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Abstract

Background: To detect soft sounds, the mammalian cochlea increases its sensitivity by amplifying incoming sounds up to
one thousand times. Although the cochlear amplifier is thought to be a local cellular process at an area basal to the
response peak on the spiral basilar membrane, its location has not been demonstrated experimentally.

Methodology and Principal Findings: Using a sensitive laser interferometer to measure sub-nanometer vibrations at two
locations along the basilar membrane in sensitive gerbil cochleae, here we show that the cochlea can boost soft sound-
induced vibrations as much as 50 dB/mm at an area proximal to the response peak on the basilar membrane. The observed
amplification works maximally at low sound levels and at frequencies immediately below the peak-response frequency of
the measured apical location. The amplification decreases more than 65 dB/mm as sound levels increases.

Conclusions and Significance: We conclude that the cochlea amplifier resides at a small longitudinal region basal to the
response peak in the sensitive cochlea. These data provides critical information for advancing our knowledge on cochlear
mechanisms responsible for the remarkable hearing sensitivity, frequency selectivity and dynamic range.
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Introduction

In the mammalian ear, incoming sounds vibrate the eardrum,

propagate along the middle-ear bony chain, and enter the cochlea at

the oval window (Fig. 1A). The stapes vibration at the oval window

results in a pressure change in the cochlear fluid [1]. Due to

impedance difference between the oval and round window this

pressure wave results in a pressure difference across the cochlear

partition, which initiates a forward traveling wave [2]. The cochlear

traveling wave starts at the base and propagates along the basilar

membrane (BM) towards the apex. As the wave travels, its amplitude

gradually increases and the speed decreases. The vibration reaches

the maximum at the best frequency (BF) location and then declines

sharply [2–6] (Fig. 1B). In sensitive living cochleae, the soft sound-

induced vibration at the BF location is .1,000-fold larger than that

at the stapes. This ratio becomes smaller as the stimulus level

increases, indicating the cochlear nonlinearity [6–12]. The cochlear

sensitivity, sharp tuning, nonlinearity, and spontaneous otoacoustic

emission have been attributed to the cochlear amplifier, a outer hair

cell-based active process proposed to amplify the BM response to soft

sounds [13–21].

The cochlear amplifier is believed to reside at an area

immediately basal to the BF location [13–15,21] (blue bar in

Fig. 1C). As waves propagate through this region the cochlear

amplifier generates energy and boosts the BM vibration

consequently resulting in a peak response at an apical location

(location A in Fig. 1C). The cochlear amplifier has been studied by

measuring the BM transfer function [22]. The transfer function of

the BM vibration is conventionally measured as the ratio of the

BM to stapes vibration magnitude as a function of frequency [22].

However, the conventional transfer function is determined by the

total mechanical processes from the stapes to the measured BM

location, and it provides no spatial information about where the

amplification occurs. In the current study, we localized the

cochlear amplifier by measuring BM vibrations at two longitudinal

locations (A and B in Fig. 1C) and quantifying the local transfer

function of the BM between the two locations. The results show

that the cochlea can increase vibration magnitude at a longitudinal

region basal to the peak response location in a frequency- and

level-depend manner. Thus, we conclude that the cochlea

amplifier resides at a location basal to the response peak in the

sensitive living cochlea.

Results

All animals tolerated anesthesia and survived from surgery.

However, because of the invasive surgery required to access the

BM and the inherent vulnerability of high-frequency hearing, the

data acquisition efficiency from sensitive cochleae was low. The

principle constraints were high-frequency hearing loss and poor

visibility of the cochlear fluid. The latter was caused by blood cells

and tissue fluid in the scala tympani, which reduced the signal level

and resulted in a high noise floor of the vibration measurement.

Measurements with a noise floor of .0.2 mm/s were excluded
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from this report. The data presented in Figure 1D–I, Figure 2,

Figure 4A–D, and Figure 5 were collected from one sensitive

cochlea, and those in Figure 3 and Figure 4E and F were from two

of five sensitive cochleae.

Conventional transfer functions and growth rates of BM

vibrations in a sensitive cochlea measured at two longitudinal

locations with a separation of ,288 mm are presented in

Figures 1D–I. Data in Figures 1D–F were collected at the more

basal location ,2,450 mm from the base. At low sound levels, the

ratio of the BM to stapes vibration increased with frequency,

peaking at ,15.3 kHz (i.e., the BF, indicated by the vertical

dashed lines in Figs. 1D and E) and then decreased rapidly at

higher frequencies. At 20 and 30 dB SPL (0 dB SPL ref. 20 mPa),

the BM peak response was .1,000-fold greater than the stapes

vibration and decreased with increasing sound level. For an

,3,333-fold increase in sound pressure level, from 20 to 90 dB

SPL, the ratio decreased ,100 times, which indicates a strong

nonlinear compression. The compression is confirmed by the

Figure 2. Local transfer functions, delay, velocity, and wavelength of basilar membrane vibration. (A) The response peak at ,12.0 kHz
decreased, broadened, and shifted toward low frequencies with increasing sound level. The magnitude was smallest at ,17.0 kHz. (B) Phase
response was similar to that in Figures 1F and I but with a smaller phase lag. The delay from the basal to more apical location increased with
frequency (C), while the propagation velocity (D) and wavelength (E) decreased over the same frequency range. Red lines show post-mortem data
measured at 40 dB SPL.
doi:10.1371/journal.pone.0020149.g002

Figure 1. Diagrams for measuring basilar membrane vibrations. (A) Two measured locations on the BM and one on the stapes (red dots). As
the wave travels from the base to its BF location (B), the cochlear amplifier increases the BM vibration at a location basal to the BF site (blue bar in
panel C). The local transfer function can specifically quantify the functioning of the amplification region between positions A and B. (D) shows a sharp
peak at ,15.3 kHz at low sound levels, which was .1,000 at 20 dB SPL. As the sound level increased, the peak magnitude decreased, and the peak
broadened and shifted toward ,12.0 kHz. (E and H) Growth rates in dB/dB at the more basal (E) and apical (H) locations. (F) The phase lag
progressively increased with frequency. The data in panels G–I, measured at the more apical location, are similar to those in panels D–F (allowing for a
lower BF). BMB and BMA are BM vibration magnitudes at the measured basal and apical locations.
doi:10.1371/journal.pone.0020149.g001
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growth rates of ,1 near BFs (Figs. 1E). Also, the response peak

broadened and shifted to ,12.0 kHz with increasing sound level.

Figure 1D and E shows the typical features of the BM response in

a sensitive living cochlea: high sensitivity, sharp tuning, and

nonlinearity [6,8–12,22,23]. The corresponding phase decreased

progressively with frequency, indicating a decrease in the wave

speed at high frequencies (Fig. 1F). Allowing for a lower BF, the

data measured at the more apical location in Figures 1G–I were

similar to those shown in Figures 1D–F.

Local transfer functions obtained from the data in Figures 1 are

presented in Figures 2A and B (black curves). Figure 2A shows that

below 10.0 kHz the ratios of the BM vibration amplitude at the

more apical location to that at the more basal location were

approximately independent of sound level and frequency. At

frequencies above 10.0 kHz the ratios for low-level stimuli

increased with frequency, peaking at ,12.0 kHz and then rapidly

decreasing to ,1, becoming as small as ,0.01 at high frequencies.

The peak ratio at 12.0 kHz decreased with increasing sound level,

becoming ,1 at 90 dB SPL, while reduction near 17.0 kHz

showed no significant change with the sound level. One

noteworthy finding is that the peaks of the magnitude transfer

functions in Figure 2A were much smaller than those of the

conventional magnitude transfer function shown in Figures 1D

and G. Even more striking is that the minimum ratio in Figure 2A

was as small as 0.01. Since ratios .1 and ,1 indicate

amplification and reduction, respectively, Figure 2A indicates the

cochlear partition between the two measured locations can amplify

and reduce the BM vibration.

The phase transfer functions between the two measured

locations in Figure 2B (black curves) show only negative values,

indicating that waves arrived at the basal location earlier than at

the more apical location and propagated in the apical direction

[6,24,25]. As in Figures 1F and I, the phase lag in Figure 2B also

accumulated progressively with frequency. At frequencies near

12.0 kHz, the slopes of phase curves became flatter at high sound

levels, indicating an increase in wave speed.

Figure 3. Local transfer functions, delay, velocity, and wavelength in a different sensitive cochlea. Data were collected at longitudinal
locations ,2,650 and ,2,317 mm with ,333 mm separation. Allowing a higher peak frequency of 15.0 kHz in panel A, the data in Figure 3 are similar
to those in Figure 2, which confirm the existence of magnitude amplification and reduction over the BM region between the two measured locations.
doi:10.1371/journal.pone.0020149.g003
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Phase difference in Figure 2B allows quantifying the delay,

velocity, and wavelength of BM vibration over the region between

the two measured locations [25]. Black curves in Figure 2C show

that the delay increased with frequency by as much as eight times

from ,10.0 ms at 5.0 kHz to .80 ms at 16.0 kHz. The wave

propagation velocity in Figure 2D decreased with frequency,

becoming as small as ,3 m/s at ,16.0 kHz. Similarly, the

wavelength in Figure 2E decreased with frequency, becoming as

small as 0.15 mm at ,16.0 kHz. At frequencies near the peak of

the local transfer function (,12.0 kHz), the delay, velocity, and

wavelength varied rapidly with frequency, indicating a strong

dispersion. The variation rates decreased with increasing stimulus

level. These features indicate that observed amplification was

related to the degree of the dispersion of the cochlea. Post-mortem

data obtained at 40 dB SPL (red lines in Fig. 2) show the absence

of a response peak (Fig. 2A), less phase lag (Fig. 2B), decreased

delay (Fig. 2C), and increased velocity (Fig. 2D) and wavelength

(Fig. 2E) at and above 12.0 kHz.

Figure 4. The relationship between transfer functions and the longitudinal pattern of basilar membrane vibration. In contrast to the
.1,000 gain of the conventional transfer function (thin lines) at the peak frequency, the local transfer function (thick lines) shows a gain of only ,10
at ,12.0 kHz and ,40 dB of reduction at ,17 kHz in panels A. Response peaks became smaller at 90 dB SPL in panel B. (C) At 20 dB SPL, the highest
transmission efficiency was .50 dB/mm at ,12.0 kHz and the lowest efficiency was ,2100 dB/mm at ,17.0 kHz (thick line). (D) At 90 dB SPL, the
response peak at ,12.0 kHz disappeared and the minimum remained unchanged (thick line). (E) BM response to a 50 dB SPL 11.0-kHz tone increased
at the rate of ,26 dB/mm in the region between 2,450 to 2,750 mm (green arrow), while the 19.0-kHz response decreased at the rate of ,131 dB/
mm over the same distance (red arrow). (F) The increase in low-level response on the basal side of the BF location (solid green arrows) became the
decrease at the high sound level (red arrow near 2,300 mm).
doi:10.1371/journal.pone.0020149.g004
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To show the similarity of data across animals, another data set

measured in a different sensitive cochlea is presented in Figure 3.

Allowing a high peak frequency of 15.0 kHz in panel A, the data

in Figure 3 are similar to those in Figure 2. The higher BF and

longer distance between the two measured locations in Figure 3

than those in Figure 2 likely contribute to differences in the delays,

velocities, and wavelengths between the two figures.

In order to show their difference, the conventional and local

transfer functions measured at a low (20 dB SPL) and high (90 dB

SPL) sound level are plotted together in Figures 4A and B.

Although both conventional (thin lines) and local transfer function

(thick line) showed response peaks, their peak frequencies were

different. The peak of the local transfer function was at frequencies

immediately below the BF of the more apical location. According

to the cochlear frequency- location map [26], the peak response in

the local transfer function indicates that the BM region between

the two measured locations amplified waves maximally at the BF

of the more apical location. Similarly, the magnitude reduction

suggests that the same BM region attenuated waves at high

frequencies above the BF of the more basal location. In contrast to

conventional magnitude transfer functions (thin lines), which

showed amplification only, the local transfer function in Figure 4A

(thick line) indicates that magnitude amplification and reduction

were present between the two measured locations. The thick solid

line in Figure 4B shows the absence of a clear peak in the local

transfer function at a high sound level (90 dB SPL).

For a quantitative comparison, the transmission efficiency, the

magnitude change in dB per unit of the BM length, was calculated

from the transfer function and the distance between the two

measured BM locations or the distance from the base to a BM

location (see Methods), and is presented in Figures 4C and D. At

20 dB SPL, the highest transmission efficiency (thick line in Fig. 4C)

was .50 dB/mm at ,12.0 kHz and the lowest efficiency was

,2100 dB/mm at ,17.0 kHz. At 90 dB SPL, the response peak

at ,12.0 kHz disappeared and the peak magnitude decreased from

.50 dB/mm to ,215 dB/mm. The maximal magnitude of the

transmission efficiency derived from the conventional transfer

function (thin lines in Fig. 4C) was much smaller than that from the

local transfer function. This magnitude difference indicates that BM

vibration magnitude was amplified and reduced mainly over the

distance between the two measured locations.

In order to confirm the observed magnitude amplification and

reduction and to reveal their relationship with the longitudinal

pattern, BM vibration was also measured as a function of

longitudinal location using a scanning laser interferometer [27].

BM response to a 50 dB SPL tone at 11.0 kHz increased at the

rate of ,26 dB/mm from 2,450 to 2,750-mm place (green arrow

in Fig. 4E), while the response to a 19.0-kHz tone decreased at the

rate of ,131 dB/mm over the same distance (red arrow in

Fig. 4E). These frequency-dependent increases and decreases are

related to the magnitude amplification and reduction as shown by

the transmission efficiency derived from the local transfer function

(green and red arrows) in Figure 4C. Figure 4F shows longitudinal

patterns of BM responses to 16.0-kHz tones at 30 and 80 dB SPL.

In contrast to the level-independent decreases on the apical side of

the BF location, the increase of low-level response on the basal side

(solid green arrow) became the decrease at high sound levels (red

arrow near 2,300 mm). This level-dependent slope change was

consistent with the absence of the response peak of the high-level

transmission-efficiency curve (thick line) in Figure 4D. Thus,

Figure 4 shows that observed frequency- and level-dependent

amplification and reduction of BM vibration are the presentations

in the frequency domain of the increase and decrease of the

vibration magnitude as a function of the longitudinal location.

Discussion

Direct measurement of the sound-induced cochlear-partition

vibration has been demonstrated to be one of the most efficient

approaches for studying cochlear mechanics. The cochlear

traveling-wave theory was established based on direct observation

of BM vibrations in the human and animal cadavers [2,3].

Cochlear functions in the living ear, however, are vulnerable and

susceptible to damage caused by measurement procedures. For

maintaining normal cochlear functions, BM vibration is often

measured only at a single location in living cochleae. Instead of

measurements at different locations, the magnitude and phase of

the vibration are measured as a function of frequency [22]. While

the conventional transfer function is adequate for measuring the

cumulative function from the stapes to a BM location, the local

transfer function can specifically quantify the function of the BM

region between the two measured locations. Because cochlear

amplification is thought to be a local mechanism, the local transfer

function can provide more precise and complete information on

the cochlear amplifier than the conventional transfer function.

Although BM vibrations were measured from more than one

longitudinal location in a few previous studies [6,11,23–25], no

local transfer function was reported in the literature.

The principle for measurement of the local transfer function is

the same as that for measuring the conventional transfer function,

with the only difference being in the input: the stapes vibration for

the conventional transfer function and the BM vibration at a more

basal location for the local transfer function. According to the

cochlear traveling-wave theory [4,5], BM vibration at an apical

location results from vibrations at basal locations. Because the BM

vibration at a single location has been used as the output for

calculating the conventional transfer function [22], the BM

vibration at a more basal location was used as the input for

quantifying the local transfer function in this study. In fact, the

vibration at an apical location is more comparable to that at a

more basal location than the stapes vibration because of the

structural and functional similarities at the two BM locations.

While the length of the cochlear-amplification area is not well

defined, a low-level 16.0-kHz tone results in vibration over only an

,600-mm-long region of the BM in the sensitive gerbil cochlea

[27]. The longitudinal extent of the BM vibration includes a

magnitude-increasing region basal to the response peak and a

magnitude-decreasing region apical to the peak (the 30-dB SPL

response in Fig. 4F). The length of either region is ,300 mm,

which is comparable to the distance between the two measured

locations in this experiment. Thus, the local transfer function

should at least partially reveal the function of the proposed

cochlear amplifier that contributes to the vibration at the

measured apical location. The local transfer functions in

Figures 2A, and 3A, and the transmission efficiency functions in

Figure 4C, show amplification of the BM vibration at frequencies

immediately below the BF of the more apical location, which is

confirmed by the spatial patterns of BM responses in Figures 4E

and F. This frequency- and level-dependent amplification is

conceptually consistent with the theory that the cochlear amplifier

boosts the BM vibration at a region basal to the BF location [13–

15] (indicated by the blue bar in Fig. 1C). However, at frequencies

above the BF, the local transfer functions indicate that BM

vibration magnitude is reduced, which is not evident in

conventional transfer functions. This magnitude reduction is

critical to sharp tuning since the input vibration at the more

basal location peaks at a frequency higher than the BF of the more

apical location. To achieve a sharp peak response at the apical site,

low-frequency responses at the basal location need to be amplified,
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and high-frequency responses need to be reduced (Fig. 5A). In

contrast to the current result, the amplification region for a 15-kHz

tone was found to be 1.25-mm long and centered on the best-

frequency place in guinea pig [11].

The observation that the response peak decreases with

increasing sound level (Figs. 2A and 3A) and disappears under

the postmortem condition (red line in Fig. 2A) indicates that

magnitude amplification of the BM vibration likely results from

the cochlear amplifier. It has been demonstrated that the hair

bundle of mammalian outer hair cell can produce mechanical

force as in vertebrates [19,20,28–30]. When the membrane

potential of an outer hair cell changes as a result of sound-

induced hair-bundle deflection, the cell body elongates or shortens

due to conformational change of the membrane protein prestin

[31–35]. By contrast, the lack of significant change with the

stimulus level suggests that the magnitude reduction probably

results from a passive cochlear mechanism.

Materials and Methods

Thirty healthy young Mongolian gerbils (40–80 g) were used in

this study. Animal preparation and surgical procedures were the

same as described previously [25,27,36]. The initial anesthesia was

induced by intraperitoneal injection of ketamine (30 mg/kg)

followed by intramuscular injection of xylazine (5 mg/kg). The

animal’s head was attached to a custom-made holder with x-y-z

translation and rotation capability. After a tracheotomy was

performed, a ventilation tube was inserted into the trachea to

maintain free natural breathing. Body temperature was main-

tained at 3861uC with a servo-regulated heating blanket.

Sensitivity of the cochlea was monitored by measuring the

acoustically induced compound action potential through round

window and neck electrodes. The animal use protocol IS00000130

was approved by the Oregon Health & Science University

Institutional Animal Care and Use Committee.

The left auditory bulla was opened surgically under a surgical

microscope. After the round window membrane was carefully

removed, a few gold-coated glass beads (,20 mm in diameter)

were placed on the BM. Desired bead positions were achieved by

adjusting the angles of the animal’s head and controlling the entry

point of the beads into the perilymph. The opened round window

was partially covered with a thin glass cover slip to eliminate

optical distortion at the surface of the cochlear fluids and to

maintain low impedance of the window. The object beam of a

heterodyne laser interferometer (OFV 302, Polytec, Inc., Ger-

many) was focused on a bead on the BM through a long-working-

distance objective. Reflected light with the Doppler shift from the

vibrating bead was collected by the same objective and sent back

to the interferometer. The voltage output of a digital decoder was

proportional to the vibration velocity of the bead along the optical

axis. Beads have been shown to accurately follow the BM vibration

[37]. The noise floor of the measurement is ,0.1 mm/s,

corresponding to ,0.001 nm at 15 kHz. The best frequency of

the observed location was determined as the frequency with the

maximum amplitude in the conventional transfer function of the

BM vibration at 40 dB SPL.

A custom-written program was used to control hardware (System

II, Tucker-Davis Technologies, Gainesville, FL) for signal genera-

tion and data acquisition. Tone bursts at different frequencies with

23-ms duration and 1-ms rise/fall time were generated by a D/A

converter. The signals were sent to a power amplifier through a

programmable attenuator and then used to drive a speaker (ER-2,

Etymotic Research, Inc. Elk Grove Village, IL). A sensitive

microphone (10 B+, Etymotic Research, Inc. Elk Grove Village,

IL) was used to measure the sound pressure in the ear canal. The

microphone-earphone probe was coupled into the external ear

canal to form a closed sound field. The signals from the

interferometer decoder were digitized with an A/D converter and

averaged 10 to 40 times. The magnitude and phase of the vibration

at the stimulus frequency were obtained by use of the Fourier

transformation. The vibrations at two longitudinal locations on the

BM and at the stapes were sequentially measured at sound levels

from 20 to 90 dB SPL, and at frequencies from 250 Hz to 23.0 kHz

in 250-Hz steps. The displacement of the BM vibration (D) in

nanometers (nm) was obtained from recorded vibration velocity (V)

in mm/s according to D = V/(2pf)*1,000, where f is frequency (Hz).

For measuring the stapes vibration, a gold-coated glass bead was

placed on the anterior surface of the anterior crus of the stapes.

Figure 5. Frequency-dependent amplification and reduction and BM sharp tuning. (A) The BM response at the basal location is presented
by vibration amplitude as a function of frequency (dotted curve), and that at the more apical location is shown by the solid curve. The peak frequency
of the basal location was higher than that of the more apical site. As the vibration propagated from base to apex, the BM between the two measured
locations increased low-frequency responses (upward arrow) and reduced high-frequency responses (downward arrow), resulting in a sharply tuned
response at the apical location (solid curve). (B) Phase at the basal location (dotted curve) leaded that at the apical location (solid curve), indicating
that waves propagated from base to apex at frequency-dependent speeds. Data were collected at 30 dB SPL from the same sensitive cochlea as for
Figures 1 and 2.
doi:10.1371/journal.pone.0020149.g005
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The animal head position was adjusted to allow the laser beam

access to the bead in a direction as perpendicular to the stapes

footplate as possible.

The conventional transfer functions at a BM location were

presented by the ratio of the BM to stapes vibration (Mc) and the

phase difference between the two (wc) as a function of frequency.

Mc was obtained by dividing the BM vibration magnitude (VBM) by

the stapes vibration magnitude (Vst) (i.e., Mc = VBM/Vst), and wc was

calculated by subtracting the stapes phase (wst) from the BM phase

(wBM) (i.e., wc = wBM2wst).

The local transfer function magnitude (ML) was presented by

the ratio of the BM vibration magnitude at the more apical

location (VBMA) to that at the more basal location (VBMB) (i.e.,

ML = VBMA/VBMB). The corresponding phase (wL) was obtained by

subtracting the phase at the basal location (wBMB) from that at the

more apical location (wBMA) (i.e., wL = wBMA2wBMB). Transmission

efficiency of the BM (ET) was obtained at different frequencies

based on ML or Mc and the distance between the two BM locations

or the distance from the base to a BM location (d) according to

ET = Md/d or ET = Mc/d, where ET is in dB/mm, ML and Mc in

dB, and d in mm.

The phase delay, propagation velocity, and wavelength of BM

vibration over the distance between the two measured locations

were derived from the local phase transfer function [25]. The

phase delay from the basal to the more apical location (t) was

calculated from the phase difference (wA2B) and the frequency ( f )

according to t = 2(wA2B)/(2pf), where t is in s, wA2B is in radians,

and f is in Hz. The propagation velocity of the BM vibration (v)

was quantified according to v = d/t, where d is the distance

between two measured locations, and t is the delay over d. The

distance d was obtained from the x, y, and z coordinates at

different locations along the BM, which were measured using a

positioning system consisting of a controller (ESP300) and three

motorized linear translation stages (MFN25CC; Newport Corpo-

ration, Irvine CA). The wavelength of the BM wave (l) was

calculated based on the velocity (v) and frequency ( f ): l = v/f,

where l is in m, v is in m/s, and f is in Hz.

For observing the relationship between the local transfer

function and the longitudinal pattern, the BM vibration was also

measured as a function of the longitudinal location in five cochleae

as described previously [27,36]. Approximately 1 mm of the BM

in the first turn was exposed through the round window. The

object beam of a laser interferometer was focused on the BM. The

scanning paths were determined by 10 to 20 reference points using

the 3-dimensional positioning system. The longitudinal scanning

path was approximately underneath the second row of outer hair

cells. As the longitudinal position of the laser focus spot was

changed along the scanning path at the rate of 5.0 mm/s,

magnitudes and phases of the BM response to a continuous tone

were collected at 2 samples/s, giving a rate of 0.4 sample/mm.
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3. von Békésy G (1960) Experiments in Hearing. New York: McGraw-Hill. 1 p.
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