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malgorzata.zmijewska-tomczak@wco.pl
* Correspondence: joanna.kazmierska@wco.pl

Abstract: Radical treatment of patients diagnosed with inoperable and locally advanced head and
neck cancers (LAHNC) is still a challenge for clinicians. Prediction of incomplete response (IR) of
primary tumour would be of value to the treatment optimization for patients with LAHNC. Aim of
this study was to develop and evaluate models based on clinical and radiomics features for prediction
of IR in patients diagnosed with LAHNC and treated with definitive chemoradiation or radiotherapy.
Clinical and imaging data of 290 patients were included into this retrospective study. Clinical model
was built based on tumour and patient related features. Radiomics features were extracted based on
imaging data, consisting of contrast- and non-contrast-enhanced pre-treatment CT images, obtained
in process of diagnosis and radiotherapy planning. Performance of clinical and combined models
were evaluated with area under the ROC curve (AUROC). Classification performance was evaluated
using 5-fold cross validation. Model based on selected clinical features including ECOG performance,
tumour stage T3/4, primary site: oral cavity and tumour volume were significantly predictive
for IR, with AUROC of 0.78. Combining clinical and radiomics features did not improve model’s
performance, achieving AUROC 0.77 and 0.68 for non-contrast enhanced and contrast-enhanced
images respectively. The model based on clinical features showed good performance in IR prediction.
Combined model performance suggests that real-world imaging data might not yet be ready for use
in predictive models.

Keywords: head and neck cancer; radiotherapy; incomplete response; predictive models; radiomics

1. Introduction

Treatment of patients diagnosed with inoperable and locally advanced head and
neck cancers (LAHNC) remains a challenge for clinicians. Chemoradiation is standard
of treatment of these cancers, however, in 5–15% of patients’ incomplete response (IR) of
primary tumour is observed [1]. Presence of residual disease negatively affects overall
survival and suggests higher aggressiveness of the tumour [2]. Identification of patients
with high risk of IR before treatment would be of value to optimization of individual
treatment and shared decision-making process.

Apart from clinical factors, imaging-derived features, radiomics, are widely used for
prediction of different treatment endpoints including local and regional failure, overall
survival (OS) or distant metastases [3,4]. However, performance of models predicting
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locoregional failure, including very early failure, remains unsatisfactory. Vallieres et al.
designed a radiomics-based model predicting locoregional failure in head and neck can-
cer, based on pre-treatment FDG PET and CT images, which achieved AUROC 0.69 in
independent validation for two cohort of patients [4]. Several studies have investigated
prediction of overall survival, based on both: clinical and radiomics features, founding
that combination of models more accurately predicts local and regional failure as well
as OS. Yu et al. designed machine learning model for two-year OS for head and neck
cancer patients, which achieved AUROC 0.792 [5]. Similar results were published by Keek
and Han [6,7]. Although prediction of survival is one of the most investigated topics in
cancer research, prediction of direct result of the treatment, for example persistent disease,
would be very important for planning and discussing treatment strategy for individual
patient. Apart from clinical factors, imaging features of primary tumour and lymph nodes
(LN) are highly investigated [1,8,9]. Model combining clinical and radiomics features for
predicting treatment failure in cervical LN were successfully developed and validated by
Zhai et al. Their model showed good discrimination of high and low risk group of nodal
failure 2 years after treatment, with concordance index (C) of 0.80 [8]. Similar research on
prediction of persistent primary disease is scarce.

The amount of data is one of the critical factors in modeling the risk of failure, es-
pecially when the number of events is low. High quality data produced in controlled
clinical trials might not be sufficient for exploring predictive and prognostic factors due
to the relatively low number of highly selected patients included. Moreover, such models
are rarely successfully validated on sets of real data, which puts their utility in routine
clinical practice into question. Routinely collected data is variable and strongly dependent
on the collection procedures, variety of imaging protocols and device vendors; however,
real-world databases have an advantage of high number of cases and events, which could
potentially compensate for the heterogeneity of collected data. Models based on such
databases would be more applicable in daily clinical practice. In this work, we investigated
the utility of predictive models for IR based on daily collected clinical data and CT-derived
radiomic features. We compared predictive performance of features computed from non-
contrast enhanced planning images taken at our center, and contrast enhanced diagnostic
scans obtained outside of our center, in local diagnostic centers to investigate if quality of
real-world data (RWD) is sufficient for extraction of predictive radiomics features. Leverag-
ing the diverse set of diagnostic scans would enable rapid expansion of the database and
accelerate further research.

The aim of the study was to build and evaluate models based on clinical and ra-
diomics features for prediction of incomplete response (IR) after definitive radiotherapy or
chemoradiation in patients diagnosed with inoperable and locally advanced squamous cell
carcinoma (SCC) of head and neck based on clinical data and routinely collected diagnostic
and radiotherapy planning CT images.

2. Materials and Methods

The study is a retrospective assessment of outcomes of patients diagnosed with locally
advanced SCC of head and neck, treated by definitive radiotherapy or chemoradiation
in Greater Poland Cancer Center between January 2011 and December 2021.TRIPOD
statement is available in Supplementary Materials (S2). Ethical approval for this study was
waived by Ethic Committee of Poznan University of Medical Sciences (KB 367/22) due to
retrospective nature of the study (S3).

2.1. Patients

290 patients with biopsy-proven SCC of oral cavity, nasopharynx, oropharynx, larynx
and hypopharynx were included in the study (Table 1). Patients treated with induction
chemotherapy were eligible for the study. We excluded patients with tumours of parotids,
thyroid gland and histology other than SCC, and those with prior surgery other than biopsy
before radiotherapy. Additionally, cases where the planning CT scan or GTV contours could
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not be retrieved were also removed from the analysis. All patients underwent diagnostic
imaging, including contrast-enhanced CT as well as clinical examination. p16 status was
available for 47 patients. In total, 290 patients fulfilled all criteria for the study.

Table 1. Patients’ characteristics.

Characteristic n = 290 Value

Age (years)
Range 20–81

Median 58

Gender
Male 217

Female 73

Primary Site
Nasopharynx 17
Oropharynx 131

Hypopharynx 32
Oral cavity 28

Larynx 82

Tumour classification
T1 15
T2 93
T3 92
T4 90

Tumour Volume (cc)
Median 13.8
Range (0.2–91.3)

Stage AJCC v.7
I 11
II 33
III 66

IVA 173
IVB 7

Follow up (months)
Median FU 33.2

Range 3–112

HPV status:
Positive 29

Negative 18
Unknown 243

ECOG 0 79
ECOG 1 211

2.2. Treatment and Follow Up

Before radiotherapy, both diagnostic contrast-enhanced and non-enhanced CT images
of head and neck region were obtained for all patients. For radiotherapy planning purpose
slice thickness 3 mm was used.

66 patients were treated with radiotherapy and 224 patients were treated with chemora-
diation. Chemoradiation consisted of up to three courses of cisplatin 100 mg/m2 on days 1,
22 and 43 or 40 mg/m2 weekly up to 6 courses concomitantly with intensity modulated
radiotherapy (IMRT). Total planned dose for the tumour was 70 Gy/35 fractions, 60 Gy
for high risk volumes and 50 Gy for elective volumes. Primary and nodal Gross Tumour
Volumes (GTVp, GTVn respectively) were delineated on non-contrast enhanced CT images,
rigidly co-registered with contrast-enhanced diagnostic images.

Clinical Target Volumes (CTV) were adapted individually according to Gregoire et al. [10,11]
Planning Target Volumes (PTV) were added to the CTVs as 3D uniform margins of 3 mm
according to the set-up and internal motion errors for head and neck treatment, calculated for
the institution [12]. All volumes were delineated or reviewed by one radiation oncologist (JK).

After completion of the treatment patients were evaluated by a radiation oncologist
and head and neck surgeon 2–4 weeks after treatment, then monthly in the first year
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after treatment, three-monthly in the second year and every 6 months for the next 3 years.
Contrast enhanced CT imaging for radiological response evaluation was performed 3
months after treatment completion. RECIST 1.1. criteria for response evaluation were used
to define treatment outcome [13].

2.3. Endpoints

Endpoints of the study were incidence of incomplete response (IR), stable disease (SD)
or progression (PD) in initial localization of treated tumour, three months after treatment in
both imaging and clinical assessment. Residual lesions were confirmed by histopathology
in case of surgical salvage resection or biopsy for patients further treated by chemotherapy,
immunotherapy or enrolled into a clinical trial. Biopsy was not performed if the lesion was
not accessible for these procedures due to its localization or if the patient was a candidate
for the best supportive care only. Where possible, FDG PET/CT was performed before
surgical salvage procedures.

2.4. Clinical Features

The included clinical features were: ECOG performance status, age, gender, clinical
stage of tumour according to 7th AJCC edition, localization of primary site and T stage,
chemotherapy, p16 status, primary tumour volume (GTVp) and dose delivered. p16 status
was coded as positive, negative or unknown in cases where it was not determined. Tumour
volume was used as a continuous variable in all of the models to avoid having to select
arbitrary cut-off values for low/high volume.

2.5. Radiomic Feature Extraction

Radiomic features were extracted using Pyradiomics 2.2.0. We considered the follow-
ing feature classes: shape, first order, Grey Level Cooccurence Matrix (GLCM), Gray Level
Dependence Matrix (GLDM), Gray Level Run Length Matrix (GLRLM), Gray Level Size
Zone (GLSZM), Neighbouring Gray Tone Difference Matrix. Extraction was performed
on the original image, as well as images filtered using wavelet, square, square root, ex-
ponential, logarithm, gradient and Laplacian of Gaussian (LoG) filters. The images were
pre-processed by resegmentation to [−600, 150] HU range and fixed bin width discretiza-
tion with bin width of 25 HU. We also performed interpolation to either isotropic 1 mm
or 2 mm spacing before extraction and combined features from both scales. In total, we
computed 3190 features from each image [14].

2.6. Model Training and Validation

All analysis was performed using Python 3.7. To predict the risk of IR, we trained L1-
penalized (Lasso) logistic regression using either clinical variables alone or in combination
with the CT image features. Univariate p-values for the clinical features were computed
using the F-test for classification. To reduce the dimensionality of radiomic features we first
performed unsupervised feature selection by removing features with near-zero variance
followed by single-linkage feature agglomeration based on Pearson correlation with thresh-
old of 0.9. The final set of features was selected by maximizing the mutual information
between features and targets (presence/absence of IR). The number of selected features and
the L1 penalty coefficient for logistic regression were tuned using grid search with cross
validation. Model performance was evaluated using the area under the ROC curve (ROC
AUC) computed from 5-fold cross validation. Training and evaluation were performed
using scikit-learn 0.22.1 [15].

The software source code is available in Supplementary Material (S1).

3. Results
3.1. Patients’ Characteristics

Initially 330 patients were included in the study, 290 patients were eligible. Reasons
for exclusion were: radiotherapy planning based on megavoltage computed tomography
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(MVCT) due to dental filling artefacts, too short follow-up due to patient’s death or lost to
follow-up for unknown reason. 55 patients (19%) did not receive planned dose of cisplatin
due to worsening of performance status or treatment toxicity. All patients included in the
study completed radiotherapy course as planned.

Median follow up for whole group was 33.2 months, (range 3–112 months). 45 (15.6%)
patients completed treatment without complete remission including 26 (9%) with residual
primary tumour, 11 (3.8%) with residual metastatic LN and 8 (2.8%) patients with both.
(Table 2) We did not observe any progression or stable disease. 18 primary lesions and
8 residual LN were biopsy or histopathology proven. All lesions considered as IR were
localized in irradiated high dose volumes. In 19 (13 primary and 6 LN) cases biopsy was
not performed due to location of residual tumour inaccessible for biopsy or surgery, poor
performance status and patient’s eligibility to best supportive care only or loss to follow up.
In 3 cases IR was confirmed by FDG PET/CT. The 2-year OS rate was 71%.

Table 2. Treatment and outcome.

Treatment and Results, n = 290 Number of Patients (%)

Treatment
RT 66 (22.7)

RTCT 224 (77.2)

Residual disease
All 45 (15.6)

Primary site 26 (9)
Lymph nodes 11 (3.8)

Both 8 (2.8)

Primary site Primary site residual disease, n = 34
(% of all patients, % of all patients in corresponding

primary site)

Oropharynx 15 (5.2, 11.4)
Oral cavity 11 (3.8, 39.3)

Larynx 6 (2.1, 7.3)
Hypopharynx 1 (0.3, 3.1)
Nasopharynx 1 (0.3, 5.9)

3.2. Clinical Model

Most important clinical features in univariate analysis were primary site oral cavity
(p < 10−5), tumour volume (p < 0.001), performance status ECOG higher than 0 and tumour
stage T3/4 (both p < 0.01) (Figures 1 and 2).

Both models: clinical and combined with radiomics features extracted from non-
contrast enhanced images showed good performance with AUCROC 0.78 and 0.77 respec-
tively. Combined model did not improve performance of model based on clinical features
only. Radiomics features derived from contrast-enhanced images combined with clinical
model decreased its performance to AUROC 0.68 (Figure 3).
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4. Discussion

In this study we developed and tested clinical and radiomics models for prediction
of incomplete remission of primary tumour in patients diagnosed with inoperable cancer
of head and neck region, treated with definitive radiotherapy or chemoradiation. Due
to noninvasive nature of image analysis, radiomics became a promising tool not only in
the evaluation of the risk of failure in head and neck [1,4,6] but also as a tool for tumour
segmentation and analysis of treatment-resistant sub-volumes of the tumour [16,17].

There is growing evidence for good performance of radiomics and combined predictive
models in prediction of locoregional failure in cancers of head and neck region. The seminal
study of Aerts et al. proved that radiomics signature is correlated with treatment outcome
and associated with tumour gene expression patterns [18]. Further studies analysed ability of
radiomics signatures to predict overall survival as well as treatment failure. Models for nodal
failure prediction were designed and validated by Zhai et al., showing good performance [8,9].
Our study presents attempt to evaluate risk of IR based on clinical and radiomics features
and results are in line with findings published by others for risk of local failure [4,6]. The
model designed and developed in our study, combining clinical and radiomics features and
based on non-contrast enhanced CT images performed almost equally well in comparison
with clinical model (AUROC 0.78 vs. 0.77 respectively Possible reasons why combining clinical
and radiomics features did not improve model performance are complex. One of the reasons
might be that the small size of the dataset and low number of events observed was insufficient
to address both heterogeneity of clinical data—for example different primary site localization
and T stages—as well as the radiomics framework which might not cover all image patterns.
A possible solution to the latter problem could be the implementation of deep learning as
proposed by Diamant et al. or Le at al. [3,19].

In the clinical model developed in this study, the most important factors for incomplete
remission were tumour dependent: localization of primary tumour in oral cavity, tumour
volume and T stage. While contrast enhanced CT plays an important role in defining
the T stage, the staging information used in the clinical model was based not only on
CT scans but also on clinical examination and other imaging modalities like MR or US.
Clinical examination is critical for assessing the mobility of vocal cords or mucosal spread,
that are both invisible in CT and can only be detected through the physical examination.
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Assessment of the abovementioned manifestations might cause upstaging of the tumors of
the larynx or the oral cavity. MR imaging can contribute to the overall assessment of the
T stage and is used in most cases of nasopharyngeal cancer and for soft tissue evaluation.
Furthermore, the p16 status affects the staging and prognosis in oropharyngeal cancer.
Therefore, the final T stage in the clinical model represents a comprehensive evaluation of
the tumour. In contrast, radiomics features are solely image-derived and related, among
others, to volume and shape of the tumour, but not directly to the T stage. Moreover,
hetrogeneity related to non-harmonized contrast enhanced CT images mentioned above
added unexpected noise to the radiomics features.

The 39.3% rate of IR was the highest among patients diagnosed with oral cavity can-
cer what confirms findings that inoperable oral cavity tumours are relatively resistant to
non-surgical treatment [20–22]. Performance status consist a well-known factor affecting
overall survival prognosis. In our study we confirmed that performance score greater than
ECOG 0 is an important factor for IR too. Although majority of patients treated in this
study presented ECOG 1 and were initially eligible for chemoradiation, the outcome might
be affected by frailty not detected before treatment, including suboptimal nutrition, weight
loss, comorbidities [23] as well as heavy smoking and alcohol use. In our department
frailty evaluation is performed before treatment as a standard for patients 70 years old and
older. Deterioration of performance status during treatment often results in withdrawal
of concomitant chemotherapy that results in suboptimal dose of cisplatin during radio-
therapy. In our cohort 55 patients (19%) did not received planned dose of cisplatin due to
worsening of performance status or treatment toxicity. However, neither chemotherapy nor
cumulative dose of cisplatin was a significant clinical factor for incomplete. remission in
our cohort. All patients completed radiotherapy course as planned. Patients who did not
complete radiotherapy were excluded from the study to avoid introducing the additional
confounding factor.

Role of HPV infection in oropharyngeal cancer is well known as a favourable factor
for treatment outcome in oropharyngeal cancer [24]. p16 testing is nowadays standard of
care, however, in our retrospective group, only 47 patients were p16 tested as p16 testing
was not a part of the standard care. Since 2017 p16 immunostaining in oropharyngeal
cancer is a part of standard procedure in our center. 29 of tested patients were p16 positive,
including 23 patients with oropharyngeal cancer.

Presented clinical model, based on patients’ and disease’s features, can be helpful in
estimating of the risk of very early treatment failure and in process of informed shared
decision making.

In the spirit of leveraging real-world data, similarly to the recent study in breast
cancer [25], we attempted to use not only the standard, non-contrast enhanced CT images
acquired in the treatment planning process, but also a heterogenous set of contrast-enhanced
CT diagnostic images obtained in our center and other hospitals shortly before treatment.

Thanks to significantly higher availability, using these diagnostic images could help to
build larger data sets, provided that the balance between quality and quantity is maintained.
It would also help to improve the robustness and generalization of radiomics models, sup-
porting their wider adoption and use [25,26]. Unfortunately, real-world contrast enhanced
CT images collected in this study were too heterogeneous to build a predictive radiomics
model with satisfactory performance, enabling further clinical testing and use. The hetero-
geneity of these CT images is caused by the variation in the image acquisition protocols
between centers, including varying slice thickness, reconstruction kernel, as well as different
kV and mAs. Moreover, we observed variations in volumes of iodine-contrast administered
in different departments. These cross-center differences significantly affected the model
performance. Solutions for harmonization of CT images data, for example proposed by
Selim et al. [27] would provide valuable help in building large scale images database.

The study has some limitations. Not every IR was available for biopsy or pathology
examination. For example, residual disease localized in the retropharyngeal space or invad-
ing large vessels is typically not safely accessible, especially shortly after chemoradiation. In
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such cases, diagnosis of IR was made based on radiological assessment of primary tumour
localization, contrast enhancement, clinical evaluation of the patient including examina-
tion under anaesthesia if needed, and presence of symptoms. Moreover, discrimination
between posttreatment changes such as oedema or fibrosis and persistent tumour is often
challenging without pathological examination. Due to difficulties in labelling these images
as IR or posttreatment changes we didn’t include these patients to the study, unless FDG
PET/CT confirmed persistent disease.

5. Conclusions

The predictive model based on clinical data collected in routine head and neck clinical
practice reached good accuracy. In the future, we plan to prospectively test our approach
on a new patient cohort in our clinic, as well as to perform external validation on data from
multiple institutions. We continue to work on further use of real-world imaging data for
head and neck cancer, as progress in standardization of imaging devices enables obtaining
more homogenous and higher quality imaging data.
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