
Frontiers in Oncology | www.frontiersin.org

Edited by:
Thibaut Barnoud,

Medical University of South Carolina,
United States

Reviewed by:
Eytan Ruppin,

Tel Aviv University, Israel

*Correspondence:
Chi-Hong Chao

chao7@nycu.edu.tw

Specialty section:
This article was submitted to

Cancer Metabolism,
a section of the journal
Frontiers in Oncology

Received: 13 March 2022
Accepted: 28 April 2022
Published: 30 May 2022

Citation:
Wang C-Y and Chao C-H (2022) p53-

Mediated Indirect Regulation on
Cellular Metabolism: From the

Mechanism of Pathogenesis to the
Development of Cancer Therapeutics.

Front. Oncol. 12:895112.
doi: 10.3389/fonc.2022.895112

MINI REVIEW
published: 30 May 2022

doi: 10.3389/fonc.2022.895112
p53-Mediated Indirect Regulation
on Cellular Metabolism: From the
Mechanism of Pathogenesis to the
Development of Cancer Therapeutics
Chen-Yun Wang1,2 and Chi-Hong Chao1,2,3*

1 Institute of Molecular Medicine and Bioengineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, 2 Center
For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, Taiwan,
3 Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

The transcription factor p53 is the most well-characterized tumor suppressor involved in
multiple cellular processes, which has expanded to the regulation of metabolism in recent
decades. Accumulating evidence reinforces the link between the disturbance of p53-
relevant metabolic activities and tumor development. However, a full-fledged
understanding of the metabolic roles of p53 and the underlying detailed molecular
mechanisms in human normal and cancer cells remain elusive, and persistent endeavor
is required to foster the entry of drugs targeting p53 into clinical use. This mini-review
summarizes the indirect regulation of cellular metabolism by wild-type p53 as well as
mutant p53, in which mechanisms are categorized into three major groups: through
modulating downstream transcriptional targets, protein-protein interaction with other
transcription factors, and affecting signaling pathways. Indirect mechanisms expand the
p53 regulatory networks of cellular metabolism, making p53 a master regulator of
metabolism and a key metabolic sensor. Moreover, we provide a brief overview of
recent achievements and potential developments in the therapeutic strategies targeting
mutant p53, emphasizing synthetic lethal methods targeting mutant p53 with metabolism.
Then, we delineate synthetic lethality targeting mutant p53 with its indirect regulation on
metabolism, which expands the synthetic lethal networks of mutant p53 and broadens the
horizon of developing novel therapeutic strategies for p53 mutated cancers, providing
more opportunities for cancer patients with mutant p53. Finally, the limitations and current
research gaps in studies of metabolic networks controlled by p53 and challenges of
research on p53-mediated indirect regulation on metabolism are further discussed.

Keywords: wild-type p53, mutant p53, indirect regulation, metabolism, cancer treatment, synthetic lethality
INTRODUCTION

During the 40 years of discovery, TP53, encoding a transcription factor known as the guardian of the
genome, has been well characterized as a pivotal tumor suppressor. Upon various stress signals,
including DNA damage, metabolic stress, and induction of oncogenes, p53 is released from its core
negative regulator MDM2 and activated through multiple post-translational modifications (PTMs),
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which subsequently results in the upregulat ion or
downregulation of genes involved in DNA repair, cell-cycle
arrest, senescence, and apoptosis. Furthermore, p53 has been
identified as an important regulator of stemness, autophagy,
redox homeostasis, cellular metabolism, as well as tumor
microenvironments (TMEs) (1–3).

Being the most frequently mutated tumor suppressor gene in
human cancers, TP53 mutation exists in more than 50% of
human cancers. TP53 mutates variably in different types or
subtypes of cancer (4), and the majority of TP53 mutations are
missense mutations, a single-base substitution located in the
DNA-binding domain (DBD), giving rise to a full-length p53
protein (5). The existence of hotspot mutations, which account
for almost 30% of all the missense mutations in TP53, may confer
maximal benefits on tumor cells (6). These mutations are
classified into two main categories: DNA-contact mutations
abrogate residues directly involved in DNA binding, such as
R273H, while structural or conformational mutations disrupt the
structure of the DBD, such as R175H (3). Typically, oncogenic
effects of TP53 mutations might be exerted through loss of
function (LOF) of wild-type p53 (WTp53), dominant-negative
effect (DNE) over WTp53, and gain-of-function (GOF)
independent of WTp53, which are not mutually exclusive (7,
8). Despite losing sequence-specific DNA binding (SSDB)
activity, mutant p53 (MTp53) can regulate gene expression
through both direct and indirect mechanisms (7, 9, 10). Direct
binding of MTp53 to DNA can be achieved by DNA structure-
selective binding (DSSB), in which MTp53 recognizes its target
genes by selective binding to DNA secondary structures. On the
other hand, MTp53 associates with various transcription factors
to act as a transcriptional repressor or transcription cofactor.
Moreover, cooperation between MTp53 and the SWI/SNF
chromatin remodeling complex contributes to over 40% of
MTp53-regulated gene expression (11). MTp53 also exerts its
oncogenic functions via modulating non-coding RNAs
(ncRNAs) (12). Taken together, all these facts reveal a
significant contribution of the indirect mechanisms to MTp53-
mediated biological effects.

As previously mentioned, p53 has emerged as a critical
modulator of cellular metabolism. Actually, p53-mediated
metabolic activities have been reported to involve in the
development of several human diseases, including diabetes,
ischemia, neurodegeneration, as well as cancer (13), which we
will focus on in this review. In addition to inducing or repressing
the expression of transcriptional target genes associated with
p53-mediated metabolic pathways and directly interacting with
metabolic enzymes to activate or inhibit their activities, p53 also
regulates metabolism via indirect mechanisms. The indirect
mechanisms which we define here are categorized into three
groups. First, p53 regulates metabolic genes through modulating
its direct targets, such as microRNAs (miRNAs) and long non-
coding RNAs (lncRNAs). Second, p53 activates or suppresses the
expression of metabolic genes through interacting with other
transcription factors. Third, p53 controls metabolism by
affecting signaling pathways. These indirect mechanisms scale
up the number of metabolism-associated genes regulated by p53,
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extend the influence of p53 to a wide variety of metabolic
pathways, and expand the p53 regulatory networks of
metabolism, further highlighting p53 as a master regulator of
metabolism. The critical role of p53-mediated indirect regulation
on metabolism in tumorigenesis and tumor progression is
evident, for example, in our previous study that in spite of
several direct transcriptional targets of p53 involved in
mitochondrial respiration, restoration of the decreased
oxidative phosphorylation (OXPHOS) caused by MTp53 could
be achieved through ectopic expression of miR-200c, a
downstream direct transcriptional target of p53, which
enhances phosphoenolpyruvate carboxykinase 2 (PCK2)
expression via downregulating ZEB1/BMI1 (14). Moreover,
restoring miR-200c expression leads to suppression of tumor
growth, whereas interference of PCK2, the key enzyme linking
the TCA cycle and glycolysis (15), counteracts the miR-200c-
mediated tumor-suppressing effect, which accentuates the vital
role of the indirect mechanisms accounting for p53-regulated
cellular metabolism, and provides a functional link between p53-
regulated metabolism and p53-mediated biological functions.
Furthermore, p53 is generally considered an important
metabolic sensor by positioning at the center of several
signaling pathways coordinating cellular metabolism (16).
Notably, direct and indirect regulation of metabolism by p53
are not mutually exclusive but overlapped to some extent. This is
exemplified by hexokinase 2 (HK2), the first rate-limiting
enzyme of glycolysis, which is both a direct transcriptional
target of p53 (17) and an indirect metabolic target of p53
through miR-34a (18) and miR-143 (19). Interestingly, glucose
transporter 1 (GLUT1), transcriptionally repressed by p53 (20) is
an indirect target of MTp53 through modulation of the RhoA/
ROCK signaling pathway (21), indicating the flexibility of indirect
mechanisms underlying p53-mediated metabolic activities.

Transcriptional targets of p53 in regulating metabolism have
been delineated in widespread literature, especially in a review
article that gives a clear summary of direct target genes activated
or repressed by p53 in every aspect of metabolic pathways (16).
Considering that the indirect mechanisms seem to play a critical
role in contributing to p53-mediated control of cellular
metabolisms and other biological functions, and a growing
number of metabolic-associated genes and proteins have been
reported to be indirectly modulated by p53, in the present work,
we will briefly summarize the indirect regulation of cellular
metabolism by WTp53 (Figure 1 and Table 1) and MTp53
(Figure 2 and Table 2), respectively.
WILD-TYPE P53-MEDIATED INDIRECT
REGULATION ON METABOLISM

As illustrated in Figure 1 and summarized in Table 1,
mechanisms accounting for WTp53-mediated indirect
regulation of metabolism can be categorized into three major
types: through transcriptionally regulating downstream target
genes (Figure 1A and Table 1A), through protein-protein
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interactions (Figure 1B and Table 1B), and through modulating
signaling pathways (Figure 1C and Table 1C).

(A). WTp53 indirectly regulates the expression of metabolism-
related genes by modulating its direct targets (Figure 1A and
Table 1A). In our previous study (14), we demonstrate that
miR-200c, a WTp53 target negatively regulating epithelial-
mesenchymal transition (EMT) and stemness (39), promotes
OXPHOS in basal-like breast cancer (BLBC) cells by
inhibiting the downstream targets, ZEB1 and BMI1, which
subsequently activates PCK2 expression. In prostate cancers,
loss of p53 compromises p53-induced miR-143, facilitating
degradation of HK2 mRNA, which is required for Pten/p53-
deficiency-driven aerobic glycolysis, proliferation,
transformation, and in vivo tumor growth (19). In another
study, induction of miR-34a by p53 downregulates
hexokinase 1 (HK1), HK2, glucose-6-phosphate isomerase
(GPI), and pyruvate dehydrogenase kinase 1 (PDK1),
potentiating mitochondrial respiration and decreasing
glycolysis (18). In addition to regulating glucose
metabolism, p53-induced miR-34a also represses the
expression of inosine 5’-monophosphate dehydrogenase
(IMPDH), the rate-limiting enzyme of GTP biosynthesis,
leading to decreased Ras signaling (22). In the mouse model
of diet-induced obesity (DIO)-related hepatic steatosis,
activation of the hepatic cannabinoid-1 receptor (CB1R)
induces expression of miR-22 through modulating the
transcriptional activity of p53, which disturbs peroxisome
proliferator-activated receptor-a (PPARa) and NAD+-
dependent histone deacetylase sirtuin 1 (SIRT1), leading to
decreased fatty acid oxidation (FAO) and increased fat
Frontiers in Oncology | www.frontiersin.org 3
accumulation in the liver (23). The lncRNA EPB41L4A-
AS1, a transcriptional target of WTp53, decreases glycolysis
and glutaminolysis via interacting with histone deacetylase 2
(HDAC2), in which interference of EPB41L4A-AS1 sensitizes
tumor cells to glutaminase inhibitor (24). Aside from
modulating non-coding RNAs, p53 transactivates
peroxisome proliferator-activated receptor g coactivator-1a
(PGC-1a), the master regulator of mitochondrial biogenesis
and function (40), upon glutathione (GSH) depletion, which
induces antioxidant response through nuclear factor E2-
related factor 2 (NRF2)-mediated expression of manganese
superoxide dismutase (MnSOD or SOD2) and g-
glutamylcysteine ligase (g-GCL) (25). Furthermore, p53
inhibits the expression of the rate-limiting enzymes of
gluconeogenesis, glucose-6-phosphatase (G6PC) and
phosphoenolpyruvate carboxykinase 1 (PCK1), through
transactivating NAD+-dependent histone deacetylase sirtuin
6 (SIRT6), which subsequently causes deacetylation and
nuclear exclusion of forkhead box protein O1 (foxO1), the
inducer of G6PC and PCK1 (26).

(B). WTp53 indirectly regulates metabolism through a protein-
protein interaction with other transcription factors
(Figure 1B and Table 1B). For example, p53 associates
with the transcription factor, specificity protein 1 (Sp1), to
repress transcription of MnSOD (27), an antioxidant enzyme
differentially expressed in cancers (41). Interestingly, in
addition to transcriptional control, p53 recruits PGC-1a to
modulate its transactivation activity at early periods of
metabolic stress, as indicated by upregulation of the
proarrest and metabolic genes, including TP53-induced
glycolysis regulatory phosphatase (TIGAR), synthesis of
A B

C

FIGURE 1 | Wild-type p53 regulates cellular metabolism through indirect mechanisms. WTp53 indirectly regulates metabolism through inducing its direct targets,
including miRNAs, lncRNAs, and proteins (A), associating with other transcription factors (B), or modulating signaling pathways (C).
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cytochrome C oxidase 2 (SCO2), and sestrin 2, which induces
cell-cycle arrest and reactive oxygen species (ROS) clearance
(28).

(C). WTp53 modulates signaling pathways to affect cellular
metabolism (Figure 1C and Table 1C). An example of this
is the study from Kawauchi et al. in which p53 deficiency in
mouse embryonic fibroblasts (MEFs) leads to activation of the
IKK-NF-kB pathway, which transactivates the Glut3 gene,
and increases aerobic glycolysis and lactate production,
contributing to oncogene-induced cell transformation (29).
In contrast to transactivating or recruiting PGC-1a to serve as
a coactivator, p53 destabilizes PGC-1a through activating the
ubiquitin-proteasome system, mediated by AKT/GSK-3b-
Frontiers in Oncology | www.frontiersin.org 4
dependent phosphorylation of PGC-1a, which impairs
mitochondrial function and increases chemosensitivity of
non-small cell lung cancer (NSCLC) (30).
MUTANT P53-MEDIATED INDIRECT
REGULATION ON METABOLISM

As illustrated in Figure 2 and summarized in Table 2, MTp53
indirectly regulates metabolism either by disturbing WTp53
function (Figure 2A and Table 2A) or by exerting its gain-of-
function properties (Figures 2B, C and Tables 2B, C).
TABLE 1 | Metabolic targets indirectly regulated by wild-type p53.

p53
Status

Targets Mechanism of Regulation Metabolic Effect Biological Consequence Ref.

(A) Through transcriptionally regulating downstream target genes
WTp53 Phosphoenolpyruvate carboxykinase 2 (PCK2) Induce miR-200c to upregulate

expression.
Increased OXPHOS. p53 mutation facilitates

cancer stemness.
(14)

WTp53 Hexokinase 2 (HK2) Induce miR-143, which facilitates
degradation of HK2 mRNA.

Decreased aerobic
glycolysis.

Loss of p53 leads to Pten/
p53-deficiency-driven
proliferation, transformation,
and in vivo tumor growth.

(19)

WTp53 Hexokinase 1 (HK1), HK2, Glucose-6-phosphate
isomerase (GPI), Pyruvate dehydrogenase kinase
1 (PDK1)

Induce miR-34a to downregulate
expression.

Decreased glycolysis
and increased
mitochondrial
respiration.

Not applicable. (18)

WTp53 Inosine 5’-monophosphate dehydrogenase
(IMPDH)

Induce miR-34a to downregulate
expression.

Decreased GTP
biosynthesis (purine
synthesis).

p53 represses GTP-
dependent Ras signaling
pathway.

(22)

WTp53 Peroxisome proliferator-activated receptor-a
(PPARa), NAD+-dependent histone deacetylase
sirtuin 1 (SIRT1)

Induce miR-22 to downregulate
expression.

Decreased FAO. Blockade of this signaling
pathway ameliorates high-fat
diet (HFD)-induced hepatic
steatosis.

(23)

WTp53 Glycolytic enzymes such as HK1 and pyruvate
kinase M2 (PKM2); Glutaminolysis-related
enzymes such as alanine-serine-cysteine
transporter type 2 (ASCT2) and Glutaminase 2
(GLS2)

Induce the lncRNA EPB41L4A-AS1 to
downregulate expression through
modulating the VHL/HIF-1a pathway and
the VDAC1/ATF4 pathway, respectively

Decreased glucose
uptake, glycolysis, and
lactate production.
Decreased
glutaminolysis.

Depletion of EPB41L4A-AS1
largely increases the anti-
tumor effect of glutaminase
inhibitors.

(24)

WTp53 Manganese superoxide dismutase (MnSOD or
SOD2), g-glutamylcysteine ligase (g-GCL)

Transactivate PGC-1a to upregulate
expression through NRF2.

Decreased ROS. Blockade of the p53-PGC-
1a-NRF2 pathway increases
ROS and cell death.

(25)

WTp53 Glucose-6-phosphatase (G6PC),
Phosphoenolpyruvate carboxykinase 1 (PCK1)

Transactivate SIRT6 to cause
deacetylation and nuclear exclusion of
foxO1, which is the inducer of G6PC and
PCK1.

Decreased
gluconeogenesis.

p53 decreases the recovery
of murine blood glucose
levels induced by pyruvate.

(26)

(B) Through protein-protein interaction
WTp53 Manganese superoxide dismutase (MnSOD or

SOD2)
Associate with Sp1 to inhibit transcription. Not applicable. Not applicable. (27)

WTp53 TP53-induced glycolysis regulatory phosphatase
(TIGAR), Synthesis of cytochrome C oxidase 2
(SCO2), Sestrin 2

Recruit PGC-1a to upregulate expression. Decreased ROS. p53 binds to PGC-1a to
promote cell-cycle arrest and
ROS clearance at early
periods of glucose starvation.

(28)

(C) Through modulating signaling pathways
WTp53 Glucose transporter 3 (GLUT3) Inhibit the IKK-NF-kB pathway, which

activates GLUT3.
Decreased glycolysis
and lactate production.

p53 deficiency leads to
oncogene-induced cell
transformation.

(29)

WTp53 Peroxisome proliferator-activated receptor g
coactivator-1a (PGC-1a)

Inhibit AKT and activate GSK-3b to
promote degradation through the
ubiquitin-proteasome system.

Decreased
mitochondrial function.

Knockdown of PGC-1a
synergizes with cisplatin to
promote apoptosis and
inhibit tumor growth.

(30)
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(A). MTp53-mediated metabolic reprogramming from
perturbation of WTp53 downstream targets (Figure 2A and
Table 2A) can be exemplified by our previous research that
MTp53 attenuates OXPHOS through downregulating miR-
200c, the positive regulator of PCK2, which facilitates cancer
stemness in BLBC (14). In our study, the MTp53-exerted
dominant-negative effect impedes the expression of miR-
200c, which upregulates ZEB1 and BMI1 and subsequent
downregulates PCK2. PCK2 deficiency not only leads to
decreased OXPHOS in normal mammary epithelial cells
but also compromises the increased OXPHOS by
restoration of miR-200c in BLBC cells (14). Another
example is a recent study that upregulation of the lncRNA
Actin Gamma 1 Pseudogene (AGPG) by p53 deficiency leads
to stabilization of fructose-2,6-biphosphatase 3 (PFKFB3),
contributing to enhanced glycolysis, proliferation, and
tumor growth (31).

(B). Independent of WTp53, the gain-of-function of MTp53 has
a profound effect on various metabolic pathways. Similar to
WTp53, MTp53 also regulates metabolism by affecting
signaling pathways (Figure 2B and Table 2B). This is
evidenced in a study that MTp53-boosted glycolysis
promotes tumorigenesis through activation of the RhoA/
ROCK s igna l ing , sub s equen t l y induc ing ac t in
polymerization and translocation of GLUT1 to the plasma
membrane (PM) (21).

(C). Distinct from WTp53-mediated indirect regulation on
metabolism which is mainly mediated by its downstream
target genes (Figure 1A and Table 1A), MTp53 gains novel
abilities to interact with a variety of proteins, particularly
transcription factors, to drive tumor-associated metabolic
Frontiers in Oncology | www.frontiersin.org 5
alterations (Figure 2C and Table 2C). Examples of
metabolic genes activated by MTp53 encompass PLA2G16,
encoding a phospholipase catalyzing the formation of free
fatty acids and lysophospholipids. The association of MTp53
with Kruppel-like factor 5 (KLF5) transactivates PLA2G16,
which leads to increased glycolytic rate and accelerates tumor
growth (32). Besides, enhanced expression of nucleotide
metabolism genes (NMG) can be induced by cooperation
between MTp53 and ETS proto-oncogene 2 transcription
factor (ETS2), which is associated with poor prognosis in
breast cancer patients (33). Gain-of-function of MTp53 also
confers its ability to interact with the sterol regulatory element
binding proteins (SREBPs) and be recruited to the sterol
regulatory elements (SRE-1), which then induces genes
encoding enzymes in the mevalonate pathway, contributing
to the disrupted acinar formation in breast cancer cells (34).
Later research further demonstrates that MTp53 exerts a
differential regulation on NRF2 targets regardless of
whether cells are under unstressed or oxidative stress
conditions, where expression of genes upregulated by
MTp53, including thioredoxin (TXN), thioredoxin
reductase 1 (TXNRD1), proteasome 26S subunit ATPase 1
(PSMC1), and glutamate-cysteine ligase modifier subunit
(GCLM), correlates with worse overall survival in breast
cancer patients (35).

On the other hand, accumulated MTp53 proteins interfere
with NRF2 activity, resulting in decreased expression of
SLC7A11, a cystine/glutamate antiporter. Downregulation of
SLC7A11 leads to GSH depletion and increased ROS, which
sensitizes cancer cells to APR-246, a MTp53 reactivator (36). In
another study, MTp53 is found to protect cancer cells confronted
A

B

C

FIGURE 2 | Mutant p53 regulates cellular metabolism through indirect mechanisms. MTp53 indirectly regulates metabolism by its dominant-negative effect (DNE)
over WTp53 (A), and the gain-of-function (GOF) properties encompassing modulation of signaling pathways (B) or interaction with other transcription factors (C).
May 2022 | Volume 12 | Article 895112
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with oxidative stress from death through diminishing NRF2-
mediated phase 2 ROS detoxifying enzymes, NAD(P)H quinone
dehydrogenase (NQO1) and heme oxygenase 1 (HO-1) (37).
Like the aforementioned, MTp53 differentially regulates NRF2
targets, in which metabolic genes are suppressed by MTp53
including HO-1, SLC7A11, and ATP binding cassette subfamily
Frontiers in Oncology | www.frontiersin.org 6
C member 3 (ABCC3) (35). Surprisingly, not only WTp53 binds
to PGC-1a, MTp53 also interacts with PGC-1a; though this
association exerts an inhibitory effect on PGC-1a. Basu et al.
demonstrate that the codon 72 polymorphism in TP53 impacts
the binding and regulation of MTp53 to PGC-1a. The arginine
72 variant (R72) of MTp53, instead of the proline 72 variant
TABLE 2 | Metabolic targets indirectly regulated by mutant p53.

p53 Status Targets Mechanism of Regulation Metabolic
Effect

Biological Consequence Ref.

(A) Dominant-negative effect: Through affecting WTp53 downstream targets
MTp53
(R175H,
R249S,
R273H,
R280K)

PCK2 Downregulate WTp53-induced
miRNA miR-200c, which
increases PCK2 expression
through inhibiting ZEB1 and
BMI1.

Decreased
OXPHOS.

Downregulation of PCK2 by MTp53 through the
miR-200c-ZEB1/BMI1 axis facilitates cancer
stemness.

(14)

MTp53
(V272M,
R110L +
E326K)

Fructose-2,6-biphosphatase 3 (PFKFB3) Rescue WTp53-repressed
lncRNA AGPG to prevent
ubiquitination and stabilize
PFKFB3.

Enhanced
glycolysis.

Upregulation of AGPG by MTp53 promotes cell
proliferation and in vivo tumor growth.

(31)

(B) Gain-of-function: Through modulating signaling pathways
MTp53
(R175H,
R248Q,
R273H)

Glucose transporter 1 (GLUT1) Activate the RhoA/ROCK
signaling, which induces GLUT1
translocation to the plasma
membrane.

Enhanced
glycolysis.

Knocking down GLUT1 abolishes MTp53-
promoted anchorage-independent growth and
xenograft tumor growth.

(21)

(C) Gain-of-function: Through protein-protein interaction
MTp53
(R273H,
R248W)

Phospholipase A2, group XVI (PLA2G16) Associate with KLF5 to activate
transcription.

Increased
glycolysis.

High PLA2G16 predicts a poor prognosis.
Knockdown of PLA2G16 impairs proliferation,
anchorage-independent growth, and tumor
growth.

(32)

MTp53
(R249S,
R273L,
R280K,
R248W)

Nucleotide metabolism genes (NMG) Associate with ETS2 to activate
transcription.

Increased
dNTP and
rNTP pools.

NMG expression contributes to invasion and
metastatic potential.

(33)

MTp53
(R175H,
R248Q,
R273H,
R248W,
G245S,
R280K)

Mevalonate pathway enzymes such as
HMG-CoA reductase (HMGCR)

Associate with SREBPs to
activate transcription.

Elevated
activity of
the
mevalonate
pathway.

Supplementing metabolites produced by the
mevalonate pathway reverses the phenotypic
reversion of disrupted acinar formation caused by
the KD of MTp53.

(34)

MTp53
(R175H,
R280K)

NRF2 target genes
Activated: Thioredoxin (TXN), Thioredoxin
reductase 1 (TXNRD1), Proteasome 26S
subunit ATPase 1 (PSMC1), Glutamate-
cysteine ligase modifier subunit (GCLM)
Inhibited: Heme oxygenase 1 (HO-1), Solute
carrier family 7 member 11 (SLC7A11), ATP
binding cassette subfamily C member 3
(ABCC3)

Associate with NRF2 to activate
or inhibit transcription.

Not
applicable.

Differential regulation of NRF2 targets by MTp53
contributes to cell survival and migration under
oxidative stress. MTp53-activated NRF2 targets
are correlated with poor prognosis.

(35)

MTp53
(C277F,
R248Q,
R248W,
G266E,
R175H,
R273H)

SLC7A11 Bind to and interfere with NRF2
to inhibit transcription.

Depleted
glutathione
and
increased
ROS.

A low level of SLC7A11 sensitizes cancer cells
with MTp53 to APR-246, which induces oxidative
stress.

(36)

MTp53
(R273H)

NAD(P)H quinone dehydrogenase (NQO1),
HO-1

Interfere with NRF2 to inhibit
transcription.

Increased
ROS.

MTp53-mediated reduction of phase 2
detoxifying enzymes promotes cell survival
following oxidative damage.

(37)

MTp53
(R175H,
R273H)

PGC-1a target genes such as Catalase,
Glutathione peroxidase 4 (GPX4), Estrogen-
related receptor a (ERRa), ATP synthase
lipid-binding protein (ATP5G1)

Associate with PGC-1a to inhibit
its function.

R72-MTp53
shows
increased
OXPHOS.

Tumor cells with R72-MTp53 have greater
migration, invasion, and metastatic ability than
tumor cells with P72-MTp53.

(38)
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(P72), shows decreased association with PGC-1a, resulting in
increased PGC-1a function, enhanced OXPHOS, invasion, and
metastasis (38).
TARGETING MUTANT P53: RECENT
ADVANCES AND FUTURE PERSPECTIVES

Direct or Indirect?
Therapeutic strategies against tumors with p53 mutation are
classified into direct and indirect approaches (42, 43). Direct
targeting of MTp53 is attained by either restoring WTp53
function to MTp53 or depleting MTp53. Several MTp53
reactivators have been developed to refold MTp53 into the
conformation of WTp53, prevent aggregation of MTp53
proteins, and restore DNA binding and transcriptional activity.
In contrast, MTp53 destabilizers promote the degeneration of
MTp53 and thus limit its expression, mainly through ubiquitin-
proteasome degradation or autophagy-lysosome degradation
pathways (44). Afterward, immunotherapies have emerged as
promising strategies targeting tumors bearing MTp53 (45),
including adoptive T cell therapy, the usage of antibody-drug
conjugate (ADC) (46), and more recently, the development of
the innovative bispecific antibody (BsAb) (47).

On the contrary, indirect approaches aim to disrupt
connections between MTp53 and its synthetic lethal partners.
Synthetic lethality is the concept that the simultaneous
disturbance of two genes leads to cell death. In contrast,
perturbation of an individual gene is tolerable, in which
disruption of the two genes can be achieved by double
mutations or single mutation of one gene combined with
pharmacological inhibition of the other (48, 49). Due to the
extensive influence of MTp53 on a variety of cellular processes
and tumor development, synthetic lethality for cancer
therapeutics against MTp53 is prospectively applicable to a
wide range of cancers with TP53 mutation, and thus, the
identification of synthetic lethal genes to MTp53 becomes
attractive. The development of synthetic lethal strategies
targeting MTp53 provides more opportunities and therapeutic
options for cancer patients with TP53 mutation, which has
advantages over approaches directly targeting MTp53, which
are listed below.

(1). Synthetic lethality-based drugs are promising to broaden the
strategies against cancers by their potential to overcome the
major limitation of genetically targeted therapies. Not all
cancer mutations are druggable, especially loss-of-function
mutations (50, 51).

(2). It is quite challenging to develop MTp53 reactivators or
inhibitors because of the diverse nature of MTp53 proteins.
The structural diversity and the consequent distinct
functional properties of every MTp53 make it practically
infeasible to target all MTp53 with a single compound (42,
52). Synthetic lethal methods are more flexible because of the
high dependency on MTp53-induced oncogenic effects rather
than on MTp53 itself.
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(3). MTp53 reactivators or inhibitors may induce severe
toxicities and intolerable adverse effects. For example,
MIRA-1, a MTp53 reactivator, could cause acute
cytotoxicity to normal cells through induction of caspase-9-
mediated apoptosis independent of p53 (53). APR-246 and
COTI-2 are the only two drugs in clinical trials (42).
Moreover, the relatively low-specificity inhibitors promoting
degradation of MTp53, such as histone deacetylase inhibitors
(HDACis), may elicit unfavorable adverse effects due to their
widespread influence on normal cells (54).

(4). Restoration of WTp53 function to MTp53 might backfire
because WTp53 has been paradoxically reported to favor
tumor progression, particularly through metabolic regulation,
which we highlight in this article. This notion is evident in a
study that WTp53 potentiates glycolysis and decreases
pyruvate uptake and thus OXPHOS in hepatocarcinoma
(HCC) through induc ing PUMA inhib i t ion on
mitochondrial pyruvate carrier (MPC) (55). Another study
also substantiates that a low dosage of sulforaphane, the
inducer of NRF2, could prevent apoptosis, promote
proliferation, and enhance mitochondrial respiration in
colorectal cancer (CRC) cells with WTp53 but not in p53-
knockout CRC cells, suggesting a tumor-promoting role of
WTp53 (56). Because of the potentially bi-faceted role of
WTp53 in cancer, it is indispensable to ascertain the WTp53-
mediated metabolic regulation and biological effects in
different types of cancer.
Synthetic Lethality With Metabolism
Several candidate synthetic lethal genes to p53 involved in
various cellular processes, such as DNA repair, cell-cycle
control, cell growth and proliferation, and metabolism, have
been identified (57). Among these, we suggest that synthetic
lethality targeting MTp53 with metabolism is the most
potentially feasible for clinical application for the reasons
stated below.

(1). In comparison to targeting MTp53 with metabolism,
synthetic lethality with other cellular processes like DNA
damage response and cell-cycle arrest may not only kill
tumor cells but also damage normal cells, which could lead
to severe adverse effects. For example, UCN01, an inhibitor of
checkpoint kinase 1 (Chk1), the critical regulator of intra-S
and G2/M checkpoints (58), has been halted for further
clinical development due to the worse efficacy and the
induction of unacceptable toxicities (59). Similarly, BI 2536,
an inhibitor of polo-like kinase 1 (Plk1), which plays a crucial
role in mitosis (60), exhibited a poor response rate and short
half-life and could induce severe adverse events, leading to
discontinued clinical progress (61).

(2). The highly intertwined relationships among different
biomolecular processes contribute to the formation of
metabolic networks, which interact with each other to form
the complex construct of metabolism (62). Perturbations of
the connected molecules could lead to disconnection of these
pathways and breakdown of the metabolic networks,
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consequently destroying the resilience, which could cause
cellular dysfunction and diseases (62). For tumor cells
displaying high metabolic plasticity, the above features
make it a potential treatment strategy to disrupt the
crosstalk between the interconnected metabolic pathways by
dual inhibition of these pathways with metabolic drugs or
targeting compensatory mechanisms with a combination of
drugs inhibiting global regulators and the respective
compensatory bioenergetic pathways (63). Dual targeting of
metabolic pathways as a therapeutic strategy has been
demonstrated in the case of Lewis lung carcinoma (LLA), in
which 2-deoxy-D-glucose (2-DG), a non-metabolizable
analog of glucose that competitively binds to hexokinase
and inhibits glycolysis (64), significantly enhances the
antitumor activity of dichloroacetate (DCA), an inhibitor of
pyruvate dehydrogenase kinase (PDK) that activates pyruvate
dehydrogenase (PDH) and boosts OXPHOS activity (65, 66),
accompanied with inhibition of glycolysis and increased
cytotoxicity of tumor-infiltrating monocytes (67). In the
case of p53 mutated breast cancer cells, 2-DG increases the
sensitivity of tumor cells to metformin, which indirectly
activates AMP-activated protein kinase (AMPK) by
inhibiting complex I of the mitochondrial electron transport
chain (68), indicating co-treatment of 2-DG and metformin
may be an effective therapeutic strategy (69). Alternatively, a
combination of phenformin, an AMPK activator, and 2-DG
induces metabolic stress, suppresses tumor growth, and
promotes degradat ion of MTp53 prote ins (70) ,
foreshadowing the promising future of inhibiting
compensatory mechanisms accounting for the metabolic
flexibility of tumor cells.

(3). Nowadays, there have been various metabolic drugs
approved for clinical use in cancers and other diseases, such
as 5-fluorouracil (5-FU) targeting nucleotide metabolism and
metformin inhibiting mitochondrial function. Besides, several
metabolic inhibitors are currently in cancer clinical trials (71),
which are prospectively applicable in cancer treatments in the
imminent future. Uncovering the MTp53-induced metabolic
alterations in cancers would assist the utilization of these
metabolic drugs in combination therapies or adjuvant
therapies.
Targeting p53-Mediated Indirect
Regulation on Metabolism
In addition to targeting MTp53 with metabolism, mediators of
MTp53-driven metabolic alterations are extremely potential
synthetic lethal partners to MTp53. Specifically, the human
genome comprises about 2% of protein-coding genes, leaving
the vast majority to be non-coding RNAs (72). ncRNAs are
critical regulators of many cellular processes, which
indispensably coordinate the functional operation of complex
networks in cells. Dysregulation of ncRNAs is detrimental,
leading to pathological development like cancer (73). In
viewing that p53 plays a pivotal role in regulating ncRNAs (12,
74), and that disturbance of ncRNAs contributes to cancer-
associated metabolic reprogramming (75, 76), ncRNAs are
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expected to expand the synthetic lethal networks of MTp53
with metabolism. The examples below illustrate this point
in detail.

As demonstrated in our previous work, MTp53 attenuates
OXPHOS through disturbing the miR-200c-PCK2 axis, in which
restoration of miR-200c rescues the decreased OXPHOS by
MTp53 (14), implying therapeutic delivery of miR-200c
through viral vectors or non-viral approaches, such as
nanoparticles and liposomes (77), is a potential treatment
strategy for intractable BLBC. It is noteworthy that restoring
miR-200c expression not only boosts OXPHOS, but further
nullifies MTp53-induced EMT and stemness, which may result
from simultaneous activation of OXPHOS and direct inhibition
of its downstream targets, ZEB1 and BMI1 (14). Likewise, miR-
149-3p has been revealed to restore chemosensitivity of
colorectal cancer cells through decreasing glycolytic activity via
downregulating pyruvate dehydrogenase kinase 2 (PDK2),
suggesting CRC patients with MTp53, in which the frequency
of TP53 mutation is around 40-50%, might benefit from
combined employment of chemotherapy and miR-149-3p-
based therapy (78). In addition to miRNAs, targeting lncRNAs
synthetic lethal to MTp53 is also a potential therapeutic
intervention. In the case aforementioned in the section of
MTp53-mediated indirect regulation on metabolism, the
lncRNA AGPG is upregulated by MTp53, which enhances
glycolysis through preventing PFKFB3 from degradation (31).
Interference of AGPG shows significantly inhibitory effects on
tumor cells, providing implications for developing an RNA
interference-based strategy.

For the same reason, the concept of expanding the synthetic
lethality to MTp53 through targeting its indirect regulation on
metabolism can apply to other mechanisms, like the signaling
pathways modulated by MTp53 (Figure 2B and Table 2B), or
the transcription factors associated with MTp53 (Figure 2C and
Table 2C). Furthermore, in addition to metabolic drugs,
numerous small-molecule targeted drugs and therapeutic
monoclonal antibodies are FDA-approved for cancer treatment
(79–81). Consequently, further investigation of molecular
mechanisms accounting for MTp53-mediated metabolic
reprogramming offers opportunities for patients with MTp53
tumors, in which these targeted drugs might be available in
medical treatments.

Together, this evidence unequivocally indicates that targeting
MTp53-mediated indirect regulation rather than directly
targeting MTp53-driven metabolic alteration may elicit more
powerful tumoricidal effects.
CHALLENGES ON THE JOURNEY

Despite the accumulated myriad of research on p53 during the
past four decades, a thorough understanding of the p53
regulatory network of cellular metabolism is still lacking. The
progress of targeting MTp53 according to its regulation on
cancer metabolism in practical clinical approaches remains
stagnant, which could arise from the complexity of p53 and
research limitations as following described.
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(1). p53 regulation of metabolism is highly cell type-specific. A
growing body of evidence has revealed that it is inappropriate
to apply the general assumption of p53-regulated metabolism
to all the types of cells, which is firmly supported by Kim et al.
that WTp53 promotes glycolysis instead of OXPHOS in HCC
(55). Furthermore, p53 regulates metabolism distinctly under
stressed or unstressed conditions. For instance, p53 is
demonstrated to increase OXPHOS in normoxia while
decreasing OXPHOS in hypoxia in the cervix and breast
cancer cells (82). As a result, the regulatory networks of p53
on cellular metabolism in different cells need to be more
clearly defined.

(2). The exceedingly diverse nature of MTp53 proteins makes it a
hurdle to precisely delineate MTp53-regulated metabolism in
cancer cells. As shown in our previous study (14), stable
expression of different MTp53 variants in normal mammary
epithelial cells promotes glycolysis and suppresses
mitochondrial respiration to varying extents. Erikson et al.
also demonstrate that different hotspot mutations of p53
could have differential impacts on cellular metabolism like
glycolysis and that endogenous and exogenous expression of
even the same type of p53 mutation could exert opposite
effects on OXPHOS (83).

(3). Murine cells and mouse models are frequently utilized in
research exploring p53-regulated metabolism and the
underlying molecular mechanisms; nevertheless, substantial
differences in gene expression patterns and transcriptional
regulatory programs have been observed between mice and
humans (84). A more recent study corroborates that the p53
gene regulatory network (GRN) in mice differs from that in
humans, in which the meta-analysis reveals extensive
variation in p53-regulated gene expression profiles and high
species-specificity of p53 transcriptional targets (85). This
distinction can be exemplified by CPT1C, the brain isoform of
the rate-limiting enzyme of FAO. CPT1C is generalized as a
direct target of p53 (16, 86, 87); though, CPT1C is
upregulated by p53 in mice but not in humans, reflecting
the lack of p53 binding sites on human CPT1C promoter (85).
In response to the differences in p53 GRN between mice and
humans, more efforts are in need to confirm the metabolic
roles of p53.

(4). Despite synthetic lethality targeting the mediators of
MTp53-associated cancer metabolism portends a bright
future for innumerable cancer patients with TP53 mutation,
the diverse nature of MTp53, the intracellular intricate
regulatory networks accounting for the modulation of
metabolism, and the extrinsic environmental factors
determine together with the specific synthetic lethal
partners to a specific type of MTp53, making identifying
the synthetic lethal partners a quite challenging work. Once a
synthetic lethal partner has been identified, the following
concern is whether there are drugs specific for this synthetic
lethal partner, or whether this synthetic lethal partner could
be delivered to tumor sites or transported into tumor cells.
The challenges of research on p53-mediated indirect
regulation of metabolism are summarized below.
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(a). The mechanism accounting for MTp53 indirect regulation of
metabolism by dominant-negative effect over WTp53
(Figure 2A and Table 2A) may conform to multiple forms
of MTp53, whereas the mechanisms underlying MTp53
indirect regulation of metabolism by gain-of-function
(Figures 2B, C and Tables 2B, C) may not. Different types
of MTp53 proteins might have distinct synthetic lethal
partners; therefore, more efforts are required to identify the
particular synthetic lethal relationship between the mediators
involved in MTp53-regulated cancer metabolism and the
specific types of MTp53.

(b). The synthetic lethal partner in a cell type could cause
distinct, even opposite effects in another. PGC-1a illustrates
this point clearly. In ERBB2+ breast cancers, high expression
of PGC-1a predicts poorer prognosis and is correlated with
high expression of glutamine cluster, reflecting the increased
expression of PGC-1a in ERBB2+ breast cancer cells
potentiates glutamine metabolism and facil i tates
proliferation under low glucose and hypoxia (88). On the
contrary, elevated expression of PGC-1a leads to increased
FAO and TCA cycle, decreased glycolysis, and suppression of
tumor growth and metastasis in prostate cancers (89).

(c). There might be no targeted drug for a specific synthetic lethal
partner, or it is tricky to develop it. For example, to our
knowledge, there is no specific inhibitor for PGC-1a
currently, which is activated by decreased binding to R72-
MTp53, contributing to migration, invasion, and metastasis
(38).

(d). Although successes in miRNA-based anti-cancer therapy
have been reported (90), such as the significantly reduced
tumor burden and improved survival rate in Kras;Trp53
mutant NSCLC mice administered combinatorial treatment
of miR-34a and let-7b using NOV340 liposomal
nanoparticles (91), there are still challenges remained to be
overcome in the clinical development of miRNA therapeutics.
Maintaining stability and integrity of miRNA mimics or
antagonists in the circulation, determining suitable dosages,
delivering systems, and administration routes, increasing
specificity and efficient penetration into tumors, as well as
minimizing immunotoxicity and off-target effects all are
issues needed to be concerned (90, 92).

In addition to the existing limitations to research on p53
regulatory networks of cellular metabolism, the links between
p53-mediated cellular metabolism and p53-induced biological
functions remain largely unknown since few studies have
comprehensively deciphered the contribution of p53-regulated
metabolic phenotype to tumor progression or tumor
suppression. Deregulated metabolism has been designated as
an emerging hallmark of cancer in the last decade (93), which
implies uncovering the biological effects of metabolic alterations
induced by p53 and the underlying molecular mechanisms is of
great importance for designing the optimized treatment
strategies. Like those mentioned above, our previous study
reveals that MTp53 facilitates cancer stemness through
attenuating OXPHOS by disturbance of the miR-200c-PCK2
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axis (14), which fully addresses the molecular mechanism
accounting for the connection between MTp53-induced
metabolic alteration and traits of cancer. Notably, restoring
miR-200c expression either in normal mammary epithelial
cells overexpressing p53 mutants or in BLBC cells harboring
endogenous MTp53 not only counteracts MTp53-induced EMT
and stemness, but also recovers the decreased OXPHOS activity,
foretelling the promising future of treating cancers with p53
mutation by modulating the mediators of metabolic
reprogramming indirectly driven by MTp53. Moreover,
metabostemness, describing cellular metabotypes as the driver
to redirect normal cancer cells to less-differentiated cancer stem
cell (CSC) states (94), interprets the significance of connecting
metabolic features to traits of cancer cells, which opens a brand
new way to cure cancer patients by circumventing resistance to
therapies, metastasis, and tumor recurrence caused by CSCs (95)
based on their metabolic dependencies.
SUMMARY

Overall, in addition to activating or repressing target genes
transcriptionally, p53 regulates metabolism-related gene
expression through indirect mechanisms as well, either by
regulating direct transcriptional targets, associating with other
transcription factors, or modulating signaling pathways. The
notion that perturbations of p53 regulatory networks of
cellular metabolism are in relation to tumor initiation and
progression accentuates the crucial role of p53 in shaping
cancer-associated metabolic phenotypes. Besides, TP53, as the
most frequently mutated tumor suppressor gene in cancers,
renders MTp53 promising for treatments of p53 mutated
tumors. The diversity of MTp53 proteins and the unfavorable
non-specific toxicities of MTp53 reactivators or inhibitors to
normal tissues not only make it challenging to develop drugs
directly targeting MTp53, but also impede the entrance of these
drugs into clinical trials. Focusing on the synthetic lethal partners
to MTp53 with metabolism, especially targeting the mediators
involved in MTp53-driven metabolic reprogramming, might
help broaden the synthetic lethal networks of MTp53. This
would provide more opportunities and treatment options for
cancer patients with MTp53, avoid or alleviate the off-target
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effects or severe adverse events, and forge the clinical application
due to the existence of various metabolic and targeted drugs with
FDA approval. Regardless of the substantial literature on p53 and
its regulation of cellular metabolism, the metabolic roles of p53
and the mechanistic relationships between p53 and p53-
mediated metabotypes are still ambiguous. Several limitations
should be taken into consideration when we devote ourselves to
investigating the metabolic networks of p53: (1) cell type-
specificity of p53; (2) the highly diverse nature of MTp53; (3)
differences in p53 GRN between mice and humans. Furthermore,
challenges of research concentrating on p53-mediated indirect
regulation on metabolism, include: (1) different MTp53 proteins
might have distinct synthetic lethal partners; (2) synthetic lethal
partner-exerted effects might be cell type-specific; (3) there might
be no targeted drugs for a specific synthetic lethal partner; and
(4) difficulties in the clinical development of ncRNA-based
therapies, should be considered and kept in mind. Further
research is also desired to unveil the biological effects of p53-
associated metabolic activities, which is particularly essential for
elucidating the contribution of p53-induced metabolic changes
to the onset and malignancy of cancers, providing important
implications for the development of prevention and
treatment strategies.
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