSC1 and TSC2 genes encode Hamartin and Tuberin which form a GTPase
activating protein (GAP) complex. Inactivating mutations in TSC genes (TSC1/TSC2)
cause sustained Ras homologue enriched in brain (RHEB) activation of the mammalian
isoform of the target of rapamycin complex 1 (mTORC1). TOR is a protein kinase that
regulates cell size in many organisms throughout nature. mTORC1 inhibits catabolic
processes including autophagy and activates anabolic processes including mRNA
translation. mTORC1 regulation is achieved through two main upstream mechanisms.
The first mechanism is regulation by growth factor signaling. The second mechanism
is regulation by amino acids. Gene mutations that cause too much or too little
mTORC1 activity lead to a spectrum of neuroanatomical changes ranging from altered
brain size (micro and macrocephaly) to cortical malformations to Type I neoplasias.
Because somatic mutations often underlie these changes, the timing, and location of
mutation results in focal brain malformations. These mutations, therefore, provide gain-
of-function and loss-of-function changes that are a powerful tool to assess the events
that have gone awry during development and to determine their functional physiological
consequences. Knowledge about the TSC-mTORC1 pathway has allowed scientists
to predict which upstream and downstream mutations should cause commensurate
neuroanatomical changes. Indeed, many of these predictions have now been clinically
validated. A description of clinical imaging and histochemical findings is provided in
relation to laboratory models of TSC that will allow the reader to appreciate how
human pathology can provide an understanding of the fundamental mechanisms
of development.
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INTRODUCTION

The first clinical description of tuberous sclerosis complex (TSC)
was of L. Marie, an infant that had seizures and intellectual
delay, and later died at the age of 15. The physician Désiré-
Magloire Bourneville described that L. Marie had a confluence
of vesicular-papular eruptions and polyps on her skin (Brigo
et al., 2018). She had hard, dense protuberances on the cerebral
cortex, which he called sclérose tubéreuse des circonvolutions
cérébrales (Bourneville, 1880). And there were lesions on her
kidneys and small bumps that protruded into the ventricles of her
brain. Bourneville and Édouard Brissaud later examined a four-
year-old boy that had similar cortical protuberances, seizures,
and learning difficulties (Poirier and Ricou, 2010; Brigo et al.,
2018). They found growths contiguous with the ventricular
walls and tumors in the kidneys. Bourneville surmised that the
cortical protuberances were responsible for seizures and that the
anatomical lesions and clinical symptoms were manifestations
related to a disease. Therefore, it is Bourneville to whom credit
is given for first describing the pathognomic features of TSC.

These early clinical observations provide several important
theoretical contributions. First, that TSC involves numerous
tissues. Patients have heart, kidney, and skin lesions, although
currently, neurological issues remain most problematic. Notably,
seizures occur in an overwhelming percentage of TSC patients
and are likely caused by abnormalities within the cerebral cortex.
Second, not all parts of every tissue are equally affected. Rather,
discrete subsets of cells within a tissue are altered. As we
will discuss later, these early observations provide evidence for
somatic genetic mosaicism. Third, that although issues continue
to arise throughout life for TSC patients, even at the earliest
points, there are congenital anomalies and pathophysiological
conditions consistent with the idea that TSC is a developmental
disorder. It therefore should not be surprising to learn that as
medical, genetic, and imaging technology have progressed, that
TSC can be diagnosed in utero.

HAMARTIN AND TUBERIN

The TSC1 and TSC2 genes encode for the proteins hamartin and
tuberin that form a GTPase activating protein (GAP) complex
and inhibit RAS homologue enriched in brain (RHEB; Garami
et al., 2003; Inoki et al., 2003; Tee et al., 2003; Zhang et al.,
2003). It is TSC2 that has the GAP domain and exhibits GTPase
activating activity towards RHEB (Tee et al., 2003). TSC1 is
required to stabilize TSC2 but does not have an intrinsic GAP
activity. A third protein, TBC1D7, is bound to and required for
the complex to function (Dibble et al., 2012). GTP bound RHEB
activates protein kinase mammalian target of rapamycin mTOR
complex 1 (mTORC1; Garami et al., 2003; Inoki et al., 2003; Tee
et al., 2003; Zhang et al., 2003). Therefore, mutations that inhibit
hamartin/tuberin function increase mTORC1 activity.

mTOR partitions into two molecular complexes,
mTORC1 and mTORC2 (Saxton and Sabatini, 2017). mTOR
forms a homodimeric complex that has a circular catalytic
loop (Yip et al., 2010; Aylett et al., 2016). The mTOR dimers
are held together by mTORC specific proteins. In the case

of mTORC1, this protein is Raptor and for mTORC2, this
protein is Rictor (Hara et al., 2002; Kim et al., 2002; Dos et al.,
2004). mTORC1 and mTORC2 regulate distinct molecular
pathways (Saxton and Sabatini, 2017). mTORC1 is most
notable for stimulating anabolic mRNA translation through
phosphorylation of p70S6 kinase and the eukaryotic initiation
factor 4E binding protein (Burnett et al., 1998; Gingras
et al., 1999; Garami et al., 2003). This signaling cascade
increases mRNA translation of 5’ terminal oligopyrimidine
tract containing RNAs and increases ribosome biogenesis
(Thoreen et al., 2012). mTORC1 stimulates other anabolic
pathways (Saxton and Sabatini, 2017). In contrast, mTOR
inhibits catabolic processes including autophagy (Ganley et al.,
2009; Jung et al., 2009; Kim et al., 2011). In this way, mutations
in TSC1/2 increase mTORC1 and notably, cell growth.

TSC NEUROLOGICAL FEATURES

Approximately 50% of TSC patients are developmentally delayed
or have an intellectual disability (Krueger et al., 2013b). Ninety
percent of patients have TSC-Associated Neuropsychiatric
Disorders (TANDs) which includes behavioral, psychiatric,
neuropsychological, and social/emotional processing issues
(Krueger et al., 2013b; de Vries et al., 2018). A significant
proportion of patients (∼50%) are diagnosed with an autism
spectrum disorder. An estimated 84% of patients have seizures,
although ascertainment bias likely means that a smaller
percentage of TSC patients have seizures (Kingswood et al., 2014,
2017; Nabbout et al., 2019). Hyperexcitability as measured by
electroencephalogram (EEG) frequently appears in the first years
of life manifesting as small spasms characterized by coincident
loss of truncal tone and a sudden increase in tonicity leading
to a head-bobbing motion (Lux and Osborne, 2004; Kelley and
Knupp, 2018; Nabbout et al., 2019). These infantile spasms
are accompanied by hypsarrhythmia and developmental delay.
Hyperexcitability also manifests as focal seizures in TSC patients
(Nabbout et al., 2019). The age of seizure onset (detection)
and the types of seizures can differ between TSC patients. For
example, 38.6% of patients had infantile spasms with the mean
age at diagnosis being 0.4 years, whereas 67.5% had focal seizures
that were diagnosed at 2.7 years, and 79% of patients exhibit
hyperexcitability by 2 years of age (Nabbout et al., 2019). The
severity, frequency, and age of seizure onset are correlated with
intellectual disability and ASD diagnosis (Numis et al., 2011;
Nabbout et al., 2019). While the cause of TANDs is still being
explored, cerebral cortical malformations called tubers are the
leading culprit for seizures in TSC.

DEFINING A CORTICAL TUBER

Tubers are malformations detectable in ∼80–90% of TSC
patients and are classified as a major feature for TSC diagnosis
(Krueger et al., 2013b; Kingswood et al., 2017). Tubers are
most frequently found within the cerebral cortex but can
occur elsewhere including the cerebellum (Doherty et al., 2005;
Luat et al., 2007; Gallagher et al., 2010a; Kaczorowska et al.,
2011; Mohamed et al., 2012; Pascual-Castroviejo et al., 2013;
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Vaughn et al., 2013; Boronat et al., 2017). TSC patients can
have multiple anatomically distinct tubers of different size and
location, and a single patient may have as many as 20 cortical
tubers (Doherty et al., 2005; Luat et al., 2007; Gallagher
et al., 2010a; Kaczorowska et al., 2011; Mohamed et al., 2012;
Pascual-Castroviejo et al., 2013; Boronat et al., 2017). Cortical
tubers can occur within the frontal, temporal, parietal, and
occipital cortex (Qin et al., 2010b; Numis et al., 2011). Tubers
appear by MRI (Figures 1A,B) as focal regions that have three
categorically different changes in T1, T2, and weighted and fluid-
attenuated inversion recovery (FLAIR) but are most obvious
when hypointense in T1 and hyperintense on T2 weighted images
(Gallagher et al., 2010a).

Focal epileptiform interictal discharges mapped by
intracranial EEG frequently superimpose with cortical tubers
(Mohamed et al., 2012). Tubers that have epileptiform activity are
colloquially referred to as ‘‘hot tubers’’. Hot tubers are targeted
for surgical resection in cases of severe pharmacologically
refractory epilepsy (Lachhwani et al., 2005). Tuber removal
alleviates seizures in the majority of patients (Fallah et al.,
2013, 2015). Intracranial EEG recordings demonstrate that
seizure onset occurs within the core of the tuber and propagates
toward the rim and eventually the area surrounding the tuber
called the perituberal region (Kannan et al., 2016). Indeed,
removal of the core has been demonstrated to be sufficient
to alleviate seizures in some patients (Harvey et al., 2017).
However, depth electrode recordings indicated that other tubers
mapped by EEG may instead be electrophysiologically silent
and that the perituberal region was responsible for epileptiform
activity (Major et al., 2009). Indeed, surgical resection beyond
tuber margins with the additional removal of perituberal
region is beneficial for controlling seizures (Fallah et al., 2015).
However, defining these regions by MRI is limited by imaging
resolution. A recent study using microelectrodes, spiking
activity, fast ripples, local field potentials, and intracranial
EEG demonstrated that hyperexcitability is greatest within
tubers (Despouy et al., 2019). To a lesser extent, changes are
detected in the perituberal region, although not fast ripples
(Despouy et al., 2019). Ultimately, this may reflect a limitation
of current imaging technology, and the definition of what is a
tuber can only be performed histopathologically. In support of
this, histopathological studies on the TSC cortex demonstrates
abnormalities that conventional imaging could not detect
(Marcotte et al., 2012).

Cortical Tuber Histopathology
Cortical tubers appear in situ as focal thickening of the cortex and
can be cystic or calcified as a secondary response to epileptiform
activity (Chu-Shore et al., 2009; Gallagher et al., 2010b; Zhang
et al., 2018). Histological examination of cortical tubers supports
their categorization into three groups based on cellular density
and cell types present (Mühlebner et al., 2016b). Tubers are
regions of cortical dysplasia for which the normally hexalaminar
structure of the cortex is muddled (Figures 1C,D; Ferrer
et al., 1984; Huttenlocher and Heydemann, 1984; Mühlebner
et al., 2016b). Abnormal neurons are strewn throughout
cortical layers, having either adapted the wrong identity or are

ectopically/heterotopically positioned. Many times, neurons
are enlarged (cytomegalic), shaped like balloon cells seen in
focal cortical dysplasias, and can be dysmorphic. Abnormal
neurons are intermixed with seemingly normal-looking
neurons. Tubers can also have fewer neurons compared to
surrounding tissue.

Tubers also contain giant-cells (Yamanouchi et al., 1997a,b;
Mizuguchi and Takashima, 2001; Mizuguchi et al., 2002).
Giant-cells are cytomegalic (enlarged) cells of unknown origin
and function. TSC lesions including subependymal giant cell
astrocytomas (SEGAs) also have giant cells (Hirose et al., 1995).
Pathologists can consistently point to multiple types of giant-
cells. For example, giant-cells can be neuron- or astrocyte-like
(Hirose et al., 1995). Also, giant-cells of an intermediate/mixed
morphology expressing markers of neural stem cells (NSCs)
including nestin, vimentin, and SMI 311 or neuroblast markers
such as doublecortin are identified (Crino et al., 1996; Mizuguchi
et al., 2002; Mizuguchi, 2007). A subpopulation of tuber cells
is multi-nucleated. These results point to the fact that cortical
maturation is perturbed in tubers.

Pro-inflammatory molecules are also increased in epileptic
tubers (Maldonado et al., 2003; Boer et al., 2010; Mühlebner et al.,
2016b; Martin et al., 2017; Mills et al., 2017). Not surprisingly,
there is immunological infiltration as demarcated by increased
T-cells and activated microglia (Martin et al., 2017). The role
of inflammation and immune invasion in the pathogenesis of
TSC is unclear but it is certainly a component of hot tubers.
Likewise, the role of astrocytes in TSC associated epileptogenesis
is still unclear. There is reactive gliosis, increased glial fibrillary
acidic protein (GFAP), and a reduction in glutamine synthetase
in surgically resected tubers (Sosunov et al., 2008). A change
in TSC astrocytes is also supported by mouse models that also
demonstrate decreased glutamate transporter and Kir4.1 inward
rectifying potassium channel expression (Wong et al., 2003;
Jansen et al., 2005; Zeng et al., 2007, 2010; Xu et al., 2009;
Wong and Crino, 2012). Many changes seen in TSC astrocytes
can be evoked by seizure-inducing stimuli (Zhang and Wong,
2012). This is exemplified in mice with neurons lacking Tsc1,
which induces secondary changes in astrocytes (Crowell et al.,
2015). GFAP-CRE is active in NSCs thus some neurons in
this model also have Tsc1 deleted (Zou et al., 2017). And
at least in some cases, the deletion of Tsc1 genes in mice
does not activate astrocyte mTORC1 pathway activity (Feliciano
et al., 2011; Carson et al., 2012). Therefore, additional work
is needed to further establish the contribution of astrocytes to
TSC epileptogenesis.

The cellular heterogeneity and mosaic patterning of abnormal
cells surrounded by normal cells in tubers complicate both the
analysis and conclusions based on surgically resected tubers. For
example, cells reactive to abnormal developmental structuring
or electrical hyperexcitability may not have primary roles in the
pathogenesis of TSC but are included in analyses when a tuber
is removed. Hot vs. cold tuber studies have revealed important
differences, but cold tuber vs. control tissue experiments are
less frequently performed (Bagla et al., 2018). Studying hot
vs. non-epileptic cold tubers could determine whether changes
in astrocyte, microglia, T-cells, or blood vessels are secondary
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responses to focal seizures or a driver of epileptogenesis. Gene
ontology and cellular deconvolution may also help reveal changes
to specific cell types within tubers and differentiate among these
possibilities. However, single-cell RNA sequencing of resected
TSC lesions is a needed future direction, in part to separate
normal and abnormal cells in the mosaic tuber.

Increased α-[(11)C]-methyl-l-tryptophan (AMT) uptake by
hot tubers located by MRI and validated hyperexcitability by EEG
mapping demonstrates that tryptophan uptake and serotonin
synthesis or kynurenine pathway activity may be increased
during seizures (Chugani et al., 1998; Asano et al., 2000; Kagawa
et al., 2005). Provocatively, these changes are also associated
with the miRNA profile of cortical tubers (Bagla et al., 2018).
Surprisingly, however, there have been few basic science studies
looking at the link between tryptophan uptake and TSC. The
major tryptophan transporter is comprised of Slc7a5 (LAT1)
which is increased in TSC (Lim et al., 2011). And because
LAT1 also transports amino acids that activate the protein kinase
mTORC1, this transporter may be an important target for the
development of future TSC treatments (Nicklin et al., 2009).

Immunohistochemical studies on tubers have revealed
an array of changes that might affect neuron physiology.
Neurons have altered AMPA receptor (AMPAR) and NMDA
receptor (NMDAR) profiles (White et al., 2001; Talos et al.,
2008). There are also significant reductions in GABA receptors
in tubers(White et al., 2001; Talos et al., 2012). Moreover,
NKCC1 chloride importer levels are increased whereas
KCC2 chloride exporters are decreased (Talos et al., 2012).
Therefore, the reversal potential of chloride is altered leading
to GABA having a depolarizing effect on neurons. However,
the sum effect of reducing GABA receptors and increasing
NKCC1/KCC2 ratios is unclear. Promising mechanistic studies
on model organisms and induced pluripotent stem cells are
helping to elucidate which of these molecules are drivers of
epileptogenesis (Auerbach et al., 2011; Bateup et al., 2013
Kelly et al., 2018).

CORTICAL TUBERIGENESIS

The process of primary neurulation generates the primitive
ventricular system by forming the neural tube (Schoenwolf
and Smith, 1990). During this process, ectodermal cells of
the trilaminar disc receive inhibitory cues that prevent their
acquisition of an epidermal fate (Jessell and Sanes, 2000). This
in turn allows for the generation of neuroepithelial cells (NECs).
The pseudostratified layer of NECs invaginates to generate a fold
that eventually fuses with itself. The closure of this fold forms
the neural tube and creates a primitive ventricular system that is
surrounded by NECs.

The region directly surrounding the ventricles is called the
ventricular zone (VZ). The subventricular zone (SVZ) is located
adjacent to and basally toward the VZ. Specialized mitotic NSCs
derived from NECs called radial glia (RG) are found at dorsal
and dorsal lateral regions of the telencephalic lateral ventricles
(Rakic, 1988). RG has a soma seated near the ventricles that
projects a basal fiber (Rakic, 1988). The basal fiber projects
outward toward the pia or developing surface of the cortical plate

(Rakic, 1988). RG produce neurons, astrocytes, oligodendrocytes,
and ependyma in a temporally encoded manner. First, RG
divides and generate neuroblasts that migrate radially along with
the basal fiber toward the pial surface. The layers form in an
inside-out fashion. This means that the deep layer (VI) neurons
are generated first, followed by V, VI, III, and II. These excitatory
neurons have different morphological, electrophysiological, and
functional properties.

Human VZ RG produces an additional large population
of outer (o) SVZ (basally produced) RG (Hansen et al.,
2010). This unique and recently evolved adaptation expands
substantially between 11.5 and 17 weeks of gestation, so
much so that oSVZ RG is more numerous and divide
more frequently at mid-gestation than VZ RG (Rash et al.,
2019). VZ RG of rodents begin to generate astrocytes after
neurogenesis, late in embryogenesis. In macaques, the oSVZ
predominantly begins to generate glia by ∼13 weeks (Rash
et al., 2019). The marked increase and protracted period
of gliogenesis caused by the oSVZ RG increase the total
number of astrocytes in the cortex and is correlated with an
evolutionary switch from a lissencephalic to gyrencephalic brain.
The role of oSVZ RG in cortical development has raised the
question of what pathways are required for oSVZ RG function.
To address this question, single-cell RNA sequencing was
performed and demonstrated that human oSVZ RG are relatively
enriched in mTORC1 pathway genes and stain positive for
phosphorylated S6 (Nowakowski et al., 2017). The importance of
mTORC1 signaling oSVZ RG is also demonstrated by the fact
that human primary cells and organoid cultures have elevated
mTORC1 transcript levels and mTORC1 activity in VZ-oSVZ
RG compared to macaques and chimpanzees (Pollen et al., 2019).

An additional group of NSCs is found around the medial
and lateral ganglionic eminences surrounding the ventricles and
give rise to GABAergic inhibitory neurons (Wamsley and Fishell,
2017). Inhibitory NSCs that express Nkx2.1 produce neuroblasts
that migrate tangentially through the cortical plate or rostrally to
the olfactory bulb (Butt et al., 2008).

What do tubers tell us about normal development? The
first is that neurons are mislocalized in tubers. Mislocalization
of mutated cells could be explained by aberrant migration or
incorrect laminar fate choice. Cortical tuber dysplastic neurons
and balloon cells found scattered throughout the cortical plate
retain markers (Satb2, Cux2) of upper-layer neurons supporting
the notion that it is the migration that is altered (Mühlebner
et al., 2016a). Also, mouse models generated by conditional
TSC deletion demonstrate that neurons destined to upper layers
retain upper layer markers but are found in deeper layers of
the cortex (Way et al., 2009; Moon et al., 2015). This is in
agreement with migration assays in cells of the rostral migratory
stream (RMS) that indicate TSC neuroblasts migrate slower
(Feliciano et al., 2012). Cell-autonomous effects on migration
are supported by the fact that neuroblast specific expression
of constitutively active Rheb (an mTOR activator) is sufficient
to induce cortical lamination defects (Lafourcade et al., 2013;
Moon et al., 2015; Hsieh et al., 2016; Lin et al., 2016). One
mechanism that may contribute to defective migration comes
from studies of patients with activating mTOR mutations
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that cause cortical malformations (Park et al., 2018). In utero
electroporation of mutant mTOR prevented cortical lamination,
induced cytomegaly, and caused seizures in mice (Park et al.,
2018). These changes were caused by inhibition of autophagy and
defective ciliogenesis (Park et al., 2018). Importantly, autophagy
and ciliogenesis were perturbed in patient samples including
from TSC patients (Park et al., 2018). Mislocalized neurons do
not need to be mutated, but rather can be effected through
non-cell-autonomous mechanisms by TSC neurons (Moon et al.,
2015). Significantly, cortical tubers can have fewer neurons
(Mühlebner et al., 2016b). But to what extent the decrease is
caused by faulty migration, reduced neurogenesis, or increased
cell death is unclear. Tsc2 knockout and long term Tsc1 knockout
mice stress neurons potentially leading to their loss (Di Nardo
et al., 2009; Tsai et al., 2012; Reith et al., 2013). Another cause
of neuron loss is that TSC mutations may prevent NSCs from
creating neurons and instead increase gliogenesis as has been
demonstrated in mouse models and patient derived induced
pluripotent stem cells (Way et al., 2009; Magri et al., 2011;
Blair et al., 2018).

MODELING TSC TUBERS

Tsc1 and Tsc2 homozygous mutant mice and rats die
embryonically (Rennebeck et al., 1998; Onda et al., 1999;
Kobayashi et al., 2001). Although NECs of Tsc2 heterozygous
mice are no different than controls, homozygous Tsc2 NECs
have robust transcriptional changes, up-regulate GFAP, and
are defective in neural differentiation (Onda et al., 2002). The
creation of mice having Tsc1 or Tsc2 genes flanked by lox
P sites has circumvented the limitation of embryonic lethality
and by allowing CRE mediated deletion of TSC genes from
distinct cell populations (Kwiatkowski et al., 2002; Hernandez
et al., 2007). hGFAP, Emx1, and Nestin promoter-driven CRE
mediated TSC1 gene deletion in RG and RG progeny causes
mislamination, macrocephaly, cytomegaly, hypomyelination,
and reactive gliosis with seizures (Way et al., 2009; Goto et al.,
2011; Magri et al., 2011; Mietzsch et al., 2013). Tsc2 deletion
by hGFAP-CRE also generates macrocephalic mice having
cytomegaly, hypomyelination, reactive gliosis, and seizures (Way
et al., 2009; Mietzsch et al., 2013). Importantly, hGFAP-CRE
Tsc2 deletion has negligible effects on RG indicating that the
phenotypes seen may have more to do with RG progeny (Way
et al., 2009). In contrast, Emx1-Cre deletion of Tsc1 increased
Pax6 NSCs and BrdU, NSCs self-renew less efficiently and
produce more GFAP positive cells at the expense of neurons
(Magri et al., 2011). A common critique of these models
was that no apparent cortical tubers were present owing to
the ubiquitous removal of TSC genes in all progenitors of
the forebrain. A complementary approach utilized in utero
electroporation only affects a subset of cells in the developing
brain resulting in a focal mosaic patterning, cytomegaly, and
hyper-active mTORC1 similar to that seen in a patient in tubers
(Feliciano et al., 2011). Tsc1 postmitotic neural deletion starting
at E12.5–13.5 caused similar effects in neurons that can be
rescued with rapamycin and support the idea that TSC genes
are critical for neuronal function (Meikle et al., 2007, 2008). The

loss ofTsc1 in late post-mitotic neurons using Camk2a-CRE mice
also leads to seizures, albeit much later ∼5–10 weeks (McMahon
et al., 2012). The late loss of Tsc1 inhibited autophagy which
may prevent dendrite spine pruning (McMahon et al., 2012;
Tang et al., 2014). Thus, the loss of TSC genes in NSCs or
astrocytes, altered proliferation, and mislamination may not be
required for epileptogenesis. In agreement, the electroporation
of an inducible constitutive form of Rheb which is expressed at
postnatal day six causes seizures at 2 months (Hsieh et al., 2016).
Therefore, hyperexcitability can be caused by changes during
neuroblast-neuron maturation. In agreement, Tsc1/2 expression
is high within the cortical plate and maturing neurons (Li et al.,
2018).

The Effects of TSC1/2 Deletion on Neurons
How TSC neurons contribute to hyperexcitability remains an
active area of interest. First, axon development is suppressed
in cultured hippocampal neurons upon over-expression
of hamartin and tuberin/hamartin reductions increase the
number of axons (Choi et al., 2008). Another study however
demonstrated that in vivo electroporation of constitutively
active Rheb expedited axon growth (Gong et al., 2015). Tsc1
deleted Purkinje cells of the cerebellum have spurious axon
projections too, but also have increased dendritic spine density,
and a reduced spiking rate (Tsai et al., 2012). Hypothalamic
POMC neurons having Tsc1 deleted have reduced firing rates
too, a hyperpolarized resting membrane potential, and enhanced
ATP-sensitive potassium current whereas Tsc1 deleted AGRP
neurons do not exhibit these changes (Yang et al., 2012).
In contrast, dopamine D1 receptor-expressing striatonigral
neurons are more excitable and exhibit higher firing rates but
not D2 receptor-expressing striatopallidal neurons (Benthall
et al., 2018). E12.5 GBX2-CRE Tsc1 knockout generated neurons
that exhibit improper axon projections, lower input resistance,
higher capacitance, and changes to action potential dynamics
that correspond to more rapid intraburst spiking (Normand
et al., 2013). These results demonstrate cell-type specific effects
on intrinsic excitability.

Incidentally, many studies to date have determined that
network activity is likely altered by postsynaptic mechanisms.
TSC neuron dendrite arbors are often significantly increased as
are neuron somas (Meikle et al., 2008; Feliciano et al., 2011,
2012; Goto et al., 2011; Zhang et al., 2014; Blair et al., 2018;
Kosillo et al., 2019). In contrast, although somas are enlarged
in Tsc1 deleted striatonigral neurons they have reduced arbors
(Benthall et al., 2018). TSC neuron intrinsic pre-synaptic activity
does not always change, and in the hippocampus, there is a larger
size of soma and dendrite arbors, increased capacitance, and
reduced electrical input resistance (Bateup et al., 2011, 2013).
Tsc1 knockout hippocampal neuron AMPAR and NMDAR-
mediated current amplitude is elevated in Tsc1 KO neurons and
abolishes mGluR mediated long term depression (Bateup et al.,
2011). Also, TSC neurons have fewer spontaneous excitatory
postsynaptic currents and miniature excitatory postsynaptic
currents (Bateup et al., 2013). This may be an effect of
overall network activity being increased leading to compensatory
transcriptional changes including reductions in AMPAR and
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loss of NMDA mediated long term potentiation. To overcome
the limitation of network activity, sparse Tsc1 knockout was
performed and led to the conclusion that reduced inhibitory
postsynaptic currents likely underlies the hyperexcitability, at
least in hippocampal neurons. These studies demonstrate the
complexity of distinguishing between primary mechanisms of
hyper-excitability and secondary adaptations to that hyper-
excitability, both of which are critical for understanding and
treating TSC.

DEFINING TSC SUBEPENDYMAL
NODULES (SENs) AND SUBEPENDYMAL
GIANT-CELL ASTROCYTOMAS (SEGAs)

TSC SENs are growths that emanate from the region surrounding
the brain’s ventricles called the subependymal zone or SVZ. SENs
are present in the majority (∼85%) of TSC patients (Northrup
et al., 1999; Hasbani and Crino, 2018). They are found near the
caudate nucleus contiguous with the lateral ventricles but also
near the Foramen of Monro leading to the third ventricle. TSC
SENs arise embryonically but also during the neonatal period
(Chan et al., 2018). SENs are classified as a major feature for the
diagnosis of TSC (Krueger et al., 2013b).

Approximately 20% of TSC SENs transform into
subependymal giant cell astrocytomas (SEGAs; Figures 1A,B;
Northrup et al., 1999; Adriaensen et al., 2009; Kingswood et al.,
2017; Chan et al., 2018). SEGAs are a type I benign neoplasia.
They should not be confused with astrocytomas. SENs greater
than 10 mm is considered SEGAs, but an increased growth
rate as determined by a sequential MRI scan is the greatest
criterion given for distinction of the two (Northrup et al., 1999).
Histological profiles of TSC SEGAs and SENs overlap and there
is currently no molecular marker that distinguishes between the
two. TSC SEGAs can block the flow of cerebrospinal fluid (CSF)
in the ventricular system which may lead to hydrocephalus,
increased intracranial pressure, seizures, and can lead to death
(Northrup et al., 1999; Adriaensen et al., 2009; Hasbani and
Crino, 2018).

It is important to note that TSC2 mutations are associated
with severe brain lesions and poor prognosis (Northrup
et al., 1999; Hasbani and Crino, 2018). TSC2 mutations
are overwhelmingly more frequently associated with SEGA
formation. For example, a study demonstrated out of 207 patients
with SEGAs, only 22 patients had TSC1 mutations whereas
185 had TSC mutations (Kingswood et al., 2017). It is important
to remember that tuberin is the catalytic part of the TSC complex
and tuberin and hamartin have biochemical, physiological, and
clinically relevant differences.

SEGA Histopathology
TSC SEGAs typically have few mature NeuN positive cells
(Zordan et al., 2018). This is supported by the fact that
MAP2 positive mature neuron labeling is sparse (Lopes et al.,
1996). Patient SEGA analysis using antibodies such as beta
III tubulin has been used to indicate that some samples have
neuronal cells (Lopes et al., 1996). However, beta III tubulin also
stains immature neurons (neuroblasts) that are present within

these regions (Sanai et al., 2011). Another group found no
neuronal neurofilament or synaptophysin staining in SEGAs but
they do report neurons (You et al., 2005). That few synaptophysin
positive neurons were identified is supported by a recent review
that calls synaptophysin staining ‘‘patchy’’ (Cotter, 2019).

Giant cells are a hallmark of human TSC SEGAs
(Figures 1E,F; Kwiatkowski and Manning, 2014). The presence
of giant cells with an overlapping phenotype (both neuron and
astrocyte) is documented. However even in SEGAs, cells of the
overlapping phenotype are infrequent, and their importance/role
is unknown. Staining is typically not performed simultaneously
in clinical samples meaning that it is not clear that the antibodies
stain the same precise cells. Nevertheless, it is not known whether
there are overlapping glial/neural phenotypes or whether SEGAs
contain both glia and neurons is not clear. Yet, both indicate that
NSCs may contribute to SEGA pathogenesis. It is important to
note that NSCs express many of the same marker proteins seen
in glia (astrocytes). Many experts refer to the NSCs in the region
as SVZ astrocytes (Wang and Bordey, 2008). One example of a
marker protein having this pattern is the protein GFAP. Human
NSCs around the ventricle and astrocytes in the lower cortical
plate express GFAP under normal conditions. TSC SEGAs
contain variable amounts of GFAP and have a glial fibrillary
matrix (Lopes et al., 1996). One manuscript has reported that
GFAP was not abundant in their samples (Nakamura and
Becker, 1983). Another found GFAP staining, but that giant cells
were not frequently GFAP positive (Debiec-Rychter et al., 1999).
Therefore, it is not clear whether GFAP cells are astrocytes,
NSCs, or a cell of completely different origins. Staining for
GFAP, Nestin, GLAST, and SOX2 demonstrates that SEGAs
contain NSC markers (Phi et al., 2008). It should be noted,
however, that by the time most SEGAs are removed, years
have gone by, patients frequently have severe seizures, and
are often given a wide range of medicines to control seizures,
neurological manifestations, and peripheral problems. Therefore,
the analysis of surgically resected SEGAs is confounded by
secondary changes.

TSC SEGA-Genesis

Ventricular SENs/SEGAs in TSC can be identified by
midgestation (Park et al., 1997; Mühler et al., 2007; Dragoumi
et al., 2018). There are few examples of detailed analysis of
TSC fetal tissue in the scientific literature (Park et al., 1997;
Prabowo et al., 2013; Parker et al., 2014). A shared set of samples
described in two manuscripts provides evidence of nodular
lesions that can be detected as early as 22 gestational weeks
(GW; Prabowo et al., 2013; Parker et al., 2014). Tissue from
23 GW twins confirmed the presence of subcortical and cortical
plate lesions. Interestingly, this case also identified a region
that was reminiscent of a SEGA. The tissue stained positive for
Vimentin, GFAP, and Nestin, which in theory labeled NSCs.
Given the location of these cells and the developmental time
point, the identification of NSCs as the predominant cell type
is predictable. Also, these tissues lacked staining for neuron
markers (although there was one taken from an older case at
38 GW). Unfortunately, however, it is not clear whether this
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FIGURE 1 | Tuberous sclerosis complex (TSC) histopathology. (A) Midsagittal section of an adult human brain MRI with a model cortical tuber (outlined in red) and
subependymal giant cell astrocytoma (SEGA; outlined in green). Modified from the Allen Brain Atlas, The Brain Explorer 2 software. (B) Coronal section of an adult
human brain with a model cortical tuber (outlined in red) and SEGA (outlined in green). Modified from the Allen Brain Atlas, The Brain Explorer 2 software. (C,D)
Schematic of cortical tuber (C) and healthy (D; Mühlebner et al., 2016b) cortical tissue demonstrating neurons (blue nuclei), astrocytes (pink nuclei), microglia (gray),
and giant cells (light green, tuber only). Note that cytomegaly, dysmorphic neurons, mislamination, gliosis, giant cells, and immune cell infiltration are features of “hot”
epileptic cortical tubers. (E,F) Schematic of SEGA (Lopes et al., 1996) and healthy VZ-subventricular zone (SVZ) tissue (Sanai et al., 2011) from children
demonstrating neurons (blue nuclei), astrocytes (pink nuclei), microglia (gray), ependyma (yellow), neural stem cells (NSCs; orange) and giant cells (light green,
SEGA only).

anomaly arose from NSCs or from astrocytes or even alternative
cell types such as ependyma (a multi-ciliated cell that lines the
ventricles throughout postnatal life). Examples of outer SVZ
lesions were also found within 27 GW and 32 GW tissues.
Moreover, abnormal enlarged balloon cells were identified
within the cortical plate. These balloon cells were scattered in
discrete regions. These results demonstrate that TSC SENs can
begin during embryonic development.

The ventricular system is fluid-filled, containing CSF. CSF
flows from the lateral ventricles (one in each hemisphere)

through the Foramen of Monro into the medial-ventrally located
third ventricle within the diencephalon found between the
hypothalamic hemispheres (Lehtinen et al., 2013). CSF then flows
through the cerebral aqueduct into the fourth posterior ventricle
near the pons and medulla oblongata and eventually to the spinal
cord and subarachnoid space (Lehtinen et al., 2013).

NSCs of the neonatal SVZ normally persist until 18 months
of age (Sanai et al., 2011). SVZ NSCs generate glia that migrates
into the lower cortical plate and neuroblasts that migrate rostrally
along the RMS to the olfactory bulb and mature into neurons
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(Lim and Alvarez-Buylla, 2016). In humans, the RMS bifurcates
and neuroblasts migrate through the medial migratory stream
into the ventromedial prefrontal cortex (Sanai et al., 2011).

TSC SENs and SEGAs are also identified in neonates
(Kotulska et al., 2014). The majority of SENs are detected by
2.5 years and nearly all before the age of 5 years (Kingswood
et al., 2017). Since SENs are proposed to be asymptomatic,
they are not targeted for surgical resection. Therefore, detailed
immunohistochemical findings are unknown. One must
note that although SENs are proposed to be asymptomatic,
their prevalence in TSC is high as are many neurological
manifestations of unknown etiology. Studies, for example on
brain tumors, have revealed non-cell-autonomous mechanisms
that lead to circuit changes (Buckingham et al., 2011; Yu
et al., 2020). Therefore, in theory, SENs could play a role in
the pathogenesis of certain neurological manifestations. It is
also interesting to consider that SENs/SEGAs do not typically
spontaneously arise after age 5 (Kingswood et al., 2017). This is
in contrast with the typical relationship between advanced age
and the development of cancers.

The evolution from SEN to SEGA in TSC is a gradual process
typically confined to younger patients with the median age of
SEGA identification of 8 years (Kingswood et al., 2017). In
contrast, tumors typically occur more frequently later in life
owing to an increased mutational burden which differs from
TSC SEGAs. The formation of SEGAs therefore may not depend
on the acquisition of secondary mutations of non-TSC genes,
but rather stochastic mechanisms related to mTORC1. This
might explain why the mitotic index of SEGAs is low and why
SEGAs only occurs in a minority of TSC patients. Beyond a low
mitotic index, another hint about the mechanism is that while
much of the lesion is comprised of NSCs, neuron-like cells, and
gemistocytic astrocyte-like cells. Therefore, the cell of origin may
be multipotent.

Modeling TSC SEGAs
Based on the timing of appearance, the anatomical location,
and the cellular composition, it has been hypothesized that
SVZ NSCs are the cell of origin of TSC SEN-SEGAs. To
test this hypothesis, conditional Tsc1 mice were crossed to
tamoxifen-inducible nestin-CRE mice or subjected to single-cell
neonatal SVZ NSC electroporation of CRE (Feliciano et al.,
2012). Contemporaneous experiments used the same approach
of conditional Tsc1 mice crossed to tamoxifen-inducible Nestin-
CRE or Ascl1-CRE mice (Zhou et al., 2011). The results of these
experiments were that Tsc1 deletion caused mTORC1 hyper-
activation, neuronal heterotopias, and small ventricular lesions
reminiscent of SENs. This is also relevant because similar
lesions occur throughout the olfactory tract of TSC patients
(de León et al., 1988; Ridler et al., 2004; Manara et al., 2018).
However, well-defined SEGAs were not generated in these
mouse models.

A recent manuscript demonstrated that double knockout of
the tumor suppressor Pten and Tsc1 in neonatal but not adult
NSCs causes SVZ tumors in mice (Zordan et al., 2018). Yet
Pten deletion and p53, NF1, or Ink4a alterations also cause
SVZ tumors (Kwon et al., 2008; Zheng et al., 2008; Kim et al.,

2012; Alcantara Llaguno et al., 2015). Pten/Tsc1 deletion tumors
may reflect the potent tumor suppressor functions of PTEN.
Evidence has not yet linked the loss of a TSC gene and a
second non-TSC gene in patient SEGAs (Henske et al., 1997;
Chan et al., 2004; Bongaarts et al., 2017). Moreover, this same
group did not find evidence that PTEN is mutated in SEGAs
(Zordan et al., 2018). However, this raises the possibility that
there may be genetic or environmental modifiers that promote
SEGA formation.

Tsc2 deletion causes more severe phenotypes than Tsc1 in
mice, but have only recently been performed in embryonic NSCs
and GFAP positive postnatal astrocytes (Way et al., 2009; Zeng
et al., 2011; Mietzsch et al., 2013; Moon et al., 2015). Recently,
a group demonstrated that TSC patient tubers stain positive for
excitatory NSC forebrain markers, that SEGAs stain positive for
inhibitory NSC markers, and that inhibitory NSC Tsc2 deletion
generates lesions recapitulating SENs (Rushing et al., 2019).

THE MOLECULAR GENETICS OF TSC

Blood lymphocyte DNA from families having multi-generational
TSC inheritance was used to perform genetic linkage analysis.
These experiments first linked TSC to chromosome 9 (Fryer
et al., 1987). However, locus heterogeneity identified by
subsequent studies determined a second locus on chromosome
16 (Sampson et al., 1989; Janssen et al., 1990; Haines et al.,
1991; Povey et al., 1994). Mutations were mapped to 9q34.13 and
16p13.3 and called TSC1 and TSC2, respectively (European
Chromosome 16 Tuberous Sclerosis Consortium, 1993; van
Slegtenhorst et al., 1997). Identification of mutations in TSC1 or
TSC2 that prevent the production or function of their protein
products (estimated by nonsense mutations, truncations, etc. or
that are verified as non-functional) is sufficient for the diagnosis
of TSC (Northrup et al., 1999; Hoogeveen-Westerveld et al.,
2012, 2013). Approximately 75–85% of patients having clinical
features sufficient for a TSC diagnosis have mutations in TSC1
or TSC2 that can be identified by routine genetic screening
(Northrup et al., 1999; Dabora et al., 2001; Sancak et al., 2005;
Au et al., 2007).

Familial TSC is often described as an autosomal dominant
disorder following Mendelian inheritance patterns. However,
there are limitations to this proposed model of pathogenesis.
First, is that the discrete lesions form and hint at a more nuanced
mechanism of pathogenesis. Second, mutation or deletion of TSC
genes is embryonic lethal in rodent models (Rennebeck et al.,
1998; Onda et al., 1999; Kobayashi et al., 2001; Murakami et al.,
2004). Therefore, inherited dominant-negative mutations are
presumed lethal. Third, TSC patients have phenotypic variability,
even when comparing patients with the same affected gene. An
interwoven tapestry of clinical observation, genetic screening,
and laboratory research has addressed these limitations.

TSC patients have tumors including SEGAs,
rhabdomyomas, renal cell carcinoma, angiomyolipomas,
and lymphangioleiomyomatosis. In 1971, Knudson (1971)
proposed the two-hit hypothesis to describe why some children
with retinoblastoma have tumors in both eyes whereas others
have tumors in one eye. Statistical modeling prompted him
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FIGURE 2 | TSC genetic mechanisms of pathogenesis. (A) Development commences when gametes with wild-type TSC alleles fuse. Development proceeds to the
blastocyst phase with pluripotent cells of the inner cell mass becoming sequentially restricted in fate. Epiblasts of the blastocyst form the ectoderm which eventually
undergoes primary neurulation and forms the neural tube. Neuroepithelial cells (NECs) that line the neural tube are stem cells that generate NSCs. NSCs, for
instance, radial glia, generate neurons, astrocytes, oligodendrocytes, and ependyma. (B) Familial TSC arises when a haploid germ cell carries a mutation in TSC1 or
TSC2 (yellow). A second mutation resulting in loss of heterozygosity (LOH; purple) then is thought to arise sporadically at different times of development, for example
in the blastocyst in cells that eventually generate the CNS. (C) Germline mosaicism is phenotypically similar to familial TSC with the exception that only the parent’s
germ cells might carry TSC gene mutations due to a sporadic mutation during gametogenesis (blue) followed by a second LOH mutation (purple). (D) Somatic
mosaicism arises when a sporadic mutation occurs in one allele (yellow) during development, for example in the blastocyst, and LOH (green) occurs in subsets of
cells later. (E) Animal models demonstrate that germ cells without a functional copy of a TSC gene (red, blue) produce embryos with no functional TSC gene (purple)
that are non-viable at mid-gestation. (F) Hemimegalencephaly occurs when mutations (orange) in TSC genes arise and affect one side of the developing brain. (G)
Focal cortical dysplasia occurs when TSC gene mutations (orange) arise in radial glia that generates cells within the cortical plate. (H) SEGA in the absence of TSC is
predicted to occur when TSC gene mutations (orange) arise in a cell of the SVZ, potentially, NSCs.

to hypothesize that a familial form of retinoblastoma arises
when one copy of a gene is inherited (for example, from a
father), and then a second mutation occurs in the other copy

(for example, maternal) in somatic cells. In the sporadic form
of retinoblastoma, he proposed that both mutations occur
in somatic cells. It was further proposed that other tumor
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predisposition syndromes may follow similar rules. Knudson
used a rat strain described by Eker that is predisposed to forming
renal tumors (Eker and Mossige, 1961). Homozygous Eker
mutants died embryonically, but when heterozygotes were
subjected to ionizing radiation, they had a dose-dependent
increase in renal tumors (Hino et al., 1993). The Eker rat
mutation was eventually mapped to a Tsc2 homolog (Hino
et al., 1994; Yeung et al., 1994; Kobayashi et al., 1995). And
Tsc2 loss of heterozygosity (LOH), the genetic manifestation
of the two-hit hypothesis, was detected in Eker renal tumors
induced by mutagens and in Tsc2 heterozygous mice (Kubo
et al., 1994; Kobayashi et al., 1997; Hino et al., 2002; Ma et al.,
2005). Subsequent studies confirmed that LOH, also referred
to as biallelic inactivation, occurs in TSC patient tumors and
malformations including SEGAs and cortical tubers (Chan et al.,
2004; Crino et al., 2010; Qin et al., 2010a; Bongaarts et al., 2017;
Martin et al., 2017).

Taken together, TSC occurs in two forms, familial and
sporadic. Familial occurs when one mutation is inherited
from a parent and the second normal allele becomes mutated
(Figures 2A,B). Of the 1/3 of patients with an inherited mutation,
cases are more commonly caused by TSC1 mutation (Dabora
et al., 2001). Most TSC cases are not familial, they are sporadic
(2/3; Dabora et al., 2001). Two mechanisms account for sporadic
TSC. One mechanism is that patients (∼3%) inherit mutations
caused by gonadal/germ cell mosaicism in parents even though
the parents do not carry mutations within the rest of their cells
(Figure 2C; Verhoef et al., 1999). De novo germline mutations
in TSC1/2 are unknown and cannot be easily identified, thus the
rates are likely higher than the 3% cited above. Sporadic TSC
can also arise when a mutation occurs early in development in a
stem cell that can give rise to many tissues. This is exemplified
by the extreme case of TSC patients with somatic mosaicism
(Tyburczy et al., 2015; Giannikou et al., 2019). The mutation of
the second allele then is proposed to occur later in development
within discrete cells (Figure 2D). The frequency that sporadic
TSC is caused by germline vs. somatic mutations is not yet known
regardless of evidence that both occur. Incidentally, familial
TSC2 mutations are less severe than sporadic TSC2 mutations.
One possible reason for the subtle phenotype of familial TSC2
mutations is that severe mutations may not be compatible with
life (Figure 2E).

The absence of an identified mutation in 10–15% of patients
with a clinical diagnosis spurred studies that examined TSC1/2
methylation and genetic modifiers and even the possibility of
a TSC3 gene (Niida et al., 2001; Dibble et al., 2012). However,
an unidentified mutation is most likely caused by two effects.
The first is that genetic tests focus on the 23 exons of TSC1 and
41 exons of TSC2. Intronic mutations were identified in ∼40%
of patients which failed first level exonic Sanger sequencing and
copy number variant/large deletion analysis (Tyburczy et al.,
2015). Another cohort of these patients (58%) demonstrated
genetic mosaicism (Tyburczy et al., 2015). Mosaicism is the
phenomenon that differences in the genetic composition of cells
that occur within a person and is caused by de novo mutations
that arise in somatic cells (Nesbitt and Gartler, 1971). Thus,
the timing of somatic cell mutation, the number of clones with

de novo mutations, and the cells in which the mutation occurs
contribute to the severity of TSC manifestations.

An example of this theoretical timing is that mutations
in TSC2 that cause hemimegalencephaly may occur in
early neuroepithelial stem cells, those that occur later in
embryonic radial glia may cause cortical tubers or focal cortical
dysplasias, and later mutations in SVZ NSCs may cause SEGAs
(Figures 2F–H; Henske et al., 1997; Chan et al., 2004; Crino
et al., 2010; Qin et al., 2010a; D’Gama et al., 2017; Lim et al.,
2017; Martin et al., 2017). Evidence of this phenomenon has
historically been easier to detect in cells with a clonal origin
that are in a confined location as occurs with tumors. Hence,
somatic mutations in SEGAs were identified as occurring by
LOH. Although the loss of heterozygosity was infrequently
detected in cortical tubers, this may be caused by the cellular
resolution of DNA sequencing. Previous experiments had taken
specimens and isolated DNA from thousands of cells. Thus, in
the background of a mosaic pattern of abnormal cells (think
balloon cells, dysmorphic neurons, and giant cells) intermingled
with wild-type cells, detection of LOH might be difficult. On
the other hand, single-cell sequencing of cortical tubers has
detected second hit mutations rendering cells with biallelic
inactivation of either TSC1 or TSC2 (Crino et al., 2010). Thus,
loss of both functional copies of TSC1 or TSC2 is likely sufficient
but perhaps not necessary to cause TSC. Haploinsufficiency or
dominant-negative mutations could also underlie pathogenesis.
It is important to note that this is a limitation of deletion studies
in the laboratory. Simple genetic deletion of a gene might not
mimic the dominant-negative behavior of mutations in a clinical
population and this is a current limitation of animal models and
patient-derived induced pluripotent stem cells that use deletion
to remove TSC genes.

Nevertheless, somatic mutations resulting in dominant-
negative function would only require a single allele to be mutated
to cause phenotypic changes. But because TSC1 or TSC2 and
mTORC1 are required for embryogenesis, it seems likely that
somatic biallelic inactivation may occur numerous times in
different tissues. It would be interesting for example, to examine
lesions from different regions in the same patient to determine
whether the same mutations exist. It would also be interesting to
determine in brain lesions whether when only a single allele is
mutated whether this always corresponds to dominant-negative
functions whereas two hits correspond to the loss of function
mutations. And the evidence supports that mutations would
likely differentially affect mTOR pathway activity meaning that
some mutations would have more subtle and other more severe
effects (Hoogeveen-Westerveld et al., 2011, 2012, 2013). Finally,
studies have reported haploinsufficiency in mice alters network
activity. These changes cause seizures by P16, learning deficits,
and behavioral issues perhaps (Goorden et al., 2007; Ehninger
et al., 2008; Auerbach et al., 2011; Lozovaya et al., 2014). Similarly,
Eker rats have social behavioral defects, changes to episodic
memory, and a predisposition to hyper-excitability (Rennebeck
et al., 1998; Waltereit et al., 2006, 2011; Schneider et al., 2017).
Subtle changes in mTORC1 activity may lead to abnormal axon
targeting, inhibition of macroautophagy that prevents spine
pruning, altered metabotropic glutamate receptor 5 dependent
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long term depression (Nie et al., 2010; Auerbach et al., 2011;
Bartley et al., 2014; Tang et al., 2014). A limitation to these studies
is that TSC heterozygous models may be subject to LOH during
development leading to some of these changes.

Treating TSC
Rapamycin is a macrolide compound generated by Streptomyces
hygroscopicus, a resident of soil bacteria of the island of
Rapa Nui, and was discovered for potent antifungal properties
(Vézina et al., 1975). Rapamycin functions as an allosteric
inhibitor through interactions with the protein FK506-binding
protein (FKBP12) that promotes binding to and inhibition
of mTORC1 signaling to p70 ribosomal S6 kinases (Chung
et al., 1992; Brown et al., 1994; Sabatini et al., 1994; Sabers
et al., 1995). The inhibition of mTORC1 by rapamycin is
substrate selective (Kang et al., 2013). An example is that while
rapamycin inhibits p70S6K-S6 signaling, inhibition of 4EBP
phosphorylation is incomplete (Choo et al., 2008; Thoreen
et al., 2009; Kang et al., 2013). Extended rapamycin treatment
can also prevent the assembly of mTORC2 leading to reduced
mTORC2 activity in vitro and in vivo (Sarbassov et al., 2006;
Lamming et al., 2012). The assignment of mTOR functions
based that rely only on rapamycin is therefore limited by
the caveats that rapamycin inhibits mTORC2, partially inhibits
selective substrate phosphorylation, and a third drawback that
it activates a feedback loop by in which mTORC2 can become
hyper-activated by rapamycin (Wan et al., 2007; Efeyan and
Sabatini, 2010). A newer class of ATP competitive inhibitors
exemplified by Torin1 demonstrates a more complete inhibition
of mTORC1 substrate phosphorylation but also lacks specificity
in that it also inhibits mTORC2 (Thoreen et al., 2009). From
a mechanistic standpoint, using Torin1 has a limitation for
selectively studying individual mTORCs, but from a clinical
standpoint, Torin1-like compounds may be of greater utility in
that it blocks both mTORCs and therefore has no feedback to
mTORC2. Nevertheless, many of the key findings on mTOR
based on rapamycin treatment have been affirmed with Torin1,
such as the role of mTOR regulation of 5’-TOP translation
(Thoreen et al., 2012).

Numerous studies have demonstrated the utility of
rapamycin in reducing the cellular and neuropathophysiological
manifestations in animal models of TSC. Notable examples
include administration of rapamycin in postnatal day seven in
synapsin-CRE mice having Tsc1 deleted from neurons reduces
p70S6 kinase activity, neuron size, dendritic spine density,
cortical thickness, and increases survival (Meikle et al., 2008).
A single dose of rapamycin administered to pregnant nestin-
CRE Tsc1 mice or supplemented with a postnatal day three
injection also enhanced survival (Anderl et al., 2011). Continual
treatment from postnatal days 8–60 exerted similar effects on the
survival of Emx-CRE Tsc1 deleted mice and even ameliorated
seizures (Magri et al., 2011). Surprisingly, while numerous
animal studies show that rapamycin reduces TSC cellular and
neuropathophysiological manifestations, genetic studies have
not yet clarified the potential mechanism(s) (mTORC1 knockout
vs. mTORC2 knockout). This is particularly fascinating because
TSC is also characterized by altered mTORC2 pathway activity

and mTORC2 is implicated in mediating behavioral and
neurophysiological changes in mice having neuron PTEN
deletion, which mimics the TSC-related disorders Cowden
Syndrome and Lhermitte-Duclos disease (Chen et al., 2019).

Evidence for the utility of rapamycin in TSC was first
demonstrated when the SEGAs of four TSC patients regressed
following rapamycin treatment (Franz et al., 2006). Clinical trials
demonstrated that the rapamycin analog (rapalog) everolimus
was successful in shrinking TSC SEGAs by 30–50% within
6 months and reducing seizure burden (Krueger et al., 2013a).
Long-term treatment for up to 3 years successfully reduced
SEGAs by 56% and prevented the formation of new SEGAs
(Franz et al., 2013). EXIST (EXamining everolimus In a Study
of TSC) phase III clinical trials further indicated that everolimus
markedly reduced seizure frequency (French et al., 2016). Major
limitations to rapalogs are that the effects are reversible, may
not effectively eliminate neurological manifestations, and have
side effects including immunosuppression (Franz and Capal,
2017). Most relevant is that treatment with rapalogs is a life-long
sentence because treatment cessation will likely be associated
with the return of symptoms (Franz and Capal, 2017) Thus,
active areas of study include determining whether ATP-pocket
mTOR inhibitors permanently alleviate symptoms.

Summary
Clinical observation, genetic analysis, and laboratory research
have assisted in developing a robust understanding of the
neuropathology of TSC. There remain questions as to the extent
that hamartin and tuberin regulate mTORC1-independent
pathways that contribute to TSC pathology (Zhang et al., 2014,
2020). However, the importance of the mTOR pathway is
underscored by the clinical utility of rapamycin-like compounds
that inhibit mTORC1 (Franz and Capal, 2017). Incidentally, the
role of signals that regulate hamartin and tuberin activity as well
as the mTORC1 substrates responsible for specific developmental
events are only now being determined. Perhaps most striking is
the fact that somatic mutations that cause mTORC1 pathway
activation have been identified as a cause of a plethora of
neurological diseases (Lee et al., 2012; Poduri et al., 2012; Parker
et al., 2013; Lal et al., 2014; Baek et al., 2015; Baulac et al., 2015;
Crino, 2015; D’Gama et al., 2015, 2017; Leventer et al., 2015;
Lim et al., 2015; Baulac, 2016; Korenke et al., 2016; Møller et al.,
2016; Hanai et al., 2017; Park et al., 2018; Iffland and Crino, 2019;
Kim et al., 2019; Pelorosso et al., 2019; Salinas et al., 2019; Zhao
et al., 2019; Garcia et al., 2020). Thus, what has been learned by
studying the TSC pathway may now be applied to an expanding
number of patients.
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