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Abstract

Cytokinins are hormones that are involved in various processes of plant growth and development. The model of

cytokinin signalling starts with hormone perception through membrane-localized histidine kinase receptors.

Although the biochemical properties and functions of these receptors have been extensively studied, there is no
solid proof of their subcellular localization. Here, cell biological and biochemical evidence for the localization of

functional fluorophor-tagged fusions of Arabidopsis histidine kinase 3 (AHK3) and 4 (AHK4), members of the

cytokinin receptor family, in the endoplasmic reticulum (ER) is provided. Furthermore, membrane-bound AHK3

interacts with AHK4 in vivo. The ER localization and putative function of cytokinin receptors from the ER have major

impacts on the concept of cytokinin perception and signalling, and hormonal cross-talk in plants.
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Introduction

Cytokinins, a class of adenine-derived plant hormones, have

been implicated in almost every aspect of plant growth and

development, including root and shoot growth, vasculature

differentiation, photomorphogenesis, senescence, fertility,

and seed development (Muller and Sheen, 2007a; Werner
and Schmulling, 2009) as well as in responses to cold and

osmotic stress (Tran et al., 2007; Jeon et al., 2010). It is well

established that cytokinin perception and signalling is

mediated by a multistep two-component circuitry. In Arabi-

dopsis thaliana three transmembrane histidine kinases,

namely AHK2, AHK3, and AHK4, serve as cytokinin

receptors (Inoue et al., 2001; Suzuki et al., 2001; Ueguchi

et al., 2001). Cytokinin binding to their CHASE domain is
proposed to initiate autophosphorylation of the receptors at

a conserved histidine residue in the transmitter domain (Pas

et al., 2004; Muller and Sheen, 2007b). The phosphoryl group

is then transferred to a conserved aspartate residue in the

receptor’s receiver domain. Histidine phosphotransfer pro-

teins (AHPs) finally transmit the signal to response regu-

lators (ARRs), which then regulate the cellular responses

(Muller and Sheen, 2007b; Werner and Schmulling, 2009;

Kieber and Schaller, 2010).
Although the cytokinin receptors have been extensively

studied regarding their specific functions, biochemical

properties, and expression patterns (Higuchi et al., 2004;

Nishimura et al., 2004; Riefler et al., 2006; Romanov et al.,

2006), their subcellular localization and molecular function

are still not fully determined. It has been assumed that they

reside in the plasma membrane, and a green fluorescent

protein (GFP) fusion of AHK3 appears to localize to the
plasma membrane of protoplasts (Kim et al., 2006).

However, further attempts to ascertain this localization led

to the observation that they show a more diverse localiza-

tion pattern (Dortay et al., 2008).
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In this report, cell biological and biochemical evidence for

the localization of functional fluorescent protein fusions of

AHK3—a representative of the cytokinin receptor family—in

the endoplasmic reticulum (ER) is provided. This localization

is detected not only in transiently transformed tobacco

(Nicotiana benthamiana) and Arabidopsis cells but also in

stably transgenic Arabidopsis plants. The present observation

entails a reconsideration of the current model of cytokinin
signal perception and, as other hormone receptors are also

located in the ER, opens new perspectives for hormonal

cross-talk at this cellular compartment in plant cells.

Materials and methods

Construction of cDNA fusions

To generate the fusion proteins, attB sites were added via PCR-
mediated ligation to the coding regions of AHK1 (AT2G17820),
AHK3 (AT1G27320), AHK4 (AT2G01830), ERS1 (AT2G40940),
and NHL3 (AT5G06320) with or without a STOP codon and

recombined into pDONR�201 according to the manufacturer’s
protocol (Invitrogen). The cDNA was then transferred via LR
reaction (Invitrogen) into the destination vectors pH7WGF2,
pH7FWG2, or pB7WGR2 (Karimi et al., 2002) and pABindmCherry
(Bleckmann et al., 2010).

For constructs under the control of the ubiquitin 10 (UBQ10)
promoter, a gateway cassette (reading frame A) was inserted into
the vectors pUGT1kan+ and pUGT2kan+ (Karin Schumacher,
unpublished) at the SmaI site in the multiple cloning site. The
AHK3 coding sequence was then inserted in the destination vectors
by LR reaction.

For the fusion construct with internal GFP (AHK3intGFP),
linker sequences (coding for GGGGS/T) were added via PCR to
the coding sequence of GFP using the primers GFP-BcuI-S and
GFP-BcuI-A (Supplementary Table S1 available at JXB online).
For ligation into the AHK3 entry clone an appropriate restriction
site was produced via site-directed mutagenesis in the AHK3
coding sequence at position 123 (corresponding to amino acid 41)
where the linker–GFP–linker sequence was introduced. The
AHK3intGFP cDNA was then recombined into pMDC32 (Curtis
and Grossniklaus, 2003) by LR reaction. For mating-based split-
ubiquitin system (mbSUS) assay, the AHK4 cDNA was transferred

Fig. 1. The Arabidopsis cytokinin receptor AHK3 localizes to the ER in transiently transformed tobacco leaf cells and Arabidopsis seedlings.

(A–D) and (F) Confocal images of transiently transformed tobacco epidermal leaf cells co-expressing the indicated AHK3 fusion protein under

the control of the 35S promoter or the UBQ10 promoter with the ER marker ER-rk CD3-959. (E) Confocal images of transiently transformed

tobacco epidermal leaf cells expressing an AHK3–mCherry fusion protein under the control of the estradiol-inducible promoter (XVE). Images

were recorded 2 h (I), 4 h (II), and 24 h (III) after application of 20 lM b-estradiol. Images (I) and (II) were recorded at the highest sensitivity

settings of the microscope at which the mCherry fluorescence was just detectable. (G) Confocal images of transiently transformed Arabidopsis

cotyledon cells co-expressing the indicated AHK3 fusion protein with the ER marker ER-rk CD3-959. Bars represent 10 lm.
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by LR reaction to pMetYC-Dest and the AHK3 and ERS1
cDNAs to pXNubA22 (Grefen et al., 2009).

Transient gene expression in Nicotiana benthamiana leaves and

Arabidopsis seedlings

Transient transformations of N. benthamiana leaves with the Agro-
bacterium tumefaciens strain GV3101 pMP90 containing the expres-
sion constructs were carried out as described in Schutze et al. (2009).
The transformed leaves were assayed for fluorescence by confocal
laser scanning microscopy (CLSM) 2–3 d post-infiltration. The
transgene expression from the estradiol-inducible promoter was
induced 2–3 d after infiltration with 20 lM b-estradiol supple-
mented with 0.1% Tween-20. For transient expression in Arabidopsis
seedlings, the Agrobacterium strains containing the fusion constructs
and the marker constructs used were grown as described (Marion
et al., 2008), prior to infiltration diluted in 5% sucrose, 200 lM
acetosyringone to an OD600 of 2.0, and mixed 1:1. 3–4 d old
Arabidopsis efr1 seedlings (Zipfel et al., 2006) were transformed via
vacuum infiltration as described by Marion et al. (2008) and the
seedlings were examined for fluorescence 3 d post-infiltration.

CLSM and fluorescence intensity decay shape analysis

microscopy (FIDSAM)

CLSM and FIDSAM as well as the used spectromicroscopic
systems and measurement protocols have been described pre-
viously (Elgass et al., 2009; Schleifenbaum et al., 2010).

Construction of transgenic Arabidopsis lines

The transgenes were transformed into Arabidopsis ahk2-2ahk3-3
plants (ahk2ahk3, Higuchi et al., 2004) via the floral dip method
and selected by phenotype (complemented dwarf phenotype of the
ahk2ahk3 mutant background). Twenty independent ahk2-2ahk3-3
lines complemented by AHK3-GFP and 10 independent lines
complemented by GFP-AHK3 were isolated. After verification of
the transgene integration, the lines were analysed for the GFP
fluorescence signal using CLSM and FIDSAM. The line with the
most intense GFP signal was used for imaging and endogylcosi-
dase H (EndoH) assays.

EndoH assay

The EndoH assay was performed according to the manufacturer’s
manual (New England BioLabs) by using crude protein extracts of
transiently transformed tobacco or Arabidopsis leaves. The pro-
teins were analysed by SDS–PAGE and western blot using a GFP
antibody.

Root growth and yeast mbSUS assays

For the root elongation assay, seedlings were grown vertically on
0.53 MS plates supplemented with different concentrations of
kinetin. The root length was measured 6 d post-germination. The
yeast mbSUS assays using AHK4-Cub-PLV and the NubA fusions
of AHK3 and ERS1 as constructs were carried out as described
previously (Grefen et al., 2009; Caesar et al., 2011).

Results and Discussion

FP fusions of AHK3 localize to the ER

In order to examine the subcellular localization of AHK3,

C- and N-terminal GFP fusions of the receptor were

transiently expressed in leaf epidermal cells of N. benthami-

ana and in cotyledon cells of Arabidopsis seedlings under the

control of either the 35S Cauliflower mosaic virus (35S) or the

Arabidopsis UBQ10 promoter. Both AHK3–GFP and GFP–

AHK3 showed an ER-like localization pattern in tobacco

and Arabidopsis independent of the promoter used (Fig. 1A–

D, Supplementary Fig. S1 at JXB online). The identity of the

endomembrane system as ER was verified by the co-

localization of the GFP fusions of AHK3 with the mCherry-
tagged ER marker ER-rk CD3-959 (Nelson et al., 2007; Fig.

1A–D, Supplementary Fig. S1B, C). In addition, there was

a co-localization of the GFP fusion proteins of AHK3 with

the ER-localized red fluorescent protein (RFP) fusion of the

ethylene receptor ERS1 (Grefen et al., 2008; Fig. 2). In

contrast, no co-localization of these AHK3 fusion proteins

was found with the mCherry-tagged Golgi marker G-rk

CD2-967 (Nelson et al., 2007; Supplementary Fig. S2) and
the RFP fusion of the plasma membrane protein NHL3

(Varet et al., 2003; Fig. 3). Furthermore, the GFP fusion of

the plasma membrane-bound AHK1, which is a positive

regulator of drought and salt stress response and functions as

an osmosensor in yeast (Urao et al., 1999; Tran et al., 2007;

Fig. 2. AHK3–GFP and GFP–AHK3 fusion proteins co-localize with

ERS1–RFP. (A–D) Confocal images of transiently transformed

tobacco epidermal leaf cells co-expressing the indicated AHK3 fusion

protein under the control of the 35S or the UBQ10 promoter and an

RFP fusion of the ethylene receptor ERS1 (ERS1–RFP). Bars

represent 10 lm.
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Wohlbach et al., 2008), also did not co-localize with an

mCherry fusion of AHK3 (Fig. 4). The yellow colour,

partially visible in the merged images of Supplementary Fig.

S2D, and Figs 3A, C, 4, results from the very strong GFP
signal in this area and the physically restricted resolution of

light microscopy below Abbe’s diffraction limit (250 nm).

However, the magnified images of these yellow domains

showed an incomplete overlap of the GFP and RFP or

mCherry fluorescence (Fig. 4; Supplementary Fig. S3),

indicating that the fusion proteins localize to different

membrane compartments.

It has been reported that strong expression of fusion
proteins under the control of promoters such as 35S or

UBQ10 might lead to mislocalization artefacts (Bleckmann

et al., 2010). A C-terminal mCherry fusion of AHK3

(AHK3–mCherry) expressed from an estradiol-controlled

promoter system was therefore used to trigger the expression

level of the histidine kinase (Bleckmann et al., 2010). After

transformation of the construct into N. benthamiana leaves,

the expression was induced by brushing the leaves with
b-estradiol. AHK3–mCherry fluorescence was detectable 2 h

after b-estradiol application at the earliest (Fig. 1E). Already

at this early time point the AHK3–mCherry fluorescence

displayed a net-like ER localization pattern, which did not

change within the next 22 h (Fig. 1E). The localization of

b-estradiol-induced AHK3–mCherry was never observed in

the plasma membrane.

The amino acid sequence of AHK3 contains potential
signals for the secretory pathway and ER export, respectively

[Fig. 6A; iPsort Prediction, http://ipsort.hgc.jp/ (Bendtsen

et al., 2004); YLoc Prediction, www.multiloc.org/YLoc

(Hanton et al., 2005; Langhans et al., 2008; Briesemeister

et al., 2010)]. To exclude a possible mislocalization of the

fusion proteins due to masking of potential sorting signals,

a construct was generated where GFP is inserted between the
first and the second predicted transmembrane domain of

AHK3 (AHK3intGFP; see Fig. 6A for the details of the

insertion site). AHK3intGFP showed the identical ER

localization pattern to AHK3–GFP and GFP–AHK3 when

transiently expressed in tobacco leaves as well as in

Arabidopsis seedlings, and co-localized with the mCherry-

tagged ER marker (Fig. 1F, G) but not with the plasma

membrane marker NHL3–RFP (Fig. 3E, F).
Signal-induced translocation of receptors to the plasma

membrane is reported for animal systems (Shuster et al., 1999;

Song et al., 2004). Therefore, assays were carried out to

determine whether the application of kinetin, a synthetic

cytokinin, has an influence on the subcellular localization of

the N- and C-terminal GFP fusions of AHK3. However, 4 h of

kinetin treatment did not alter the ER localization of AHK3–

GFP and GFP–AHK3 (Supplementary Fig. S4 at JXB online).
Furthermore, it was tested whether the intracellular loca-

tion of AHK3 changed when it was co-expressed with an RFP

fusion of its sister receptor, AHK4. As shown in Fig. 5A, both

fusion proteins co-localized in the ER. To determine whether

AHK3 is able to interact with AHK4 in the membrane, in

vivo interaction studies were performed using the yeast

mbSUS (Grefen et al., 2009). The mbSUS experiments

revealed that AHK3 not only forms homo-oligomers (data
not shown) but also interacts with AHK4 in vivo (Fig. 5B).

No interaction was observed with ERS1 (Fig. 5B), which

also localized to the ER (Fig. 2; Grefen et al., 2008). These

Fig. 3. AHK3–GFP and GFP–AHK3 fusion proteins do not co-localize with the plasma membrane-localized fusion protein NHL3–RFP.

(A–E) Confocal images of transiently transformed tobacco epidermal leaf cells co-expressing the indicated AHK3 fusion protein under the

control of the 35S promoter or the UBQ10 promoter and the plasma membrane-localized fusion protein NHL3–RFP. (F) Confocal images

of transiently transformed Arabidopsis cotyledon cells co-expressing the indicated AHK3 fusion protein and the plasmalemma-localized

fusion protein NHL3–RFP. Bars represent 10 lm.
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data suggest that the cytokinin receptors are able specifically

to homo- and heterodimerize in the ER and that their

interaction has no influence on their subcellular localization.

In conclusion, all tested fluorescent protein fusions of

AHK3—no matter whether GFP is tagged to the

C-terminus, N-terminus, or internally—show an ER localiza-

tion. A mislocalization of the fusion proteins due to over-
expression or masking of potential sorting signals is unlikely.

Furthermore, neither cytokinin application nor the co-

expression of AHK3 and 4 or their potential in planta

interaction are capable of altering the ER localization of

AHK3.

The AHK3 protein is EndoH sensitive

To substantiate the ER localization of the AHK3 fusion

proteins, a biochemical survey was conducted applying an
EndoH assay. EndoH is a glycosidase which cleaves aspara-

gine-linked oligomannose and hybrid, but not complex oligo-

saccharides from glycoproteins (Maley et al., 1989). EndoH,

therefore, enables, by electrophoretic mobility shift, the

differentiation of ER-localized glycoproteins from glycopro-

teins in the plasma membrane, whose asparagine-linked

glycans are further modified in the secretory pathway and are

no longer substrates for the glycolytic enzyme (Hong et al.,

2008). In the AHK3 amino acid sequence, five potential N-X-

S/T glycosylation sites were identified; one N-terminally of and

three within the CHASE domain, and one in the receiver

domain close to the C-terminus (Fig. 6A, B). Therefore,

a mobility shift of EndoH-treated AHK3 would be expected
on condition that AHK3 is located in the ER. As controls,

AHK1–GFP, which is a plasma membrane-localized protein

(Fig. 4) and has nine potential N-X-S/T glycosylation sites

(Fig. 6B), and ERS1–GFP, which is, like ERS1–RFP, bound

to the ER (Grefen et al., 2008), were used. The ERS1 single N-

X-S/T site is predicted not to be glycosylated due to its

C-terminal location (Fig. 6B; Gavel and von Heijne, 1990).

Total crude protein extracts of tobacco leaves expressing the
GFP fusion proteins were exposed to EndoH or mock treated.

After SDS–PAGE and western blot using a GFP-specific

antibody, the fusion proteins were analysed for changes in their

electrophoretic mobility. There was no mobility shift and, thus,

no EndoH sensitivity of plasma membrane-bound AHK1–GFP

or of ER-bound ERS1–GFP detected, indicating that AHK1–

GFP is not retained in the ER and ERS1 is not glycosylated in

tobacco cells (Fig. 6C). The unaltered pattern of AHK1–GFP
in particular also proves that the reaction mixture conditions

per se have no influence on the electrophoretic mobility of the

fusion proteins. In contrast, the EndoH-treated AHK3 fusion

proteins showed a significant mobility shift compared with the

non-treated control (Fig. 6C). Most importantly, there was no

high mobility band in the non-treated AHK3 preparations.

The results of the EndoH assays thus support the cell

biological observations that the GFP fusions of AHK3
localize to the ER. Furthermore, there appears to be no

subfraction of AHK3 in the plasmalemma because the entire

population of the cytokinin receptor carries EndoH-sensitive

mannose structures typical for ER-resident glycoproteins.

AHK3–GFP and GFP–AHK3 rescue the cytokinin-
insensitive phenotype of the ahk2ahk3 receptor mutant

To determine the functionality of the GFP fusions of AHK3,

their capability to complement the dwarf and cytokinin-

insensitive root growth phenotype of the ahk2-2ahk3-3

(ahk2ahk3) mutant was analysed. The ahk2-2 or the ahk3-3

single mutants were not used for the complementation
analysis as they show the wild-type phenotype (Higuchi et al.,

2004). Those ahk2ahk3 plants were selected whose dwarf and

cytokinin-insensitive root growth phenotypes were comple-

mented by UBQ10-driven expression of AHK3-GFP or GFP-

AHK3 demonstrating that both fusion proteins are functional

receptors (Fig. 7A–C). Next the AHK3-GFP-complemented

transgenic line was studied for the accumulation and sub-

cellular localization of the fusion protein using standard
CLSM. Weak fluorescence signals were detected in epidermal

and stomatal cotyledon cells. The fluorescence signal

appeared in a net-like and discontinuous pattern as well as

in the perinuclear space (Fig. 7D). This observation suggests

that AHK3–GFP is predominantly localized in the ER. To

Fig. 4. AHK3–mCherry does not co-localize with a GFP fusion of

the plasma membrane-bound Arabidopsis histidine kinase 1

(AHK1–GFP). Confocal images of different magnification of tran-

siently transformed tobacco epidermal leaf cells co-expressing

AHK3–mCherry under the control of the estradiol-inducible pro-

moter (XVE) and AHK1–GFP under control of the 35S promoter.

The image series of the second row represents a magnified detail

of the images of the first row. The image series of the third row

derives from an independent cell. Images were recorded 4 h after

application of 20 lM b-estradiol. Bars represent 10 lm.
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be sure that background autofluorescence was not recorded,

FIDSAM was applied. FIDSAM enhances the contrast of

fluorescence images due to efficient background fluorescence

repression (Schleifenbaum et al., 2010). In the FIDSAM

images, AHK3–GFP again became visible as a discontinuous

fluorescence pattern with a net-like structure that is typical

for ER-localized fusion proteins (Supplementary Fig. S5 at

JXB online) but atypical for plasma membrane proteins

(Grefen et al., 2008). These data demonstrate that the

observed fluorescence actually derives from the GFP of

AHK3–GFP. The low accumulation of AHK3–GFP fusion

protein was surprising as the AHK3 fusion constructs were

under the control of the constitutive UBQ10 promoter, which

usually provides for a high level of accumulation of the

corresponding fusion protein. This suggests that the trans-

genic plants must keep the AHK3 protein amount at a level

which is similarly low as that of wild-type Arabidopsis.

To substantiate the ER localization, EndoH assays were

performed, using extracts from the AHK3–GFP line, the
ERS1–GFP line, and the ahk2ahk3 mutant. Again, an

EndoH-caused mobility shift of the AHK3 fusion protein was

observed, but not a clear shift of ERS1–GFP (Fig. 7E). Again,

there was no high mobility band in the mock-treated AHK3

preparations (Fig. 7E) and no free GFP (data not shown).

Thus, the observed complementation of the ahk2ahk3 mutant

phenotype was not due to post-translational cleavage of the

GFP and release of non-tagged AHK3 or a translocation of

an AHK3 subpopulation to the plasma membrane.

Summarizing, the results of the EndoH assay and the CLSM/

FIDSAM analysis suggest that AHK3–GFP localizes to the ER

not only in transiently transformed tobacco andArabidopsis cells
but also in transgenic plants. As AHK3–GFP complements the

cytokinin-insensitive phenotype of the ahk2ahk3 mutant and as

there is no indication that a subpopulation of AHK3 targets to

the plasma membrane, the receptor appears to function from

the ER. However, the possibility that minuscule amounts of

AHK3 are transferred to the plasma membrane, which are

detectable neither by CLSM nor by western blot after EndoH

treatment, cannot be entirely excluded.

Conclusion

The ER localization of AHK3 (and AHK4) has major

consequences for the concept of cytokinin perception and

signalling in plants. The present data indicate that the
cytokinin-binding CHASE domain is not oriented to the

apoplast, as previously assumed, but exposed to the ER

lumen, whereas the C-terminal kinase domain, that, upon

activation, transfers the phosphoryl residues to the nucleocy-

toplasmic histidine phosphotransfer proteins, is exposed to

Fig. 5. The cytokinin receptor AHK4 co-localizes with AHK3 in the ER and interacts with AHK3 in vivo (yeast). (A) Confocal images of transiently

transformed tobacco epidermal leaf cells co-expressing RFP–AHK4 and GFP–AHK3 under control of the 35S promoter. Bars represent

10 lm. (B) Yeast mbSUS protein–protein interaction analysis. The AHK4-Cub-PLV construct was transformed in yeast strain THY.AP4

(MATa), and the Nub constructs of AHK3 and ERS1 were transformed in yeast strain THY.AP5 (MATa). After mating, activation of the reporter

gene was determined by growth of the transformants in a dilution series (OD600nm from 1 to 0.01) on SC medium (SC). The presence of the

plasmid was assayed by growth on SC medium supplemented with adenine and histidine (SC+Ade., His.). Co-transformations of the

AHK4–Cub-PLV fusion with NubG served as negative control and co-transformation with NubWT served as positive control.
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the cytoplasm. This topology of the receptor is in agreement

with the observation that the binding of the cytokinin zeatin

to AHK3 and AHK4 has a pH optimum of ;6.5 (Romanov

et al., 2006)—a pH found in the ER lumen (Kim et al.,

1998). At pH values of ;5.5—as reported for the apoplast
(Li et al., 2005)—the binding of zeatin to AHK3 is almost

abolished (Romanov et al., 2006). Thus, when the cytokinin

receptors are located in the ER and expose the CHASE

domain to the lumen, they bind their ligand with much

higher affinity. Furthermore, although the subcellular distri-

bution of active cytokinins and their ability to permeate the

cell membrane (Laloue et al., 1981) have not yet been

examined in detail, many enzymes involved in cytokinin

biosynthesis, such as the isopentenyl transferases (IPTs) and

lonely guys (LOGs), and in catabolism, such as cytokinin

oxidases (CKXs), are not only found in plastids (IPTs;

Kasahara et al., 2004) but also in the cytoplasm and nucleus

(LOGs; Kuroha et al., 2009) and other organelles such as the

vacuole and the ER (CKXs; Werner et al., 2003). These

observations suggest intracellular mechanisms which distrib-
ute the hormone and its derivates within the cell. In addition,

several plasma membrane-bound carriers have been identi-

fied which are able to transport cytokinin into the cell

(Burkle et al., 2003; Wormit et al., 2004; Hirose et al., 2005;

Cedzich et al., 2008) where it could be distributed further. So

apparently the current model of cytokinin signal perception

at the plasma membrane needs to be reconsidered.

Recent analyses showed that other hormone perception,
signalling, and distribution compounds as well as hormone

metabolic enzymes are also found at the ER (Friml and

Jones, 2010). For instance, ethylene perception by the five

ethylene receptors and their interaction with central down-

stream signalling elements such as constitutive triple re-

sponse 1 (CTR1) and ethylene insensitive 2 (EIN2) occur at

the ER (Chen et al., 2002; Gao et al., 2003; Grefen et al.,

2008; Bisson et al., 2009; Bisson and Groth, 2010).
Furthermore, the auxin-binding protein 1 (ABP1) and the

PIN-formed 5 (PIN5) auxin efflux carrier localize to the ER

(Tian et al., 1995; Chen et al., 2006; Mravec et al., 2009),

where they are discussed to be involved not only in auxin

homeostasis and metabolism but also in auxin signalling

(Friml and Jones, 2010). Hormonal cross-talk decisively

contributes to the final physiological and developmental

output of hormone action (Benkova and Hejatko, 2009). It
is, therefore, intriguing to speculate that the ER might

represent the intracellular site for hormonal cross-talk.

Supplementary data

Supplementary data are available at JXB online.

Figure S1. AHK3GFP fusion proteins localize to the ER

in transiently transformed Arabidopsis cotyledon cells.

Figure S2. GFP fusion proteins of AHK3 do not co-

localize with the Golgi marker G-rk CD3-967.

Figure S3. AHK3–GFP fusion proteins do not co-localize

with the plasma membrane-localized fusion protein NHL3–
RFP.

Figure S4. The ER localization of AHK3–GFP and

GFP–AHK3 does not change upon cytokinin treatment.

Figure S5. AHK3–GFP fluorescence is detectable in the

ER of the AHK3–GFP-expressing Arabidopsis line.

Table S1. Oligonucleotides used in the study.
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Fig. 6. The GFP fusion proteins of AHK3 show EndoH sensitivity

and are glycosylated in vivo. (A) Amino acid sequence of AHK3. The

transmembrane domains are shown in blue, the histidine kinase

domain in red, and the pseudo receiver domain and the receiver

domain in purple. N-X-S/T sequons are framed. The predicted signal

peptide is italicized, and the putative ER export signals are under-

lined. The green triangle marks the site where GFP was inserted into

AHK3intGFP. (B) Representations of AHK3, AHK1, and the ethylene

receptor ERS1. Putative glycosylation sites are indicated with

asterisks. (C) The electrophoretic mobility of AHK3 is endoglycosi-

dase H (EndoH) sensitive. Equal volumes of protein extracts from

transiently transformed tobacco leaves expressing the indicated

fusion proteins were treated with EndoH (+) or mock treated (–),

followed by western blot analysis and immunodetection using an anti-

GFP antibody. The fusion proteins are indicated by arrowheads.
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