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Abstract

Background: Stochastic simulation of reaction-diffusion systems presents great challenges for spatiotemporal
biological modeling and simulation. One widely used framework for stochastic simulation of reaction-diffusion systems
is reaction diffusion master equation (RDME). Previous studies have discovered that for the RDME, when discretization
size approaches zero, reaction time for bimolecular reactions in high dimensional domains tends to infinity.

Results: In this paper, we demonstrate that in the 1D domain, highly nonlinear reaction dynamics given by Hill
function may also have dramatic change when discretization size is smaller than a critical value. Moreover, we discuss
methods to avoid this problem: smoothing over space, fixed length smoothing over space and a hybrid method.

Conclusion: Our analysis reveals that the switch-like Hill dynamics reduces to a linear function of discretization size
when the discretization size is small enough. The three proposed methods could correctly (under certain precision)
simulate Hill function dynamics in the microscopic RDME system.

Keywords: Reaction diffusion master equation (RDME), Hill function, Stochastic simulation, Hybrid method

Background
Cell reproduction requires elaborate spatial and temporal
coordination of crucial events, such as DNA replication,
chromosome segregation, and cytokinesis. In cells, pro-
tein species are well organized and regulated throughout
their life cycles. Theoretical biologists have been using
classic chemical reaction rate laws with deterministic
ordinary differential equations (ODEs) and partial differ-
ential equations (PDEs) to model molecular concentration
dynamics in spatiotemporal biological processes. How-
ever, wet-lab experiments in single cell resolution demon-
strate that biological data present considerable variations
from cell to cell. The variations arise from the fact that
cells are so small that there exist only one or two copies
of genes, tens of mRNA molecules and hundreds or
thousands of protein molecules [1–3]. At this scale, the
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traditional way of modeling molecule “concentration” is
not applicable. Noise in molecule populations cannot be
neglected, as noisemay play a significant role in the overall
dynamics inside a cell. Therefore, to accurately model the
cell cycle mechanism, discrete and stochastic modeling
and simulation should be applied.
A convenient strategy to build a stochastic biochem-

ical model is to break a deterministic model into a list
of chemical reactions and simulate them with Gillespie’s
stochastic simulation algorithm (SSA) [4, 5]. One of the
major difficulties in this conversion strategy lies in the
propensity calculation of reactions. Gillespie’s SSA is well
defined for mass action rate laws. However, in many bio-
chemical models, in addition to mass action rate laws,
other phenomenological reaction rate laws are often used.
For example, the Michaelis-Menten equation [6] and Hill
functions [7] are widely used in biological models to
model the fast response to signals in regulatory control
systems. Although theoretically these phenomenological
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rate laws may be generated from elementary reactions
with mass action rate laws, in practice the detailed mech-
anisms behind these phenomenological rate laws are not
well known and may not be very important. Stochastic
modeling and simulation with these phenomenological
rate laws are sometimes inevitable.
In recent years, stochastic modeling and simulation for

spatiotemporal biological systems, particularly reaction-
diffusion systems, have captured more and more atten-
tion. Several algorithms and tools [8–11] to model
and simulate reaction-diffusion systems have been pro-
posed. These methods can be categorized into two
theoretical frameworks: the spatially and temporally con-
tinuous Smoluchowski modeling framework [12] and
the compartment-based modeling framework, formu-
lated as the spatially discretized reaction-diffusion master
equation (RDME) [13, 14]. The Smoluchowski frame-
work [12, 15, 16] stores the exact position of each
molecule and is mathematically fundamental, whereas
the RDME is coarse-grained and better suited for large
scale simulations [17]. In RDME, the spatial domain is
discretized into small compartments. Within each com-
partment, molecules are considered “well-stirred”. Under
the RDME scheme, diffusion is modeled as continuous
time random walk on mesh compartments, while reac-
tions fire only among molecules in the same compart-
ment. Stochastic dynamics of the chemical reactions in
each compartment is governed by the chemical master
equation (CME) [18, 19]. Yet, the CME is computationally
impossible to solve for most practical problems. Stochas-
tic simulation methods were then applied to generate
realizations of system trajectories. It has been well estab-
lished that the discretization compartment size for RDME
should be smaller than the mean free path of the reac-
tions for the compartment to be considered as well-stirred
[20]. In addition, it has been proved that the RDME of
bi-molecular reactions in 3D domain becomes incorrect
and yields unphysical results when the discretization size
approaches microscopic scale [21–23].
In this paper, we focus on the stochastic modeling of

reaction-diffusion systems with reaction rate laws given
by Hill functions. In the Results section, we present our
numerical analysis on a toy model of reaction-diffusion
system with Hill function dynamics. We will show that
the RDME framework of the Hill function dynamics has
serious simulation defects when the discretization size
approach microscopic limit: When the discretization size
is small enough, the typical switching pattern of Hill
dynamics becomes linear to the input signal (and the
discretization size). Later, we propose potential solutions
for the discretization of the reaction-diffusion systems
with Hill function rate laws. Finally, we conclude this
paper with a discussion on RDME for general nonlinear
functions and the hybrid method.

Caulobacter modeling
Caulobacter crescentus captures great interest in the study
of asymmetric cell division. When a Caulobacter cell
divides, it produces two functionally and morphologically
distinct daughter cells. The asymmetric cell division of
Caulobacter crescentus requires elaborate temporal and
spatial regulations [24–27]. In literature [28–30], four
essential “master regulators” of the Caulobacter cell cycle,
DnaA, GcrA, CtrA and CcrM, have been identified. These
master transcription regulators determine the dynamics
of around 200 genes. They oscillate temporally to drive
the dynamics of cell cycle. Among them, the molecu-
lar mechanisms governing CtrA functions have been well
studied. The simulation we are concerned with in this
paper is also related to this CtrAmodule. So we give a brief
introduction to it.
In swarmer cells, a two-component phosphorelay sys-

tem (with both CckA and ChpT) phosphorylates the CtrA.
Then the chromosomal origin of replication (Cori) is
bound by the phosphorylated CtrA (CtrAp) to inhibit
the initiation of chromosome replication [31]. Later dur-
ing the swarmer-to-stalked transition period, CtrAp gets
dephosphorylated and degraded, allowing the initiation of
chromosome replication again. Thus the CtrA has impor-
tant impact on the chromosome replication in our model,
and should be well regulated.
The regulation of CtrA is achieved by the histidine

kinase CckA through the following pathway. An ATP-
dependent protease, ClpXP, degrades CtrA [32, 33] and
is localized to the stalk pole by CpdR. As the nascent
stalked cell progresses through the cell cycle, CpdR is
phosphorylated by CckA/ChpT, losing it polar localiza-
tion, and consequently losing its ability to recruit ClpXP
protease for CtrA degradation. In addition, CtrA is reac-
tivated through CckA/ChpT phosphorylation [34]. More-
over, the regulatory network of the histidine kinases CckA
is influenced by a non-canonical histidine kinase, DivL
[35]. DivL promotes CckA kinase, which then phospho-
rylates and activates CtrA in the swarmer cell. During
the swarmer-to-stalked transition period, DivL activity is
down-regulated, thereby inhibiting CckA kinase activity.
As a result, dephosphorylation and degradation of CtrA
trigger the initiation of chromosome replication.
In order to study the regulatory network in Caulobacter

crescentus, Subramanian et al. [26, 27] developed a deter-
ministic model with six major regulatory proteins. The
deterministic model provides robust switching between
swarmer and stalked states. Figure 1 (left) demonstrates
the total population change during the Caulobacter cres-
centus cell cycle with this deterministic model. In the
swarmer stage (from t = 0 to 30 min), the CtrA is
phosphorylated at a high population level, which inhibits
the initiation of chromosome replication. During the
swarmer-to-stalked transition period (from t = 30 to
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Fig. 1 The population oscillation of CtrAp during Caulobacter crescentus cell cycle. Left figure shows the simulation result of deterministic model and
the right figure shows the stochastic simulation result. In the swamer stage (t = 0 ∼ 30min), the CtrA is phosphorylated and at high population
level state, which inhibits the initiation of chromosome replication. During swarmer-to-stalked transition (t = 30 ∼ 50min), the CtrAp population
quickly switch to low state, allowing the consequent initiation of chromosome replication in the stalked stage

50 min), the CtrAp population quickly drops to a low
level, allowing the consequent initiation of chromosome
replication in the stalked stage.
In stochastic simulation of the spatiotemporal model of

this regulatory network, the phosphorylated CtrA (CtrAp)
population switch from a high level in swarmer stage to
a low level in stalked stage is not as sharp as expected,
shown in Fig. 1 (right). On the other hand, the DivL pop-
ulation level from the stochastic simulation seems similar
to that from the deterministic simulation. A simple analy-
sis suggests that the Hill function dynamics, whichmodels
the up regulation of CckA kinase activity by DivL, might
be the culprit. Further investigation leads to the discovery
of the Hill function limitation at small discretization sizes,
as analyzed in the next section.

Methods
Reaction diffusion master equation
Before we plunge into Hill functions in reaction-diffusion
systems, we will first briefly review mathematical model-
ing and simulation methods of spatially inhomogeneous
stochastic systems.
The dynamics of a spatially inhomogeneous stochastic

system has been considered as governed by the reaction-
diffusion master equation (RDME), developed in an early
work of Gardiner [13]. The RDME framework partitions
the spatial domain into small compartments, such that
molecules within each compartment can be considered
well-stirred. Assume a biochemical system of N species
{S1, S2, . . . , SN } and M reactions within a spatial domain
�, which is partitioned into K grids Vk , k = 1, 2, . . . ,K .
For simplicity, we assume that the space � is one
dimensional (1D). Each species population, as well as the
reactions in the system will have a local copy for each
compartment. The state of the reaction-diffusion system
at any time t is represented by the vector state vector

X(t)={X1,1(t),X1,2(t),. . . ,X1,K (t), . . . ,Xn,k(t), . . . ,XN ,K (t)},
where Xn,k(t) denotes the molecule population of species
Sn in the grid Vk at time t. Reactions in each compart-
ment is governed by the Chemical Master Equation
(CME), while diffusion is modeled as random walk
across neighboring compartments. Each reaction chan-
nel Rj in any compartment k can be characterized by
the propensity function aj,k and the state change vector
νj ≡ (ν1j, ν2j, . . . , νNj). The dynamics of the diffusion of
species Si from compartment Vk to Vj is formulated by
the diffusion propensity function di,k,j and the diffusion
state change vector μk,j similarly. di,k,j(x)dt gives the prob-
ability that, given Xi,k(t) = x, one molecule of species Si
at grid Vk diffuses into grid Vj in the next infinitesimal
time interval [ t, t + dt). If j = k ± 1, then di,k,j(x) = D

h2 x,
where D is the diffusion rate coefficient and h is the
characteristic length, also called discretization size, of a
grid; Otherwise di,k,j = 0. The state change vector μk,j is a
vector of length K with −1 in the k-th position, 1 in the
j-th position and 0 everywhere else.
With the reaction-diffusion propensity functions and

state change vectors, the RDME completely depicts the
dynamics of the system:

∂P(x, t|x0, t0)
∂t

=
K∑

k=1

M∑

j=1

(
aj,k(x − νj,k)P(x − νj,k , t|x0, t0) − aj,k(x)P(x, t|x0, t0)

)

+
N∑

i=1

K∑

k=1

K∑

j=1

(−di,k,j(xik)P(x, t|x0, t0)

+di,k,j(Xik − μk,j)P(X11, . . . ,Xik − μk,j, . . . ,XN ,K , t|x0, t0)
)
,

(1)

where P(x, t|x0, t0) denotes the probability that the system
state X(t) = x, given that X(t0) = x0. The RDME is a set
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of ODEs that gives one equation for every possible state.
It is both theoretically and computationally intractable to
solve RDME for practical biochemical systems due to the
huge number of possible combinations of states. Instead
of solving RDME for the time evolution of the probabil-
ities, we can construct numerical realizations of X(t). A
popularmethod to construct the trajectories of a reaction-
diffusion system is to simulate each diffusive jumping and
chemical reaction event explicitly. With enough trajectory
realizations, we can derive the distribution of each state
vector at different times.
The RDME model have been used as an approxima-

tion of the Smoluchowski framework in the mesoscopic
scale. Furthermore, researches have discovered that in the
microscopic limit, bimolecular reactions may be even-
tually lost when the grid size becomes infinitely small
in the three dimensional domain [21, 23]. The RDME
framework requires that the two reactant molecules for
a bimolecular reaction must be in the same compart-
ment in order to fire a reaction. Intuitively, we may realize
that with more discrete compartments, it is less likely for
the two molecules to encounter each other at the same
compartment in a high dimensional domain. In order to
model the reaction-diffusion system with RDME in the
microscopic limit, Radek and Chapman [22] derived a
formula of mesh-dependent reaction propensity correc-
tion for bimolecular reactions when the discretization
size h is larger than a critical size hcrit . This reaction
propensity correction formula fails when the discretiza-
tion size h is smaller than this critical value. Recently,
Isaacson [36] proposed a convergent RDME framework
(cRDME). In the cRDME framework the diffusion is
modeled exactly as in the RDME, while the bimolecu-
lar reaction occurs with a nonzero propensity, as long
as the distance of the two reactant molecules is less
than the reaction radius as defined in the Smoluchowski
framework.
In conclusion, the discretization size for the RDME

framework should be small enough to avoid discretiza-
tion error. Yet when the mesh size is less than a critical
value, the RDME may become inaccurate for the loss of
bimolecular reactions in high dimensional domains. In
this paper we will demonstrate that discretization size in
space also has great influence onHill function dynamics in
reaction-diffusion systems. The switch-like Hill dynamics
breaks even in a 1D domain when the discretization size
is small.

Hill function
The Hill function [7], as well as the Michaelis-Menten
function [6] are widely used in enzyme kinetics model-
ing. In molecular biology, enzymes catalyze biochemical
substrates into products, while remaining unchanged. The
enzyme kinetics reactions are usually formulated as

E + S
k1−−⇀↽−−
k−1

ES k2−→ E + P (2)

Leonor Michaelis and Maud Leonora Menten proposed
the “quasi-steady state” assumption and formulated the
reaction rate equation for the enzyme kinetics, which is
mostly referred to as the “Michaelis-Menten” equation.
With the conservation law and the quasi-steady state
assumption, the Michaelis-Menten equation is given as

d[P]
dt

= Vmax
[S]

KM+[S]
, (3)

with Vmax = k2[E]0 being the maximum reaction rate and
Km = k−1+k2

k1 being the Michaelis constant.
Sometimes one substrate molecule can have several

enzyme binding sites and multiple bindings (coopera-
tive binding) with enzymes are required to activate the
substrate.

S + nE
k1−−⇀↽−−
k−1

SEn
k2−→ nE + P (4)

In real biological models, the binding of the n enzyme
molecules to a substrate does not take place at once
but in a succession of steps. Using the quasi-steady state
assumption and conservation laws, the Hill function that
formulates the reaction dynamics is given as

d[P]
dt

= Vmax
[E]n

Km
n+[E]n

, (5)

with Vmax as the maximum reaction rate, Km as the
Michaelis constant, and n as the Hill coefficient. The Hill
function is widely used to model “step-regulated” reaction
as an activity switch.

Results
To simplify the analysis, a toy model of a reaction-
diffusion system in one dimension is constructed. As
demonstrated in Fig. 2, in the toy model an enzyme
species E (typically a transcription factor) is constantly
synthesized and degraded. The enzyme E further upreg-
ulates the DNA expression of a product P. The synthesis
rate of P is formulated as a Hill function.

Fig. 2 A simple toy model of Hill function dynamics in 1D domain.
Enzyme E is constantly synthesized and upregulates the synthesis of
product P
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Assume a spatial domain of size L is equally parti-
tioned into K compartments with size h = L/K for each.
The list of reactions and reaction propensities in each
compartment are given as

∅ → Ei, a1 = ks · h;
Ei → ∅, a2 = kd · Ei;
∅ Ei−→ Pi, a3 = ksyn · h E4i

(Km·h)4+E4i
;

Pi → ∅, a4 = kdeg · Pi;
Ei → Ei±1, a5 = 2DE

h2 Ei;

Pi → Pi±1, a6 = 2DP
h2 Pi;

(6)

The parameters ks, kd are the synthesis, degradation
rates, respectively, for enzyme species E, and similarly ksyn,
kdeg are those for product P. Km is the Michaelis constant
in the Hill function.
In the one-dimensional domain, the enzyme E is con-

stantly synthesized and degraded. At the equilibrium
state, the distribution of the total population of E is given
by the Poisson distribution,

PE(n) = αn

n!
e−α , (7)

where α = ks
kd L denotes the mean value of the total

number of enzyme E molecules in the domain.
For an individual compartment (bin), consider the prob-

ability P(i)
E (n) that an individual bin i contains nmolecules

of enzyme E. At the equilibrium state, enzyme E is homo-
geneously distributed in the system. The probability that
each molecule of E stays in a certain bin i is given by
p = 1/K . The probability that, of all the E molecules in
the domain, none is in bin i is approximated by

P(i)
E (0) = PE(0) + PE(1)(1 − 1

K ) + PE(2)(1 − 1
K )2

+ . . . + PE(N)(1 − 1
K )N + . . .

=
N∑

n=0
e−α αn

n!
(
1 − 1

K
)n

= e−α/K .
(8)

The other probability terms are not important in the
analysis.
With the distribution of the enzyme molecular popu-

lation, the mean reaction propensity for the synthesis of
protein P in the i-th bin is

〈aisyn〉 = ksynh
∞∑

n=0

n4

(Km · h)4 + n4
P(i)
E (n). (9)

Notice that when n = 0, the Hill function is zero,
and when the discrete bin size h is small, the Hill func-
tion approaches one quickly if n ≥ 1. For example, when
Km · h ≤ 0.5 the Hill function n4

(Km·h)4+n4 ≥ 0.94 for

n ≥ 1. Therefore, upper and lower bounds for the product
P synthesis propensity, when km · h ≤ 0.5, are

0.94ksyn · h
∞∑

n=1
P(i)
E (n) ≤ 〈asyn〉 ≤ ksyn · h

∞∑

n=1
P(i)
E (n).

(10)

Hence, when the discretization size h is small enough,
the propensity for the product P synthesis reaction can be
approximated as

〈a(i)
syn〉 ≈ ksyn · h ·

∞∑
n=1

P(i)
E (n)

= ksyn · h · (1 − P(i)
E (0))

= ksyn · h · (1 − e−α/K ).

(11)

When the discretization size h is small andK is large, the
mean reaction propensity can be further approximated as

〈a(i)
syn〉 ≈ ksyn · h · α/K . (12)

Notice that α/K is the mean population of enzyme E in
the i-th bin. The Hill function of the product P synthe-
sis is now reduced to a linear function of the enzyme E
population in the i-th bin.
Furthermore, from (12) the mean population of product

P in the bin i is

〈P(i)〉 = ksyn · h
kdeg

α

K
, (13)

and the total product P population in all K bins is

〈P〉 = ksyn·L
kdeg

ks·L
kd

1
K

= ksyn
kdeg · α · h. (14)

Equation 14 shows that the total population of product P
is a linear function of α, the mean population of E and h =
L/K , the discretization size. With finer discretization, less
product P is produced. Figure 3 shows the histograms and
themean values of the product P population with different
discretization sizes. The histograms show that with finer
discretization, the population histograms shift further to
the left.
The log-log plot (Fig. 3, right) shows that when the

discretization size is small enough, the total product P
population is a linear function of discretization size. The
slope of the log-log plot is about 1.0 at small discretization
size h, regardless of Km.
Moreover, simulation results show that when the mean

enzyme E population is less than the constant Km in the
Hill function (Km > α), the population of product P
increases slightly before the Hill function dynamics breaks
at small discretization sizes. Note that the Hill function
dynamics show a concave shape with respect to enzyme E
population when the enzyme E population is smaller than
the Michaelis constant Km. Therefore, it is reasonable that
the product P population in this reaction-diffusion model
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Fig. 3 The histogram (left) and mean (right) population of product P with different discretization. Parameters: De = 1.0, ks = 2.5, kd = 0.1, ksyn = 5.0,
kdeg = 0.05, system size L = 1.0. For the histogram figure, Km = 25.0. The log-log plot shows the mean total product population under different
discretization and different parameter sets

increases slightly when theMichaelis constantKm is larger
than the mean enzyme E population α.
The numerical analysis above makes two approxima-

tions
{

n4
(Km·h)4+n4 ≈ 1, for n ≥ 1;
e−α/K ≈ 1 − α/K .

(15)

to get the linear relation. Assuming an error tolerance of
5%, the two approximations can be simplified to

{
Km · h < 0.5,
α/K < 1/3. (16)

Hence, when the discretization bin number

K > max{2LKm, 3α}, (17)

the Hill dynamics reduce to a linear function.
Equivalently, in order for the Hill function dynamics to

work well, the discretization numberK should be less than
or equal to this threshold. However, the coarse discretiza-
tion from a small K leads to spatial error. Two potential
solutions to this discretization dilemma are proposed
next.

Discussion
From the previous analysis, the Hill dynamics in RDME
systems reduces to a linear function due to the lack of
intermediate states— the discrete population in each indi-
vidual bin yields an integer value (0 or 1) for the Hill
function. Thus a natural solution to it is to generate inter-
mediate states by a smoothing technique that averages
the population over neighboring bins when calculating the
reaction propensity.
To model a RDME system in high dimensions with

fine discretization, previous studies [21] have suggested
relaxing the same-compartment reaction assumption and
allowing reactions within neighboring compartments.
The next subsection shows that allowing reactions within

neighboring compartments is equivalent to smoothing
over neighboring compartments.

Smooth over neighboring bins
A natural technique that bridges the discrete and contin-
uous models is to smooth the spatial population by taking
the average of neighboring bins. Consider first smoothing
the enzyme E population within the neighboring m bins
(including the bin itself ) when calculating the reaction
propensity.
Following previous analysis, the reaction probability for

the synthesis of product P in the i-th bin is

〈â(i)
syn〉 = ksyn · h

∞∑
n̂=0

(
(n/m)4

(Km·h)4+(n/m)4
P(i)
E (n;m)

)

= ksyn · h
∞∑
n=0

(
n4

(m·Km·h)4+n4 P
(i)
E (n;m)

)
,

(18)

where P(i)
E (n;m) denotes the probability that them neigh-

boring bins of the i-th bin have a total enzyme E popu-
lation of n. The interpretation of this equation is that the
synthesis reaction in the i-th bin is interacting with them
neighboring bins and the propensity is calculated based on
the total enzyme E population of all the neighboring bins.
By probability theory,

P(i)
E (0;m) = e−αm/K . (19)

As before, only the term P(i)
E (0;m) is important.

In Eq. (18), for any fixed integer m ≥ 0, there exists an
h ≥ 0, such that m · Km · h < 0.5 and the Hill function is
still approximately one. With such a discretization size h,
the product P synthesis propensity can be approximated
as

〈â(i)
syn〉 ≈ ksyn · h

∞∑
n=1

P(i)
E (n;m),

= ksyn · h(1 − P(i)
E (0;m)),

= ksyn · h(1 − e−αm/K )

≈ ksyn · h · α · m/K .

(20)
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Again, with a fixed smoothing bin number m, the syn-
thesis reaction propensity becomes linear in the mean
enzyme E population αm/K of the m bins, and the mean
population of product P in the system is

〈P〉 = ksyn · L
kdeg

ks · L
kd

m
K
, (21)

which is linear inm/K and the mean total enzyme E pop-
ulation α. The linear function can be achieved with an h
such that

{
m · Km · h < 0.5,
m · α/K < 0.33.

(22)

Figure 4 plots the mean population of product P in the
toy model with the smoothing technique and m = 5.
Numerical results show that smoothing over a fixed num-
berm of compartments gives a good solution for a certain
range of discretization sizes. However, there always exists
a small enough critical discretization size hcrit such that
the Hill function dynamics reduce to a linear function
when the discretization size is smaller than this hcrit .
Moreover, fixed length smoothing, in the scenarios where
theMichaelis constant Km is larger than the mean enzyme
E population α, gives a result closer to that of the deter-
ministic simulation when the discretization sizes are not
too small.

Convergent hill function dynamics in reaction-diffusion
systems
The previous subsection demonstrates that a sufficiently
small discretization size hwill still break the Hill dynamics
even with the strategy of smoothing over a fixed number
of bins, thus the number of bins needs to vary with the
discretization size.
Inspired by the convergent-RDME framework [36], a

remedy for the failure of Hill function dynamics in
reaction-diffusion systems is to smooth the population
over bins within a certain distance.

From the analysis, a small smoothing length would
cause the failure of the Hill function dynamics and a large
smoothing length would degrade the spatial accuracy of
the model. Based on the criteria of failure for the Hill
function dynamics with fixed m, Eq. (22), we can choose
the smallest m that would not result in failure for the
Hill function dynamics, i.e., m such that neither of the
two assumptions in the previous analysis are valid. This
choice is

m = �max
{

0.5
Km · h ,

0.33 · L
α · h

}

. (23)

Following the terminology in the convergent-RDME
framework [36], the “reaction radius ρ” of the Hill func-
tion dynamics is defined as ρ = m · h, where m is
given in (23).
Figure 5 shows numerical results for the toy model in

the reaction-diffusion system with different discretiza-
tion sizes and with the convergent smoothing technique
(m and h related by (23)). It is clear that the convergent
smoothing technique gives very good simulation results
for all h values.
Applying the fixed length smoothing technique to the

DivL-CckA Hill function model in the Caulobacter cres-
centus cell cycle results in a sharp CtrAp population
change during swarmer-to-stalked transition. Figure 6
shows the CtrAp trajectories from the deterministic
model and stochastic model simulation results. The fixed
length smoothing technique yields more CtrAp in the
swarmer stage and less CtrAp in the stalked stage,
which yields a sharp CtrAp population change during the
swarmer-to-stalked transition as expected.

Conclusions
Motivated by the misbehavior of DivL-CckA dynamics in
the stochastic simulation of the Caulobacter crescentus
cell cycle model, a study of the Hill function dynamics
in reaction-diffusion systems reveals that when the dis-
cretization size is small enough, the switch-like behavior

Fig. 4 The total population of product P with different discretization. Parameters: system size L = 1.0, De = 1.0, ks = 2.5, kd = 0.1, ksyn = 5.0,
kdeg = 0.05. For the left figure Km = 25.0, while for the right figure Km = 50.0



The Author(s) BMC Systems Biology 2017, 11(Suppl 3):21 Page 8 of 11

Fig. 5 The total population of product P with different discretization. Parameters: system size L = 1.0, De = 1.0, ks = 2.5, kd = 0.1, ksyn = 5.0,
kdeg = 0.05. For the left figure Km = 25.0, while for the right figure Km = 50.0

of Hill function dynamics reduces to a linear function
of input signal and discretization size. A proposed fixed
length smoothing method, which allows chemical reac-
tions to occur with reactant molecules within a distance
of fixed length, the “reaction radius”of the Hill func-
tion dynamics, seems to give a very good remedy to this
problem.
It is known that in high dimensions bimolecular reac-

tions are lost with the RDME in the microscopic limit
[21]. This work shows that one-dimensional Hill function
dynamics in a RDME framework gives a similar challenge
when the discretization size is small enough. The conjec-
ture is that the problem lies in the RDME requirement that
reactions only fire with the reactant molecules in the same
discrete compartment.
Furthermore, this defect in RDME at the microscopic

limit is believed to be a common scenario for all highly
nonlinear reaction dynamics. Theoretical biologists have
developed many highly nonlinear reaction dynamics that
need special attention when converted to stochastic
models.

Here we will extend our analysis and discuss a general
situation in stochastic simulation of reaction diffusion sys-
tems. Suppose that we have a species X, whose population
is represented by state variable x, and there is a particular
reaction R:

∅ X−→P, (24)

in which X serves as an enzyme to produce P and the
propensity function is represented by f (x). For each X
molecular, it can diffuse in a 1D domain with a small
length L and with a diffusion coefficient D. Suppose the
1D domain is partitioned into K bins, thus the discretiza-
tion size is h = L

K . The system can then be represented as
a chain reaction

X1
d
�
d
X2

d
�
d

· · · d
�
d
XK , (25)

where d = D
h2 is the jump rate corresponding to diffusion.

The concerned reaction R could fire in any of the bins with
propensity f (xi). Assume that L is small enough such that
D
L2 is very large and d � ∑K

i=1 f (xi) regardless ofK. In that

Fig. 6 The Comparison of CtrAp of deterministic model and the stochastic simulation results. Left: CtrAp population oscillation trajectory during
Caulobacter crescentus cell cycle. Right: The histogram of CtrAp population in the swarmer cells (t = 30min). For model parameters, please refer to [27]
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case, the chain reaction system (25) can be considered as
a virtual fast system and the slow scale SSA [37] can be
applied here. As a result, if the total population of X is n,
in each bin, the mean value of xi is given by

〈xi〉 = n
K
. (26)

Then based on the theory of slow scale SSA, the propen-
sity of the corresponding synthesis reaction (24) should be

〈f (xi)〉 =
∞∑

j=0
f (j)P(xi = j), (27)

where P(·) is the probability under the distribution when
the virtual fast system (25) converges to stochastic partial
equilibrium [37].
However, the propensity function converted directly

from the deterministic model has a different form as
f (〈xi〉). Note that for a nonlinear function, such as the Hill
function or the Michaelis Menten function,

〈f (xi)〉 �= f (〈xi〉) . (28)

(28) highlights the mismatch between the RDME frame-
work and the deterministic model.

Hybrid method
In order to have a stochastic model that is consistent
with its deterministic counterpart, the propensity func-
tion should take the form f (〈xi〉). This motivates us to
adopt the hybrid ODE/SSA method [38] and apply it to
the reaction diffusion systems. This hybrid method was a
simple idea. It was originally presented by Haseltine and
Rawlings [38] and our implementation has some modifi-
cation to make it fit better with the root finding function
used in LSODAR [39]. Consider a system of N species
(denoted by {S1, . . . , SN }) and M reactions (denoted by
{R1, . . . ,RM}). For each reaction Rj, there is a propensity
function aj(x) and a state-change vector νj. We partition

these M reactions into two subsets. The subset Sslow con-
tains slow reactions, with index 1 to MS, and is simulated
by the SSA. The subset Sfast contains fast reactions, with
indexMS+1 toM, and is formulated and solved by ODEs.
The simulation of these two subsets is then combined as
described below. Let τ be the jump interval of the next
slow (stochastic) reaction, and μ be its reaction index. Set
t = 0. The hybrid method simulate the system as follows:

1) Two uniform random numbers, r1 and r2 in U(0, 1),
are generated.

2) Solve the ODE system for Sfast and find the root τ for
the integral equation:

∫ t+τ

t
atot(x, s)ds + log(r1) = 0, (29)

where atot(x, t) is the sum of propensities of all
reactions in Sslow. Because x varies with t in the ODE
system, atot(x, t) is a function of t as well.

3) μ is selected as the smallest integer satisfying
μ∑

i=1
ai(x, t) > r2atot(x, t). (30)

4) Update x ← x + νμ.
5) Return to step 1) if stopping condition is not reached.

Note that our implementation is different fromHaseltine
and Rawling’s original method in step 2. Suppose that the
ODE system is given by

x′ = f (x). (31)

We add an integration variable z and the following
equation to the ODE system.

z′ = atot(x), z(t) = log(r1), (32)

where we note that log(r1) is negative and atot is always
nonnegative. In the hybrid simulation, for each step
we start from the current time t and numerically [39]

Fig. 7 The histogram (left) and mean (right) population of product P with different discretization, simulated by the hybrid method. Parameters:
De = 1.0, ks = 2.5, kd = 0.1, ksyn = 5.0, kdeg = 0.05, system size L = 1.0. For the histogram figure, Km = 25.0. The log-log plot shows the mean total
product population under different discretization and different parameter sets
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Fig. 8 The distribution of product P with different discretization sizes, simulated by the hybrid method (left) and SSA (right). Parameters: Km = 50.0,
the rest remains the same

integrate the original ODEs (31) and the extra integral
Eq. (32). The integration stops when z(t + τ) = 0. As
a result, τ is the solution to (29). This procedure can be
numerically simulated using standard ODE solvers com-
bined with root-finding functions, such as the LSODAR
[39]. Note that since z is an integration variable, one
may choose to omit it from the error control mechanism
[40]. Adding this extra variable will not greatly affect the
efficiency.
We applied the hybrid method to the toy model (6). In

our simulation, all diffusion events are partitioned into
fast systems and solved by the ODE solver LSODAR,
while chemical reactions are simulated by SSA under the
hybrid framework described above. We test cases when
Km = 10, 25, 50 and Figs. 7 and 8 show the correspond-
ing numerical results. It is obvious that in all three cases,
the mean population remains horizontal even when the
bin size decreased to the magnitude of 10−3. In Fig. 8, the
mean molecule of product P centers around seven under
different discretization sizes, while results from SSA shift
to the left as discretization size decreases.
Numerical results certainly suggest that the hybrid

method has great potential in stochastic simulation of RD
systems. We would like to note that great details still need
to be studied, but that is not the focus for this paper.
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