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ABSTRACT

Cell therapy has achieved tremendous success in
regenerative medicine in the past several decades.
However, challenges such as cell loss, death and
immune-rejection after transplantation still persist. Bio-
materials have been designed as carriers to deliver cells
to desirable region for local tissue regeneration; as
barriers to protect transplanted cells from host immune
attack; or as reactors to stimulate host cell recruitment,
homing and differentiation. With the assistance of bio-
materials, improvement in treatment efficiency has been
demonstrated in numerous animal models of degener-
ative diseases compared with routine free cell-based
therapy. Emerging clinical applications of biomaterial
assisted cell therapies further highlight their great pro-
mise in regenerative therapy and even cure for complex
diseases, which have been failed to realize by conven-
tional therapeutic approaches.

KEYWORDS carrier, barrier, reactor, biomaterial-
assisted therapy, regenerative medicine

INTRODUCTION

Cell-based therapy has emerged as a central strategy in
regenerative medicine and tissue engineering. Over the past
few decades, various cell types, including primary cells
(Kulig and Vacanti, 2004; Pepper et al., 2015), stem cells
(Street et al., 2003; Astradsson, 2015; Tomatsu et al., 2015;
Barczyk et al., 2015), and genetically modified cells (Kim
et al., 2001), have been chosen as potential candidates to

treat a myriad of complex diseases (e.g. diabetes (Efrat,
2008; Pouch, 2015), anemia (Orive et al., 2005), hemophilia
(Hortelano and Chang, 2000) and even cancers (Cirone
et al., 2002; Hao et al., 2005)). A common drawback of cell
therapy based on free cell transplantation is the loss of more
than 90% cells within the first few hours after delivery,
implying that only a small portion of the transplanted cells are
eventually engrafted at tissues or organ sites of interest
(Mooney and Vandenburgh, 2008; Hofmann et al., 2005;
Fisher and Strom, 2006). Tissue engineering with the aim of
replacing lost organ functions or promoting body’s natural
repair process provide an alternative approach to treat
complex diseases (Kearney and Mooney, 2013; Chan and
Mooney, 2008). Such therapy depends on the interplay
among biomaterials, cells, and growth factors to provide a
proper microenvironment for treatment of diseased organs or
tissue regeneration. Biomaterials play central role in tissue
engineering for delivering cells or growth factors effectively.
Biomaterials can function as carriers to deliver cells to
desirable area and induce local tissue regeneration; as
barriers to protect transplanted cells or tissues from host
immune attack; or as reactors to stimulate host cell recruit-
ment, homing, and differentiation (Kearney and Mooney,
2013). An ideal biomaterial designed for tissue engineering
should be able to ensure high cell survival rate, appropriate
cell function after transplantation and induce autologous
functional tissue growth in situ, along with its own degener-
ation with the completion of treatment. Besides, compre-
hensive characterizations of biomaterials, varying in
geometrical structure, physical form, chemical properties,
and biocompatibility, should be assessed prior to their
applications. In this review, functions of biomaterials as
carriers, barriers, or reactors during cell-based regenerative
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medicine are discussed respectively to shed light on direc-
tions for future development of optimally functional bioma-
terials in regenerative medicine.

BIOMATERIALS AS CARRIERS

One reason for limited therapeutic efficiency of free cell
transplantation is that many types of cells are anchorage-de-
pendent and subjected to anoikis during or immediately after
transplantation. Therefore, to improve therapeutic effective-
ness, successful delivery of live and functional cells to lesion
sites is crucial for subsequent regeneration. Biomaterials can
be used as carriers to promote tissue regeneration and
accelerate relatively large wound healing by delivering cells to
injured sites and maintaining their viability. Currently, various
biomaterials have been applied to promote tissue regeneration
through different mechanisms by accommodating cells in
three-dimensional (3D) microenvironment (Wang et al., 2010).
As cell carrier, which is usually referred to as scaffold (Langer
and Vacanti, 1993), biomaterials can provide anchoring
ligands for cells, thereby providing proper microenvironment in
which transplanted cells can survive better, migrate more
effectively to desired sites and thus function more efficiently
(Kim et al., 2000; Malafaya et al., 2007). In the following sec-
tion, more detailed examples of transplantable (with surgery on
host) and injectable (minimally invasive strategy) carriers used
in regenerative medicine are reviewed.

Transplantable carriers

Cell carriers such as decellularized organs, pre-gelated
hydrogels, and other artificially fabricated scaffolds are
generally transplanted in host via surgery due to the bulky
size, which renders injection impossible. Both natural and
synthetic polymers have been used as raw scaffold materials
with innate cell binding sites or through surface modification
during or after fabrication. Various cell types (e.g. hepato-
cytes, fibroblasts, and chondrocytes) derived from autolo-
gous or allogeneic origin have been seeded in these carriers,
cultured ex vivo, and transplanted to liver Mooney et al.
(1995), skin Cooper et al. (1991), and cartilage Cao et al.
(1997). These cells could also be genetically modified
ex vivo to overexpress and secrete specific factors. A com-
bination of cells and growth factors could also be carried to
the lesion site by the biomaterials.

Natural scaffolds as carriers

Natural extracellular matrix (ECM) produced by organ decel-
lularization provides ideal carrier for cell transplantation, which
retains almost intact vasculature system and complex archi-
tecture of the original organ. ECM is the major component of
the naturally occurring cellular microenvironment, which is
secreted and remodeled by the resident cells. Major compo-
nents of ECM, regardless of tissue origin, includes proteins (e.
g. collagen, laminin, fibronectin) and polysaccharides (e.g.

hyaluronic acid) (He and Callanan, 2013). These components
contain binding motifs which are specific peptide sequences
interacting with integrin on cell membranes (Giancotti and
Ruoslahti, 1999; Stupack and Cheresh, 2002). Recent studies
revealed that ECM not only serves as substrate for cell
attachment and migration, but also provides binding domain
for growth factors, including fibroblast growth factor (FGF),
vascular endothelial growth factor (VEGF), and hepatic
growth factor (HGF) (Bashkin et al., 1989; Sahni et al., 1998;
Li et al., 2010; Martino and Hubbell, 2010; Martino et al.,
2011). Such characteristics make decellularized ECM suitable
for providing appropriate biophysical and physiological milieu
for loaded cells (He and Callanan, 2013). To date, various
organs have been successfully decellularized, including heart
(Bader et al., 1998; Booth et al., 2002; Kasimir et al., 2003),
liver (Lin et al., 2004), urinary bladder (Rosario et al., 2008;
Freytes et al., 2004; Gilbert et al., 2005), skin (Chen et al.,
2004), lung (Price et al., 2010; Daly et al., 2012), tendon
(Cartmell and Dunn, 2000), blood vessels (Conklin et al.,
2002; Dahl et al., 2003; Uchimura et al., 2003), nerves
(Hudson et al., 2004), skeletal muscle (Borschel, 2004),
ligaments (Woods and Gratzer, 2005), and small intestinal
submucosa (Badylak et al., 1995). Cells reseeded in the
decellularized scaffolds survive in an environment with mimi-
cry to that in vivo, thus recellularized ECM imitating natural
organs could be a promising alternative for organ transplan-
tation and regeneration. Successful trials have been estab-
lished in animal disease models of bladder (Yoo et al., 1998),
skin (Schechner et al. 2003), heart (Ott et al., 2008; Wain-
wright et al., 2010), and lung (Cortiella et al., 2010; Petersen
et al., 2010).

cFigure 1. Transplantable biomaterials as cell carriers.

(A) Perfusion-based decellularization of whole rat hearts

and HE staining at different stages; (B) SEM of cadaveric

and decellularized left ventricular (LV) and right ventricular

(RV) myocardium, myofibers (mf), characteristic weaves

(w), coils (c), struts (s), and dense epicardial fibers (epi)

were retained (Ott et al., 2008); (C) General appearance of

rat liver during decellularization process at different time

points; (D) Ultrastructural characteristics of undifferentiated

MSCs (i) and hepatocyte-like cells (ii) in biomatrix scaffold

using SEM (Ji et al., 2012); (E) Engineered scaffold

containing transplanted cells and growth factors is able to

guide tissue regeneration in situ (Borselli et al., 2011);

(F) Modification of RGD as morphogens on biomaterials

providing cell adhesion ligands to maintain cell viability,

and to activate and induce cell migration out of scaffold;

(G) Viability of endothelial cells (OECs) that migrated out of

scaffolds with no VEGF (blank), VEGF121 or VEGF165 in

scaffolds; (H) Proliferation of cells that migrated out of

scaffolds, normalized cell number (% of initial) (Silva et al.,

2008). [Images are reproduced with the permission from

Ott et al. (2008), Ji et al. (2012), Borselli et al. (2011), and

Silva et al. (2008)].
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Netoff’s group and Taylor’s group realized recellularization
with cardiac or endothelial cells on cardiac ECM produced by
decellularization via perfusion (Ott et al., 2008; Badylak et al.,
2011). The biomimetic tissues could maintain functional con-
traction and be electrically stimulated in vitro for 28 days.
Taylor’s group further optimized the cell seeding method to
obtain more uniform distribution and transplanted the tissue
into recipient rats (Badylak et al., 2011). Rats survived after
the surgery and no immune reaction was observed until
7 days after transplantation, proving the functionality of the
artificial heart in vivo. Similar research had been conducted in
liver (Fig. 1A and 1B), where ECM with intact hepatic vas-
culature system was obtained by decellularization of liver. Ji
et al. seeded mesenchymal stromal cells (MSCs) into the
scaffold, cultured the artificial tissue in vitro in presence of
growth factors to induce MSCs differentiation into hepatic
lineage. The resulting tissue exhibited hepatic ultrastructure,
which was transplanted into mice with liver failure induced by
CCl4. The mice were rescued with liver regeneration thanks to
paracrine factors of MSCs-differentiated hepatocytes (Ji et al.,
2012) (Fig. 1C and 1D).

Synthetic scaffolds as carriers

Engineered scaffolds derived from both natural and synthetic
polymers have been used as cell carriers as well. Cell
binding sites are either modified on surface after scaffold
formation, or naturally exist or supplemented into the scaffold
during fabrication. Synthetic polymers, such as polylactide
(PLA), polyglycolide (PGA), and their copolymer (PLGA), as
well as hydroxyapatite, can be functionalized with serum
proteins (e.g. fibronectin or vitronectin), to provide binding
sites for cell adhesion (Chastain et al., 2006). Cells alone or
with growth factors could be entrapped in such scaffolds,
which are generally large in size, hence requiring surgery for
transplantation.

As an example, genetically engineered MSCs derived
from bone marrow, muscle, and adipose tissue with over-
expressed bone morphogenetic protein (BMP) were deliv-
ered in scaffolds to bone defective models which
demonstrated osteogenic potential (Kofron and Laurencin,
2006; Peterson et al., 2005; Sugiyama et al., 2005). Simi-
larly, transfected cells with overexpressed VEGF have been
delivered by scaffolds to promote angiogenesis, bone for-
mation, as well as vasculature, in different animal models
(Jabbarzadeh et al., 2008; Peng et al., 2002; Blumenthal
et al., 2010). MSCs with intrinsic high expression of VEGF
are also cell sources for transplantation to promote wound
healing (Egana et al., 2009). In other situations, unmodified
cells are delivered along with growth factors to enhance
therapeutic efficiency. Such combinations have been real-
ized for MSC delivery with rhBMP-2 in alginate for bone
regeneration (Simmons et al., 2004), and with transforming
growth factor β1 (TGF-β1) in gelatin scaffolds for cartilage
regeneration (Park et al., 2007). Other than MSCs, cells
derived from embryonic stem cells (ESCs) and induced

pluripotent stem cells (iPSCs) have also been entrapped in
biomaterials and transplanted for disease treatment (Klees
et al., 2008; Elisseeff et al., 2006; Hwang et al., 2008).
Meanwhile, terminally differentiated somatic cells such as
endothelial cells, myoblasts, and fibroblasts, were trans-
planted to exert therapeutic function in vivo (Park et al.,
2007; Koffler et al., 2011).

Ideally, transplanted cells can migrate out from the carri-
ers into lesion areas to perform their function or regulate
local regeneration via direct interaction with the host cells. In
an example for skeletal muscle repair, alginate cryogel-
based scaffold loaded with VEGF, insulin-like growth factor 1
(IGF-1) and myoblasts was transplanted into mice with hind
limb ischemia. Controlled release of VEGF and IGF-1 and
improved myoblast engraftment in injured skeletal muscle
resulted in rapid regeneration and limited fibrosis (Borselli
et al., 2011) (Fig. 1E). In another related work, VEGF along
with endothelial progenitor cells were transplanted, and full
limb perfusion was observed after 40 days of transplantation
(Silva et al., 2008) (Fig. 1F).

Injectable carriers

For patients with end stage diseases, invasive treatment or
operation may be difficult to cope with. Besides, certain tis-
sue, such as intervertebral disc, is not easily accessible for
surgical repair without mechanical damage to its original
structure. Therefore minimally invasive strategy to treat
these special patients or organs/tissues is in high demand.
Currently, one of the most widely used injectable carriers is
hydrogel due to its unique characteristics including the ability
to fit defective cavities of any shape and size, quick gelation
and construction for uniform distribution of transplanted cells,
and high water content to mimic native tissue (Wang et al.,
2010). Injectable hydrogel can gelate in situ via ionic
crosslinking or temperature change. Many successful pre-
clinical and clinical trials including islet (Weber et al., 2007),
cartilage (Elisseeff et al., 2000), liver (Tsang, 2007), cornea
(McLaughlin et al., 2009), nerve (Cheng et al., 2013), and
other organs have demonstrated the feasibility of hydrogel-
based cell therapy. An inherent drawback for hydrogel,
however, is the limited pore size in the polymeric network,
which only allows for diffusion of medium, metabolites, and
nutrients, but hinders migration of transplanted cells out of
the carrier. This renders hydrogel as a better barrier than
carrier. Despite this limitation, hydrogel is still an ideal carrier
system when direct cell-cell interaction between transplanted
cells and host cells is not crucial and transplanted cells
function mainly via paracrine effects.

As alternatives to hydrogel, scaffolds with relatively larger
pores such as cryogel are suitable for cell loading, hence
avoiding cell damage during gelation of hydrogel; and also
providing sufficient space for cell proliferation (Li et al.,
2014). The macro-porous cryogels are mechanically stron-
ger scaffolds with pre-defined size and shape, which enable
automatic and homogeneous cell loading and function as
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injectable cell delivery vehicles. Cells can be primed in vitro
before transplantation into lesion area to facilitate long-term
therapeutic effect, in which ECM accumulation and cell-cell
interactions construct a favorable cellular microenvironment
and therefore avoid immediate exposure of transplanted
cells to ischemic and inflammatory environment in vivo. To
realize this purpose, Koshy et al. developed an injectable,
porous and cell-responsive gelatin cryogel that could with-
stand large strain from forceps compression, without obvious
deformation, making injection easier to handle. Li et al. have
developed poly-ethylene-glycol (PEG) and gelatin micro-
cryogel systems (from 200–800 μm in diameter) that could

be site-directed injected in vivo without significant damage to
loaded fibroblasts or MSCs (Liu et al., 2014) (Fig. 2B and
2C). The cell carriers were applied to treat hind limb ische-
mia in mice. After priming the seeded MSCs in vitro for
2 days, the 3D microscale cellular niches were deposited
with ECM essential for cell survival. The microcryogels also
protected the cells from mechanical damage during injection
and provided cell retention in vivo. Ultimately, only one-tenth
of cells compared to that used in conventional free cell
therapy were required to achieve even better treatment
outcomes as shown by fluorescent imaging of blood perfu-
sion in ischemic hind limb (Li et al., 2014) (Fig. 2E and 2F).
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Figure 2. Injectable cryogels for cell transplantation. (A) Gelation process of cryogels; (B) SEM of highly porous PEG cryogels;

(C) Microscopic images of microhydrogels (fluorescently stained by Nile red for enhanced visualization) and the microcryogels with

different shapes before and after injection (scale bar = 500 μm); (D) Images demonstrating ability of an individual rhodamine-gelatin

cryogel to be compressed between forceps (dashed white line) to large strain, followed by release and resumption of its original

shape (Koshy et al., 2014); (E) Primed 3D microniches that can be injected into mouse hindlimb; (F) Representative photographs of

sham, blank GMs (gelatin microniches), free hMSCs (105), hMSCs (105) within GMs (GMs + hMSCs), and free hMSCs (106) at 7 and

28 days after treatment (Li et al., 2014). (Images are reproduced with the permission from Li et al. (2014) and Koshy et al. (2014)).
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BIOMATERIALS AS BARRIERS

While cases shown above depict the success of biomaterial-
assisted cell delivery to lesion sites for improved therapy,
another big challenge is the immune rejection of trans-
planted allo- or xeno-geneic cells. If cells are transplanted
without protection, host immune system would recognize
these foreign antigens quickly and immediate rejection of
cellular grafts occurs. Hydrogels are mainly used to encap-
sulate cells for immune-isolation, which are either
biodegradable for short-term application (e.g. oral delivery of
genetically engineered E. coli to remove urea (Prakash and
Chang, 1996)) or mechanically stable materials for treatment
of chronic diseases (e.g. diabetes). The highly hydrated
microenvironment of hydrogels enabled embedded cells to
be instructed to differentiate, proliferate, and migrate (Ver-
monden et al., 2008).

Mechanism of immunoisolation

Immune rejection is primarily due to hyperacute rejection
(HAR) where host antibodies target antigens on the surfaces
of the transplanted cells (Krishnamurthy and Gimi, 2011), and
sequentially activate immune response to eliminate those
cells. Without survival at the lesion site, transplanted cells
cannot exert therapeutic functions. With respect to this,
transplanted cells should be protected from surrounding
environment to hinder host immune system’s accessibility to
engrafts. Clinically, immunosuppressant is commonly applied
to prevent immune rejection of transplanted organs or cells in
patients, but long-term usage can render recipients vulnera-
ble to infection, as well as susceptible to tumorigenesis
(Hernandez et al., 2010). Alternatively, cells can be encap-
sulated within a semipermeable polymeric membrane to
eliminate HAR by preventing cell-host contact (van der Windt
et al., 2007). The semipermeable membrane physically per-
mits bi-directional diffusion of small molecules (e.g. oxygen,
carbon dioxide, cellular nutrients and growth factors, cellular
waste products, ions, and therapeutic molecules secreted by
entrapped cells) between host and transplants, while isolates
encapsulated cells from host immune cells (e.g. neutrophils
and macrophages), and prevents recognition of transplanted
cells as foreign objects by antibodies and complements of the
recipient’s immune system (Juarez, 2014) (Fig. 3A). There-
fore, it is not necessary for recipients to use immunosup-
pressant, thus eliminating the severe side effects and
undesired complications (Orive et al., 2003; Hunt and Grover,
2010). Materials providing protection to cells are desirable in
immunoisolated therapy, in which xenograft cells or tissues
are encapsulated and isolated from host immune system to
ensure cell survival and clinical outcomes. To serve this
purpose, non-adhesive microporous scaffolds or membranes
fabricated from naturally derived polymers (e.g. alginate (De
Vos et al., 1997; Omer et al., 2005; Lacy et al., 1991), and
agarose (Schneider et al., 2001; Wong and Chang, 1991))
are desirable. These biomaterials are designed to isolate

surrounding tissues, thereby making transplanted cells
inaccessible to host immune system and increasing the
probability of xenograft survival. By enclosing a transplant
with a semipermeable barrier, an ‘artificial immunoprivileged
site’ could be created to shield engraft from destruction of
host immune system (Paul et al., 2009; Antosiak-Iwanska
et al., 2009). Such protective strategy for cells/tissues
transplantation has been demonstrated efficient in patholog-
ical reversal of many diseases, such as central nervous
system diseases, diabetes mellitus, hepatic diseases, amy-
otrophic lateral sclerosis, hemophilia, hypothyroidism, and
cardiovascular diseases (Zhang et al., 2008; Grandoso et al.,
2007; Colton, 1995; Desai et al., 2000; Sellitto et al., 1995).
As one of the excellent examples of biomaterials functioning
as barrier, porcine islets encapsulated in non-degradable
alginate were delivered into small or large non-human pri-
mates with diabetes to maintain normoglycaemia for as long
as 2.4 years (O’Sullivan et al., 2011).

Intracorporeal barriers

Encapsulation techniques are typically classified as macro-
capsulation (usually as flat-sheet or hollow-core fibers) and
microencapsulation (usually as small spherical vehicles or
conformally coated cells/aggregates). Whichever technique
used, the basic principle is to produce cell-laden droplets
with controlled size, followed by stabilization of the droplets
via interfacial processing and subsequent generation of solid
capsule membrane surrounding the droplets. A central
principle for choosing biomaterials for encapsulation is that
crosslinking agents should be non-cytotoxic before and after
gelation. Immunoisolation devices used in pre- and clinical
trials can be classified as intracorporeal cell/tissue trans-
plantation (e.g. islets transplantation) and extracorporeal
functional assisted devices (e.g. bioartifical liver).

Micro-encapsulation strategies

Microcapsules, characterized by dimensions in the order of
hundreds of microns or less, are spherical in shape to take
advantage of the optimal surface-to-volume ratio for
improved protein and nutrient diffusion which can maintain
good cell viability. The microscale size makes microcapsule
ideal barriers for transplantation into microvascularized and
deep tissue sites. Natural polymers derived from non-animal
sources or synthetic polymers that do not contain cell binding
sites are superior materials for use as barriers. Cells are
generally encapsulated within nanoporous biodegradable
hydrogels, such as hyaluronic acid, fibrin, or gelatin, or
nondegradable hydrogels such as alginate, or PEG, which
regulate cross-membrane diffusion of nutrients, oxygen,
waste and therapeutic agents produced by the encapsulated
cells (Nicodemus and Bryant, 2008). With great success in
short or intermediate term cell therapy, alginate is the most
commonly used polymer matrix to generate cell-laden
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microcapsules (Zimmermann et al., 2007). Typically, cells
are suspended in alginate pre-solution, which is extruded
through a droplet generator into a calcium chloride bath,
leading to formation of microcapsules (Fig. 3C). Efforts have

been made to improve alginate’s mechanical stability, such
as layering poly-L-lysine (Lim and Sun, 1980), poly-l-orin-
thine 9 (De Vos et al., 1993), and poly(methylene-co-gua-
nide) on surface of the microcapsules (Calafiore et al., 1999;

Semipermeable
membraneAntibodies

Oxygen

Glucose

Nutrients

lnsulin

Macrophages

Increase in the diffusion of oxygen and nutrients

Blood
flow

Intravascular
chamber

Microcapsules

Extravascular
macrodevices

Conformal
coating

Oxygen

Toxins

Plasma
blood lg = Immunoglobulins

lg = Immunoglobulins

lg

lg

Hepatocytes

Hepatocytes

Hepatocytes

Plasma

Plasma

Metabolites

Nutrients

Membrane

A B

D

P

Discontinuous (aqueous) phase: Qd

cells in SAP solution

Continuous (oil) phase: Qc

Powdered salts
dispersed in mineral oil

750 μm

Orifice
250 μm Gelation

Droplet
formation

C
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Wang et al., 1997), and control homogeneity of its porosity
using multilayered poly-electrolytes (Krol et al., 2006; Weber
et al., 2008).

Another method to form microencapsulation is conformal
coating of cells, where a thin coating covered on engrafted
cells or cell aggregates could reduce diffusion rate of
molecular between transplants and host, hence a prolonged
graft response to host is achieved (Krishnamurthy and Gimi,
2011). Layer-by-layer coating of poly-electrolytes enables
precise control of nanometer thickness of the coating around
the engraft. For example, Wyman et al. conformally coated
pancreatic islets with an oil-water bilayer where high density
chlorinated hydrocarbon oil was used. Islets floated at the
interface in-between water and oil, since islets were heavier
than water but lighter than oil. When oil was withdrawn, islets
would be entrained in a thin layer of oil suspended on the
aqueous layer. The aqueous layer contained photo-poly-
merizable PEG-diacrylate mixed with eosin that worked as
photo-initiator, which was then crosslinked to form a uniform
PEG layer about 50 μm thick outside the islets (Wyman
et al., 2007).

Though poly-electrolytes have been widely used in con-
formal coating, lack of well-controlled porous properties still
limit their application in short and intermediate term cell
therapy, because any failure leading to host antibody trans-
mit would damage the immunoprotective function of the
entrapped cells. Thus nanofabricated membranes with uni-
form and reproducible porosity are preferable for
immunoisolation, especially in long-term application. Various
nanoporous membranes, with pore sizes ranging from 10 nm
to 55 nm, have been developed to improve microencapsu-
lation (Desai et al., 1999; Kumar et al., 1999; d Graaff et al.,
2003) (Fig. 3B). However, simply reducing pore size to block
antibodies, especially IgG seems to be in conflict with the
required sufficient perfusion of essential growth factors;
hence strategies for modifying nano-pores with capacity to
deactivate immunoglobulin may be important design factors
for consideration (Dionne et al., 1996; Iwata et al., 1995).

Macro-encapsulation strategies

For macro-encapsulation, capsules with dimensions in the
order of 0.5–1.5 mm in diameter and several centimeters in
length are common. With increase in volume, more cells can
be loaded, which saves on the number of capsules corre-
spondingly. Capsules for macro-encapsulation are commonly
covered with thick membrane that is mechanically stable but at
the same time limits nutrient/waste diffusion. Immobilizing the
capsules around vasculatures can ease the mass-transfer
problem, but close contact with circulating blood will subse-
quently induce enhanced response from the host. Intravascular
devices for nutrient supply to the macro-encapsulated trans-
plants were applied in early days, but were gradually replaced
due to thrombosis after surgery (de Vos and Marchetti, 2002).
Extravascular devices, classified as extravascular macrode-
vices and extravascular microcapsules, rely on surrounding

blood vessels (Uludag et al., 2000) and avoid thrombosis risk.
Extravascular macrodevices are designed as macrocapsules,
planner membranes or hollow fibers, all of which have the
advantages of encapsulating large number of cells and the
versatility of cell retrieval from implantation site in case of post-
operative complications. Due to the small surface-to-volume
ratio and inefficient oxygen and nutrient diffusion, cell necrosis
usually manifests. Besides, these devices have been reported
to yield poor mechanical property and biocompatibility (Nafea
et al., 2011). Extravascular microcapsules, on the other hand,
generally refer to devices with diameters less than 1 mm with
small number of cells encapsulated. Such devices circumvent
drawbacks of extravascular macrodevices, but significantly
lower the possibility of retrieval after usage (Kizilel et al., 2005).

Extracorporeal barriers

Extracorporeal function-assisted devices, such as artificial
liver and pancreas, are large medical systems that provide
short-term assistance in function compensation of a partic-
ular organ. They facilitate regular exchange and supplement
of bioactive factors for cell functional maintenance. The
extracorporeal devices are usually connected to recipients’
circulation system, which transmit functional factors into the
host blood stream without direct interaction. There are two
types of extracorporeal devices for temporary support: arti-
ficial and bioartificial support devices. Artificial support sys-
tems essentially use non-living components to remove the
toxins accumulated in blood stream. Bioartificial support
devices incorporate biologically living components (e.g.
hepatocytes or islets) to provide biotransformative or syn-
thetic functions. For example, artificial liver devices essen-
tially use non-living components to remove the toxins
accumulated due to liver failure, and several systems have
been approved by Food and Drug Administration (FDA) and
are Council of Europe (CE) labeled (e.g. conforms with
health and safety standards of the European Union).
Meanwhile, bio-artificial liver devices contain a cell-housing
bioreactor, whose role is to replace the primary liver func-
tions (i.e. oxidative detoxification, biotransformation, excre-
tion, and synthesis) (Carpentier et al., 2009). Four types of
bioartificial liver devices are currently under investigation,
which are either based on hollow fiber cartridges or cham-
bers (i.e. ELAD, HepatAssist, MELS), monolayer cultures, or
perfused matrices (i.e. BLSS, AMC-BAL) (David et al., 2004;
Khalil et al., 2001) (Fig. 3D–F).

All the above mentioned efforts were made to direct the
fate of transplanted cells or host cells that take part in tissue
remodeling and rebuilding on a basic recognition that
immune system was regarded as a negative regulator of cell
functionalities. However, recent trials shown that acute
immune response partially accelerate tissue regeneration via
active modulation, such as promotion of vascularization, as
tested in a mouse model (Kyriakides et al., 1999). While a
chronic foreign body response should be avoided to prevent
impedance of tissue regeneration by inflammation and

Biomaterial-assisted regenerative medicine REVIEW

© The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn 645

P
ro
te
in

&
C
e
ll



fibrosis (characteristics of chronic foreign body response), it
is suggested that modulation rather than avoidance of
immune response is more desirable for tissue remodeling,
which should be taken into consideration for developing
immunoisolation strategies.

BIOMATERIALS AS REACTORS

Classic biomaterials (e.g. long-lasting metals, ceramics, and
polymer composites) have been successfully applied in
clinic to compensate for loss of mechanical functions in
injured tissues such as teeth, hips, knees, heart valves, and
intervertebral discs. But they rarely modulate the host to
repair and regenerate neotissues (Chan and Mooney, 2008).
The limitation motivated the development of functional bio-
materials capable of stimulating the innate regenerative
capacity of the treated tissues (Balasundaram and Webster,
2007). When sufficient cells exist endogenously for repair-
ment or regeneration, biomaterials can play an inductive role
by attracting these endogenous cells and directing them to
commit to differentiation and regeneration. Stem cells and
progenitor cells with tremendous proliferative and regener-
ative capacity are thus the main focus of research for cell
recruitment and induction by biomaterials in vivo. Biomate-
rials provide a framework for cell attachment, ECM deposi-
tion and subsequent differentiation into a designated lineage
(Lutolf et al., 2009). Ideally, the template scaffolds could
degenerate accompanied by the invasion and proliferation of
host cells. As a result, new tissue is formed in absence of
xenograft and function normally as the native counterpart.

Growth factor-free biomaterials as reactors

Scaffolds derived from purified ECM components (e.g. col-
lagen, hyaluronic acid (HA), and fibrin) can be potentially less
immunogenic with similar biochemical and structural moieties
to natural ECM (Matthews et al., 2002). Promising thera-
peutic results have been shown by purified ECM component
in tissue repair (Hubbell, 2003). Collagen is among the most
widely used biomaterials in this category, and can be derived
from animal tissues (e.g. skin and tendon), as well as human
tissues (e.g. placenta). It can be reconstituted into solid gels
via pH or temperature alterations. Cell migration can occur in
collagen scaffold with a relatively large mesh size (e.g. col-
lagen sponge) (Wolf et al., 2003) or through matrix degra-
dation by MMPs (Hinz et al., 2002). Collagen scaffolds have
been used clinically for bone (Uludag et al., 2000) and car-
tilage (Okamoto et al., 2003) repair (Fig. 4). Combinational
use of chondroitin sulfate and collagen have been applied in
skin (Butler et al., 1999) and peripheral nerves (Chamberlain
et al., 2000) repair. Fibrin, a specialized ECM protein that
participates in spontaneous tissue repair, has been applied in
sutureless fixation of skin grafts (Currie et al., 2001). Other
than natural ECM components, synthetic materials have also
been applied. In a successful experiment of bone-tissue
engineering, biodegradable polyurethane scaffold was

transplanted to non-union fractures, which recruited MSCs
and osteo-progenitor cells to heal the wound (Brown et al.,
2011).

Growth factor-loaded biomaterials as reactors

With the advance in research on biochemical factors that
control and direct cell migration, differentiation, and prolifer-
ation, biomaterials designed to incorporate and enable
controlled release of bioactive factors after transplantation
provide local induction of cellular behaviors (Kearney and
Mooney, 2013). Cells respond to a variety of stimuli present
in the ECM, which compose of fibrous proteins, proteogly-
cans, and glycoproteins, and act as a main regulatory and
structural component of tissues in vivo. Biomaterials incor-
porating bioactive factors (e.g. growth factors) have been
extensively investigated in tissue engineering (Lutolf and
Hubbell, 2005). In order to recruit endogenous cells for
enhanced tissue regeneration and repair, growth factors,
such as TGF-β, fibroblast growth factor (FGF), VEGF, epi-
dermal growth factor (EGF), and platelet derived growth
factor (PDGF), have been further modified to be controlled
release from biomaterials (Metcalfe and Ferguson, 2007).
For biomaterials lacking cell and growth factor binding sites
(e.g. alginate, poly(bis(pcarboxy) methane anhydride), poly
(propylene fumarate)), RGD peptides have been supple-
mented to incorporate growth factors such as rhBMP-2
(Kolambkar et al., 2011) and osteogenic thrombin peptide
(Hedberg et al., 2005).

Since decellularized ECM could maintain relevant intact
structures and biochemical compositions of natural tissue,
they provide ideal reactors to facilitate tissue regeneration.
Several decellularized ECMs have been commercialized to
repair soft tissues, such as the FDA approved GraftJacket®
(ECM derived from human dermis by Wright Medical Tech-
nology (Valentin et al., 2006)) and Medeor® Matrix (ECM
derived from porcine dermis). However, immunogenicity,
disease transmission, and wide variability are all potential
drawbacks for decellularized ECM products to be applied as
a reliable therapeutic device.

Due to tremendous proliferative and regenerative capac-
ity, stem cells and progenitor cells, which reside in synovium,
bone marrow, adipose, and vasculature, are expected to be
the main cell types recruited and induced by biomaterials
in vivo. For instance, MSCs have been recruited for regen-
erating defect cartilage (Fig. 4E–G). Since TGF-β is known
with the ability to recruit MSCs and stimulate their chondro-
genic differentiation (Noth et al., 2008), biomaterials (e.g.
collagen and polycaprolacton) enabling control release of
TGF-β have been used to generate cartilage in different
animal models and patients (Noth et al., 2008; Gille et al.,
2010; Lee et al., 2010; Huang et al., 2002). In a clinical trial,
a complex composed of fibrin and collagen for controlled
release of TGF-β was transplanted into patient with focal
cartilage defects in the knee, which were completely filled in
a 2 years follow-up study (Gille et al., 2010).
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Other than stem cells and progenitor cells, adult cells (e.g.
fibroblast and smooth muscle cells) could also be preferen-
tially enriched to the damage sites (e.g. burns, trauma, sur-
gery or diabetic foot ulcers) via growth factors, such as
PDGF, FGF, VEGF, and EGF (Lynch et al., 1987). For
example, rhPDGF was entrapped in methylcellulose gel and
transplanted into patient with diabetic foot ulcers, which
could stimulate fibroblast recruitment and ECM deposition
(Lynch et al., 1987). In another example, Ayvazyan et al.
impregnated collagen-gelatin scaffold with bFGF to promote
palatal mucosa wound healing in dogs (Ayvazyan et al.,
2011). Two weeks after transplantation, the number and area
of newly formed capillaries were significantly higher in the
group treated with bFGF-loaded scaffolds than blank control.
For hind limb ischemia, vascularization is vital to maintain
normal blood supply. Thymosin beta 4 (CCSS-eTβ4), an
angiogenic factor, was reported to promote cutaneous

wound healing, which was entrapped into collagen-chitosan
sponge scaffold and then transplanted into rats with hind
limb ischemia. Twelve days after transplantation, significant
increases in CD31-positive endothelial cells was observed
(Ti et al., 2014). In other work for treatment of excisional
wound, Greenhalgh (2013) and Liem et al. (2013) modified
collagen scaffold with low concentration of nicotine at wound
healing sites produced by artificial dermis at mouse back
skin. Fourteen days later, neoepithelium length in nicotine
transplantation group was significantly increased compared
to that in nicotine-free groups, which indicated recruitment of
endothelial cells. Pro-angiogenesis can also be a treatment
strategy for cardiovascular disease (CVD). For example,
biomaterials coated with cyclic RGD peptides or CD34
antibodies, which recognize circulating endothelial progeni-
tor cells (EPCs), were transplanted into CVD porcine models
to act as a pro-homing substrate for in situ EPCs capture
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Figure 4. Biomaterials applied as reactors for bone, skin, and cartilage regeneration. (A) Histological sections of PPF/PLGA

scaffolds, polyester poly(propylene fumarate) (PPF). Left, bone grown into and around PPF/PLGA scaffold. Right, bone did not grow

into scaffold but grow along the external surface of the scaffold; (B) Histological scoring of longitudinal sections for bone growth

around the outside of the implant (guided growth) in different scaffolds (Hedberg et al., 2005); (C and D) SMA-FP reduced in vivo

wound contraction, smooth muscle actin (SMA); fusion peptide (FP) (Hinz et al. 2002). (D) Left, SMA-FP transplantation. Right, FP

transplantation; (E–G) TGFβ3-collagen hydrogel promoted regeneration of the rabbit synovial joint. (E) Photograph of artificial and

native synovial joint; (F) Surgical transplantation; (G) (i) Bio-scaffold prior to implantation, (ii) TGFβ3-free, (iii) TGFβ3-infused bio-

scaffold after implantation for 4 months, and (iv) native cartilage; (H–K) TGFβ1 coated poly(caprolactone) (PCL) scaffold recruited

mesenchymal cells for chondrogenesis (Lee et al. 2010). (Images are reproduced with the permission from Hinz et al. (2002),

Hedberg et al. (2005) and Lee et al. (2010)).
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from blood streams. The captured EPCs could efficiently
proliferate and maintain proper haemostasis to minimize the
risk of restenosis (Avci-Adali et al., 2008).

CLINICAL APPLICATIONS OF BIOMATERIAL-
ASSISTED REGENERATIVE MEDICINE

In spite of tremendous progress in basic research on
regenerative medicine over the past decades, there are lim-
ited clinically approved therapeutics based on tissue engi-
neering principles (Webber et al., 2015). One concern raised
in translational medicine is to what extent these laboratory
studies on theoretical modeling, in vitro characterization or
in vivo assessment based on animal models, can be pre-
dictive of performance and therapeutic efficacy in human
(Meijer et al., 2008; Agata et al., 2010). Some of the greatest
advances in applying regenerative medicine to the clinic are
exemplified in the area of skin and bone regeneration as well
as diabetes treatment by using fibroblasts, MSC, and islets
respectively (Yamada et al., 2004; Marston et al., 2003).
Biomaterials applied in these clinical trials play a multifaceted
role by functioning as carrier, barrier or reactor. The following
part will introduce clinical applications and ongoing clinical
trials of biomaterial-assisted regenerative medicine for skin
regeneration, bone regeneration and diabetes treatment.

Epicel® (commercialized by Genzyme) is among the
earliest cell-based skin regenerative products used in clinic,
which comprises thin autologous keratinocytes sheets (2–3
cell layers thick) cultured on a xenogeneic mouse feeder
layer. A layer of irradiated immortal mouse fibroblasts pro-
vides autologous cells of patients with support matrix for cell
attachment and growth (Bello et al., 2001). In another pro-
duct for skin regeneration, Dermagraft® (commercialized by
Organogenesis, Inc), neonatal fibroblasts are seeded onto a
bioabsorbable polyglactin scaffold which showed great pro-
mise in healing of diabetic foot ulcers (Marston et al., 2003).
An alternative FDA-approved product for treating both
venous leg ulcers and diabetic foot ulcers is Apligraf®
(commercialized by Organogenesis, Inc). It consists of a
two-layered construct with a layer of neonatal karitinocytes
seeded on a second layer of collagen matrix containing
neonatal fibroblasts (Fishman et al., 2013). To facilitate the
manufacture, standardization, storage, and transportation as
well as regulatory approval, off-the-shelf acellular scaffold-
based regenerative strategy show their advantages as
exemplified by INTEGRA® Dermal Regeneration Template
(commercialized by Integra Life Sciences, Inc). This scaffold
has two layers: a lay of cross-linked matrix consisting of
bovine type-1 collagen and another layer of silicone coated
with shark chondroitin-6-sulfate. The collagen layer is
intended for endogenous cells recruitment to regenerate
functional tissue; and the silicone layer is designed to mimic
a synthetic dermis to prevent the wound bed from infection,
while reducing heat and moisture loss at the same time
(Webber et al., 2015).

A clinical study in bone tissue engineering published in
2004 (Yamada et al., 2004) showed improved efficiency of
tissue-engineered bone regeneration using MSCs and pla-
telet-rich plasma (PRP). The authors first confirmed feasi-
bility of the treatment on a dog mandible model before
translating the tissue-engineered bone into clinical applica-
tion, during which three patients with onlay plasty in the
posterior maxilla or mandible were transplanted with bone
grafts and showed good plasticity several months later. To
further confirm bone regeneration after engrafts transplan-
tation, another study was conducted by Asahinaet et al.
(Kagami et al., 2011). In this study, autologous BMSCs
together with scaffolds comprising of platelet-rich plasma gel
and beta-tricalcium phosphate (β-TCP) were transplanted
into patients with severe atrophy of alveolar bone. A 2-year
observation showed bone regeneration in all patients,
though significant variations between individual were
observed. No side effect or related complication was repor-
ted, which may imply the relative safety of alveolar bone
tissue engineering with the use of autologous BMSCs.

As for type 1 diabetes treatment, there have been five
phase I/II clinical trials registered at ClinicalTrials.gov to date,
all of which are conducting around the world via encapsu-
lated allogeneic islet transplantation (Yang and Yoon, 2015).
In one study sponsored by Novocell, 12 diabetic patients
were enrolled in phase I/II clinical trials in USA and subjected
to PEG-encapsulated islets transplantation subcutaneously.
Meanwhile, Academisch Ziekenhuis van de Vrije Universiteit,
Brussels, sponsored two registered phase II clinical trials in
Belgium, both of which are currently recruiting volunteers.
One of the trials was designed to transplant alginate encap-
sulated human islets intraperitoneally, and the other one was
to explore potential implantation sites (i.e. peritoneum,
omentum, and brachioradialis muscles), for encapsulated
islet transplantation. The fourth clinical trial was registered by
Beta-O2 Technologies in Sweden which was designed to
explore the safety and efficacy of macroencapsulated human
islet transplantation using bioartificial pancreas. The fifth
phase I clinical trial launched by Cliniques in Belgium was
reported but with no substantial result so far. Besides regis-
tered clinical trials, there was also a report on nonregistered
clinical trial sponsored by Living Cell Technologies in Russia
in 2007 on neonatal insulin-producing porcine pancreatic
islets encapsulated within alginate/poly-L-ornithine/alginate
(commercially known as DIABECELL®) (Dufrane and Gia-
nello, 2012). Seven insulin-dependent diabetic patients
received between one to three implants of DIABECELL®
(5000 and 10,000 IEQ/kg). None showed marked adverse
events until 96 weeks after transplantation and even two of
them became insulin independent for up to 32 weeks (Scharp
and Marchetti, 2014). Following this success, another three
clinical trials were launched in New Zealand and Argentina,
all of which were sponsored by Living Cell Technologies, but
were similarly without official registration thus far (Yang and
Yoon, 2015).

REVIEW Chunxiao Qi et al.

648 © The Author(s) 2015. This article is published with open access at Springerlink.com and journal.hep.com.cn

P
ro
te
in

&
C
e
ll



In addition to demonstrating efficacy on clinical trials as
technology advances, clinical translation of cell-based
regenerative therapy must also obtain approval from regu-
latory agency for safety with acceptable risk of side-effects.
Safety concerns such as teratoma formation, immuno-
genicity, eventual form and tissue sites and biocompatibility
of functional materials usually hinder the entire translational
procedure and hence require special attentions. Taking the
interspecies variability into consideration, immune system in
rodents could not fully reproduce the immune response to an
implanted construct in human, due to the differences
between mouse and human immunology. Emphasis on the
safety issue, though not always the first consideration for
developing new technologies in laboratory, is nevertheless
critical when developing new therapies aimed at clinical
applications (Webber et al., 2015). Further efforts are
expected in answer to the challenges in front of translational
medicine, to develop time- and cost-intensive processes for
the widespread clinical applications. Making guidelines and
consensus for transplantation of biomaterial-assisted engraft
via allogeneic, xenogeneic or autologous stem cell-derived
source is another issue in translating cell-based therapy.
Ongoing clinical studies are expected to reveal the safety
and efficacy of biomaterial-assisted regenerative medicine in
the next few years, although much more effort is required for
the ultimate clinical translation.

CONCLUSION AND FUTURE PERSPECTIVE

Great advancements have been made in biomaterial assis-
ted regenerative medicine in the past two decades, and the
number of patients benefiting from this promising therapeutic
strategy has also been increased. Multifunctional roles of
biomaterials to improve cell retention, survival, and func-
tionality during cell therapy are systematically reviewed here,
mainly from three aspects: (1) biomaterials as cell carriers for
efficient and targeted cell delivery to therapeutic sites; (2)
biomaterials as semipermeable barriers to protect trans-
planted cells from host immune system; and (3) biomaterials
as cell reactors to activate and recruit host cells for regen-
eration. Recent progress, clinical applications and emerging
trends in these three aspects have also been summarized,
which highlight great potentials of future biomaterial devel-
opment with integration of multi-functionalities. Despite the
tremendous improvement in efficiency and efficacy of bio-
materials-assisted regenerative medicine, underlying thera-
peutic mechanisms have not been clearly understood, which
renders safety a main concern for large-scale clinical appli-
cation. Future endeavors can develop injectable biomaterial
assisted cell therapy for minimally invasive treatment, and
minimize cell damage during the entire procedure (e.g.
gelation, injection, and retention), hence fully realize the
synergistic effects of biomaterials for cell delivery, protection,
and induction. We believe that deeper explorations in the
mechanism will potentiate further development in regenera-
tive medicine.
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