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Abstract

Motivation: New single-cell technologies continue to fuel the explosive growth in the scale of heterogeneous single-
cell data. However, existing computational methods are inadequately scalable to large datasets and therefore cannot
uncover the complex cellular heterogeneity.

Results: We introduce a highly scalable graph-based clustering algorithm PARC—Phenotyping by Accelerated
Refined Community-partitioning—for large-scale, high-dimensional single-cell data (>1 million cells). Using large
single-cell flow and mass cytometry, RNA-seq and imaging-based biophysical data, we demonstrate that PARC con-
sistently outperforms state-of-the-art clustering algorithms without subsampling of cells, including Phenograph,
FlowSOM and Flock, in terms of both speed and ability to robustly detect rare cell populations. For example, PARC
can cluster a single-cell dataset of 1.1 million cells within 13 min, compared with >2 h for the next fastest graph-
clustering algorithm. Our work presents a scalable algorithm to cope with increasingly large-scale single-cell
analysis.

Availability and implementation: https://github.com/ShobiStassen/PARC.

Contact: tsia@hku.hk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Rapid development in single-cell technologies, notably flow, mass
and high-content imaging cytometry, as well as single-cell RNA-
sequencing, has revolutionized approaches to measure cellular char-
acteristics, from gene and protein expression to biophysical and
morphological phenotypes, at single-cell precision. These advances
will help define the diversity of cell types, states and functions and
also understand how the phenotypic variability within a heteroge-
neous population of cells plays a role in tissue development, health
and disease.

In recent years, both the depth and the throughput of single-cell
measurement have drastically increased, triggering an explosive
growth of large-scale single-cell data. Flow cytometry traditionally
offers high-throughput measurements (�10 000–100 000 cells/s) and
typically has �10 features (cell-surface markers and intracellular
proteins). Integrated with high-speed imaging techniques, imaging
flow cytometry can now generate a wealth of information at high-
throughput given by high-resolution single-cell image-derived phe-
notypes (Blasi et al., 2016; Caicedo et al., 2017; Lee et al., 2019b).
Mass cytometry by time of flight (CyTOF) offers single-cell meas-
urements of millions of cells, with detection of 40 or more proteins

for a given experiment (Spitzer and Nolan, 2016), albeit at a lower
throughput compared with flow cytometry. Another parallel ad-
vance is single-cell RNA-sequencing (scRNA-seq) where droplet-
based systems sequence hundreds of cells per second. An example of
a large-scale scRNA-seq experiment is the recent ‘Mega-Cell
Demonstration’ by 10� Genomics (10� Genomics Datasets, 2017)
which features 1.3 million E18 mouse brain cells.

Although the single-cell measurement scale and throughput con-
tinue to grow at a staggering rate, such technological advance has
outstripped the existing computational capability to handle, process
and analyze the resulting heterogeneous single-cell data. New solu-
tions to fill the computational gap will address the sizeable single-
cell data backlog and accelerate biological discoveries. Among all
computation tasks, unsupervised clustering plays a decisive role in
facilitating downstream biological interpretation in single-cell ana-
lysis. However, existing methods lack the scalability and data-driven
capability required for parsing large and heterogeneous data and
thus cannot identify putative cell types in an efficient manner.

Most tools developed for gene expression data become computa-
tionally prohibitive when the cell count reaches 105–106 cells. For
example, to handle a scRNA-seq dataset of only 6000 cells (of 1572
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genes), the popular SC3 and RaceID algorithms take �5.6 h, whereas
CIDR takes 18min (Duò et al., 2018). Even Seurat, which is fast on
smaller datasets, takes over 1.5 h on a 68K scRNA-seq dataset of
1000 genes [when bypassing preliminary principal component ana-
lysis (PCA)] and often runs into memory allocation errors. In order to
digest larger batches of data, the common strategy is to rely on sub-
sampling, which often overlooks rare cell types (e.g. SPADE; Qiu
et al., 2011). A handful of other algorithms (that are not specific to
transcriptomic data) can operate on larger datasets, for example,
FlowSOM (Van Gassen et al., 2015), K-Means and FlowMeans
(Aghaeepour et al., 2011). However, they often rely on manual par-
ameter tuning or invoke a number of clusters in advance, which in
turn poses challenges to perform unbiased exploration of the un-
known complex cellular heterogeneity. In the scenario where it is feas-
ible to perform analysis for a range of predetermined number of
clusters and select the result based on the internal clustering evalu-
ation criteria (e.g. Silhouette Index), it is not uncommon that the
‘elbow point’ is a poor reflection of the true underlying structure in
the data. A recent benchmarking study of 12 clustering methods on
smaller scRNA-seq datasets (Duò et al., 2018) showed that generally
no method achieved its best performance at the annotated number of
clusters. For instance, in its automated mode, where cluster selection
is based on the elbow point of within-cluster-variance, FlowSOM
underestimates the number of clusters (as does FlowPeaks; Ge and
Sealfon, 2012), typically requiring a ‘generous’ cluster estimate in
order to capture annotated populations (Weber and Robinson, 2016).

In light of these challenges, we present PARC—Phenotyping by
Accelerated Refined Community-partitioning—a fast, automated, com-
binatorial graph-based clustering approach that integrates hierarchical
graph construction and data-driven graph-pruning with a community-
detection algorithm. PARC (i) outperforms existing tools in scalability,
without resorting to subsampling of large-scale, high-dimensional
single-cell data (>1 million cells); (ii) accelerates the clustering compu-
tation by an order of magnitude through automated community-
partitioning refinement guided by the data structure itself and (iii) aug-
ments the sensitivity and specificity to unbiasedly reveal the cellular
heterogeneity, especially rare subsets within large populations.

We validate the performance of PARC on large-scale datasets,
with respect to speed and accuracy, as well as versatility across a
wide range of single-cell data including: mass and flow cytometry,

scRNA-seq and imaging cytometry (Fig. 1a and Supplementary Fig.
S1). Notably, we demonstrate that PARC can detect subpopulations

that were not labeled in the original scRNA-seq datasets of 68 000
peripheral blood mononuclear cells (PBMCs). It also enables data-
driven clustering of the entire mouse brain dataset of 1.3 million

cells without any downsampling. As a proof of concept, we show-
case that PARC correctly infers cell type on a mega-set of multiple

lung cancer cell lines (>1 million cells) on the basis of their biophys-
ical attributes derived from multicontrast label-free single-cell
images (Lee et al., 2019a, b).

2 Materials and methods

PARC employs three major steps to enable scalable and data-driven
clustering of single-cell data (Fig. 1b). The first step is an accelerated

nearest-neighbor graph construction using hierarchical navigable
small world (HNSW) (Malkov and Yashunin, 2016), in which each
node is a single cell connected to a neighborhood of its similar cells

by a group of edges. The second step is the data-driven pruning of
the edges based on the distribution of edge-weights at both the local

node-by-node level and the global network level. The last step is a
community detection based on Leiden algorithm (Traag et al., 2011)
that can efficiently handle singletons (clusters containing one data

point) resulting from the pruning. These steps are integrated in such
a way that PARCs performance is not determined by each individual

step, but the feedback between them. Notably, the pruning proced-
ure in PARC, which reduces the sample size of edges and improves
the K-NN graph representation of the underlying data, critically

increases the speed and robustness of the subsequent community-de-
tection step. We find that this is particularly advantageous in detect-
ing rare but distinct populations. In Sections 2.1–2.3, we will

describe in detail the three modules and their integration.

Fig. 1. (a) Summary of the clustering performance of PARC and other competitive clustering methods on various single-cell datasets, including flow cytometry, mass cytometry

(CyTOF), imaging cytometry, and scRNA-seq data. (b) Overview of PARC workflow for large-scale single-cell analysis on multiple types of high-dimensional single-cell data.

The enabling features include fast graph construction by HNSW, 2-step data-driven graph refinement and pruning, and accelerated community detection by Leiden algorithm.
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2.1 HNSW for fast and scalable K-NN search
In the first step, PARC constructs the K-NN graph using HNSW,
which offers logarithmic complexity scaling (Malkov and Yashunin,
2016). A small world graph is characterized by long links which
bridge different clusters and shorter links which represent inter-
cluster connectivity. The HNSW method differs from other navig-
able small world methods by binning links in hierarchy (i.e. layers)
according to their lengths. The search starts at the top layer contain-
ing the longest links and traverses the elements until a local min-
imum is reached. The search then goes to the lower layer (i.e. the
layer having shorter links) from the node where the most recent
local minimum was detected. Such hierarchical graph structure
allows fast graph construction with logarithmic scalability, that is,
the construction scales as O(NlogN), whereas each query takes
O(logN) time (Malkov and Yashunin, 2016). We note that some
tools (e.g. X-Shift Samusik et al., 2016) employ exact neighbor
searches whose slightly improved accuracy cannot be justified by
their computational overload. Several others incorporate approxi-
mate neighbor searches that become time intensive on large-scale
data (e.g. Phenograph’s use of Python library Sklearn’s ‘kdtree’ and
SCANPY’s UMAP-based neighbor search) (McInnes et al., 2018).

2.2 Graph pruning for effective capture of network

structure
The linkages in the K-NN graph impact the clusters found in the
modularity optimization algorithm, applied in the third step of
PARC, that is, community detection. One common strategy relies
on a manually tuned user-defined K value, which does not always
yield robust graph representation of the data. Higher K values gener-
ally favor preserving larger communities, but compromise the ability
to detect rare subpopulations. On the other hand, as we will demon-
strate later, lower K values in other clustering methods are only mar-
ginally (and inconsistently) better at recovering rare populations but
cause fragmentation—complicating the biological discovery.

Another related strategy is to create a weighted graph that aims
at revealing the modular structure of the graph. However, current
methods (e.g. using Jaccard weight) do not discriminate adequately
between links (especially those connected to the rare populations in
large-scale datasets), which negatively impacts modularity optimiza-
tion in the subsequent community-detection algorithm.

In PARC, we pursue a pruning strategy motivated by the observa-
tion that the edge-weight statistics in various single-cell datasets com-
monly exhibit a long-tailed distribution (Fig. 2). In such a skewed
distribution, the relative weight difference based on Jaccard similarity
(and also Euclidean distance) between the weak and majority edges is
diminished due to the fact that the long tail occupies a large portion of
the scale. However, this problem, conceivably a result of the ‘curse of
dimensionality’, cannot be solved by simply re-weighting the graph
using a different metric as it is a direct function of the dimensionality
of the data. Consequently, the optimization function employed in the
subsequent community-detection step sees the weak (potentially spuri-
ous) and majority edges as very similar. The detected subcommunities
are thus more susceptible to being merged by spurious links due to the

‘resolution limit’—a common limitation in community detection
(Barabasi, 2019)—resulting in undesirable merging of clusters.

To address the limitations posed by edge-weighting and K-par-
ameter tuning strategies, PARC instead starts with a generous fixed
K number (K¼30, see Supplementary Sensitivity Analysis) and
implements automated two-step pruning of weak edges guided by
the data structure. First, it examines each node locally and removes
the weakest neighbors of that particular node based on the
Euclidean distance; and second, it re-weights the edges using
the Jaccard similarity coefficient and globally removes edges below
the median Jaccard-based edge-weight. The local pruning allows us
to remove redundant neighbors in very densely connected neighbor-
hoods, whereas the global pruning removes spurious edges that
would otherwise persist in more sparsely connected regions.

As a result, the data-driven pruning in PARC has a 2-fold advan-
tage underpinning the clustering performance of PARC. First, it fine
tunes the local K value, and thus, overcomes the limitations of manual
tuning. In fact, lowering K to reduce runtime becomes less necessary
due to the fast graph construction phase. Second, the pruning strategy
in PARC results in a refined graph that retains only significant neigh-
bors and thus accelerates the convergence of the optimization algo-
rithm, which empirically scales linearly with the number of edges (see
Supplementary Fig. S2 and Supplementary Sensitivity Analysis on the
choice of pruning threshold) (Blondel et al., 2008).

2.3 Pruned graph helps shield against resolution limit
Having constructed a network representation of the cells, we apply
the Leiden modularity optimization algorithm (Traag et al., 2019).
We show that using the pruning strategy described above accelerates
clustering time and mitigates the resolution limit issue (whereby
smaller clusters are more likely subsumed into larger ones as the net-
work size grows).

Leiden addresses the issue of internally disconnected commun-
ities by breaking up clusters into subclusters. However, to control
the proliferation of clusters, Leiden only re-assigns refined commun-
ities to major communities found in the aggregation step immediate-
ly before. This means that once a community is merged into
another, it can only be reassigned to any of the existing commun-
ities. Thus, substructures may be subsumed into larger communities
due to the resolution limit of the quality function which is sensitive
to spurious links extending from minor populations to major popu-
lations. The effect worsens as the size (or total weight), m, of the
network increases, showing why Leiden (without pruning) and the
related Phenograph (using Louvain method) are unable to consist-
ently segregate rare yet distinct populations.

To understand the resolution limit issue and how pruning helps
to alleviate it, we need to investigate modularity of the graph—a
measure of density of links within a community to that between
communities. A node is assigned to a community only if the change
in modularity is positive. The change in modularity, DQ, when
assigning node i in community A to community B can be written as
(ki,in is the sum of weighted links from node i to nodes in community
B, ki is the weighted links incident on node i, Rtot is the sum of
weighted links incident on B, m is graph weight):

DQ ¼ ki;in

m
� ki

P
tot

2m2
: (1)

If we assign all nodes in community A to B, then the change in
modularity is:

DQAB ¼
X

i in A

ki;in

m
� ki

P
tot

2m2
: (2)

For a simplified case of an unweighted graph (or a graph where the
weightings are not discriminatory and hence effectively unweighted),
we rewrite the change in modularity when merging community A and
B as (where kA and kB are the total degrees of A and B, and L is the
total number of links in the entire network, and lAB is the number of
links between community A and B; Barbasi, 2019):

Fig. 2. Distributions of graph edge-weights in various SC datasets. The high weight

score of important neighbors in the tail, diminishes the difference between weak and

majority links negatively impacting the robustness and speed of community detec-

tion an issue that could be addressed by graph pruning.
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DQAB ¼
lAB

L
� kAkB

2L2
: (3)

Consider the scenario where kAkB/2L < 1, then the change in
modularity is positive if there exists even one link between the two
communities (lAB � 1). For the sake of simplicity, let k0¼kA � kB,
then DQ is positive when A and B are merged for all k0 � �(2L).
Therefore, if the number of links within a small community is below
the threshold �(2 L), then a link to another community will result in
a merger and the algorithm will struggle to resolve communities
below the resolution limit of k0 � �(2L). It is therefore critical to re-
move artificial or weak links set up in the initial K-NN graph.

The aggressive pruning in PARC generates (for some datasets)
several small clusters or singletons which are not necessarily all out-
liers. Therefore, PARC examines whether these fragments should be
assigned to a larger cluster or left as outliers. Fragments (whose
population is below a threshold) are assigned to a cluster containing
the greatest number of its original neighbors found in the HNSW
stage, provided this cluster is above the minimum population thresh-
old. If the cell does not have any neighbors belonging to a larger
cluster, then it remains an ‘outlier’ cluster. PARCs efficient han-
dling of fragments overcomes prohibitive runtime bottlenecks such
as those experienced by Phenograph (when lowering K) and by
Seurat (when increasing pruning) (Fig. 3a and Supplementary Fig.
S3). PARCs default threshold for a cluster is a minimum of 10 cells.
A more detailed analysis of the acceptable range of parameters and
thresholds in terms of impact on accuracy, number of clusters and
runtime, is provided in Supplementary Sensitivity Analysis. The
analysis shows that pruning not only elevates the accuracy across a
wide range of K compared with other methods where K is a (manu-
ally) tuned parameter but also extends the range of suitable K val-
ues (Supplementary Figs S4 and S5). We also analyze the range of
pruning and outlier thresholds (Supplementary Figs S2 and S6) as a
guide for users interested in tuning the parameters and show that
PARC is robust to reasonable changes. Due to its fast runtime, users
can efficiently configure parameters in PARC if they wish.

3 Results

Motivated by the need for a versatile tool to cope with the increasing
diversity of large-scale single-cell data types, we tested PARC on a
range of annotated single-cell datasets of scRNA-seq, flow cytome-
try, CyTOF and imaging cytometry, with cell counts spanning three
orders of magnitude (from 1000 to 1 300 000 cells). With large-scale
clustering being the emphasis, we reviewed and compared PARC
with 18 well-known clustering tools benchmarked in Weber and
Robinson (2016) as well as to the graph-based method in Seurat.
Only six of them are practically scalable on datasets with �1 million

cells without any subsampling. These six are Phenograph (Levine
et al., 2015), FlowSOM (Van Gassen et al., 2015), FlowPeaks (Ge
and Sealfon, 2012), Flock (Qian et al., 2010), and K-Means and
Seurat (Stuart et al., 2018).

PARCs performance is benchmarked against the six competitive
clustering methods and a summary of the results is illustrated in
Figure 1a and Supplementary Figure S1. PARC generally outper-
forms the other methods, especially in revealing minor populations
without artificially fragmenting larger populations. We use the
unweighted F1-measure calculated with the Hungarian algorithm
(suited for realistic, complex data where the ground truth is not ab-
solute but based on correlation or partial manual gating, see
Supplementary Materials). In addition, the scores for K-Means and
FlowSOM show high variability, strongly depending on the prede-
termined values of chosen parameters (e.g. K clusters)
(Supplementary Fig. S1), which is a drawback for exploratory data
with no readily available ground truth. The corresponding adjusted
rand index in Supplementary Figure S9 reiterates PARCs competi-
tive performance and confirms that pruning does not artificially gen-
erate clusters that reduce the quality of clustering.

In the following sections, we will in greater detail demonstrate
the usability of PARC on diverse types of single-cell data: Section
3.1 on flow/mass cytometry data to highlight scalability, Section 3.2
on flow- and imaging cytometry data to highlight rare cell detection,
Section 3.3 on transcriptomic data as an enabler for gene analysis on
datasets of diverse sample and feature size and Section 3.4 on fea-
tures derived from imaging cytometry, as a proof of concept of the
discriminative power of biophysical properties of cells.

3.1 PARC is scalable on large single-cell cytometry data
To evaluate how PARC accelerates graph-based clustering, we com-
pare the runtime break-down between the graph-based algorithms
PARC, Phenograph and Seurat in terms of network construction
and modularity optimization steps in their default settings. We ran-
domly subsample a CyTOF dataset Samusik_all (Samusik et al.,
2016): 841 644 replicate-bone-marrow cells from C57BL/6J mice
with 39 surface markers. PARCs graph construction and modularity
optimization are accelerated (Fig. 3a), leading to a �30 factor
speedup compared with Phenograph and Seurat. It should be noted
that the runtimes reported throughout the article exclude the time
taken for preprocessing such as normalization or dimensionality re-
duction. The reduction in computation time may be attributable to
some key steps in PARC, namely (i) the use of HNSW to accelerate
the nearest-neighbor search and (ii) the pruning phase which has a
knock-on effect to speed up the modularity optimization by reduc-
ing the number of edges for a given number of samples (while still
maintaining the accuracy as we will show in Section 3.2 and 3.3).

Fig. 3. (a) Scalability of PARC, Phenograph and Seurat in terms of graph construction and clustering time on random samples of CyTOF data (Samusik_all: 841,644 cells and

39 surface markers). (b) Pruning speeds up PARC by a factor of 2, gains increasing with sample size. (c) PARC scalability with dimensionality on scRNA-seq data

(10X_PBMC).
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As shown in Figure 3b, pruning becomes more effective in lower-
ing runtime with increasing sample size, marking its significance in
clustering acceleration with large-scale SC data. We also tested the
scalability of PARC with increasing data dimensionality using the
scRNA-seq dataset of human PBMCs (Zheng et al., 2017). We ob-
serve a fairly linear scaling in runtime of PARC, even when the di-
mension goes beyond 500, indicating its ability to scale with high
dimensionality (Fig. 3c). The accuracy of results for very high-di-
mensional inputs (such as count matrices) is examined in Section
3.3. Memory requirements as a function of sample and feature size
are shown in Supplementary Figure S10. All performance tests are
run on a machine with 126 Gb RAM and eight 3.6 GHz CPUs.

3.2 PARC identifies rare populations in cytometry data
We test the ability of PARC to isolate rare populations first by com-
paring the accuracy to other methods, and then discussing the role
of pruning in uncovering rarer populations and elevating accuracy.
As shown in Figure 4a, we run PARC on two flow cytometry data-
sets (FlowRepository I.D.: FR-FCM-ZZPH) (Weber and Robinson,
2016) and an in-house imaging flow cytometry (Lee et al., 2019b)
(see Supplementary Materials for experimental details). We also

highlight an example, Levine_13, of multipopulation detection of a
mass cytometry dataset. More examples of multipopulation detec-
tion are summarized in Figure 1a and Supplementary Figure S1.

The first dataset, Nilsson_rare (Nilsson et al., 2013), has
44 100 bone marrow cells and 13 surface markers (dimensions),
out of which we aim to isolate 358 (0.08% of total population)
manually gated hematopoietic stem cells. The second dataset,
Mosmann_rare (Mosmann et al., 2014), has 396 400 human per-
ipheral blood cells (14 surface markers), stimulated with influenza
antigens. Only 109 (0.03%) of these are manually gated as acti-
vated memory CD4 T cells (Fig. 4a,b). The third set, multi-
ATOM_rare, has 280 100 digitally mixed cells of 7 lung cancer cell
lines with 23 quantitative biophysical features extracted from each
label-free single-cell image. There are only 100 (0.04%) randomly
subsampled adenocarcinoma cells (H1975). Following the scoring
approach of Weber and Robinson (2016), the cluster with the high-
est F1-score for any cluster containing members of the rare popula-
tion is reported. The F1-score for the multiple population data is
calculated using the Hungarian algorithm (Supplementary
Quantification and Statistical Analysis).

We observe that pruning, intended to alleviate the impact of the
‘resolution limit’, allows PARC to outperform other methods in
detecting rare populations across these different datasets (Fig. 4a).
The F1-score of the rare population obtained using the common
large-scale methods (notably FlowSOM and K-Means) are not only
lower but sensitive to the user-defined choice of number of clusters
fk¼10,15,. . .60g. In Figure 4b, we plot Mosmann_rare (red for
rare cells and gray for non-rare) to visualize how pruning in PARC
enables the detection of the small activated memory CD4 T cell
population (0.03%), which is otherwise missed if pruning is
skipped.

To further evaluate the role of pruning in uncovering rare popula-
tions, we consider the performance of PARC with and without prun-
ing, as well as the performance of PARC, Phenograph and Seurat
when resorting to lowering the K parameter (number of nearest neigh-
bors) as a potential solution to segregating rare populations (Fig. 4c).

Although the rationale in Phenograph for weighting graph edges
is to resolve rare populations by weakening spurious links, we find
that the weighted values are not adequately discriminatory and
therefore do not enable Phenograph to consistently separate rarer
populations. This relates to the discussion in Section 2, where we
illustrated how the skewed weight distributions of the graph edges
diminish the relative differences of weighted edges.

Consequently, a critical factor in faithfully capturing the net-
work structure is whether or not a link exists. If there exists a link
from a small (rare population) to a larger population, it is likely to
become integrated into the larger population as a consequence of its
edge-weights being non-discriminatory and thus reaching the reso-
lution limit.

To overcome the challenges of recovering rare populations, one
might resort to lowering K, but as shown in the heatmap Figure 4c
and Supplementary Sensitivity Analysis (Supplementary Fig. S4),
this is an ineffective remedy for PARC, Phenograph and Seurat, and
also leads to over-fragmentation of clusters that confounds down-
stream analysis.

In fact, at very low K values (K¼5), Phenograph generates so
many singletons and fragments that the process is stalled for 1–2 h
in handling these singletons (denoted by ‘X’ in Fig. 4c). In contrast,
PARCs statistically driven pruning combined with efficient handling
of outliers resulting from pruning seems to be a more reliable ap-
proach for the range of benchmarked datasets.

We also note that Seurat, by default, does some pruning at a
Jaccard weight of 1/15. We try to optimize Seurat’s performance
by conducting a sensitivity analysis of the pruning parameter but
find it is not easily tuned. Based on our analysis (Supplementary
Fig. S3), we find this is partially due to requiring an absolute
Jaccard weight making it difficult to estimate a reasonable value.
More importantly, it is challenging to tune the Jaccard threshold
parameter because any value that incurs a non-negligible amount
of pruning triggers high fragmentation (of thousands of clusters)

Fig. 4. (a) Performance comparison of PARC on 1 multi-population (lower-right,

Levine_13) and 3 rare-cell datasets against 6 competitive tools and their correspond-

ing number of clusters. (b) Pruning in PARC enables rare population detection. (left)

t-SNE plot colored by ’ground truth’ of Mosmann_rare data. PBMCs and activated

CD4þ T cells are labeled as black and red (encircled), respectively; (mid) colored by

PARC with pruning, the cluster containing majority of rare activated memory T-cells

is colored red and other clusters of PBMCs are in shades of grey; (right) colored by

PARC without pruning - the rare activated memory T-cells (red) are not detected. (c)

Comparison among PARC, Phenograph and Seurat in identifying the rare cell popu-

lation in 3 datasets: Nilsson_rare, Mosmann_rare, multi-ATOM_rare, with rare pop-

ulations of 0.08%, 0.03%, and 0.04%. This analysis signifies that simply lowering K

in graph construction does not ensure rare-cell detection. X’s denote stalled process

due to lack of efficient fragmentation handling for low K.
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that Seurat does not efficiently handle, resulting in stalled processes
and prohibitive runtime.

3.3 PARC dissects heterogeneous scRNA-seq data
We tested the adaptability of PARC for handling complex single-cell
transcriptomic (scRNA-seq) data. We use (i) the gold-standard
small-sample size datasets from the recent benchmarking analysis of
scRNA-seq clustering tools (Duò et al., 2018) to assess PARC on
small (�1000 cells) datasets with high dimensionality (directly on
the counts of filtered genes) as well as their dimensionality reduced
counterparts, (ii) the mid-sized annotated 30 mRNA dataset of
68 000 PBMCs (Zheng et al., 2017) for a more granular analysis
and (iii) an exploratory dataset of 1.3 million single cells of the em-
bryonic mouse brain as proof of scalability.

We aim to show that PARC effectively analyzes complex tran-
scriptomic datasets even when the sample size is low but the dimen-
sionality is high. Here, we use four ‘gold-standard’ datasets
provided in Duò et al. (2018) (extracted from Bioconductor Library
DuoClustering2018) and compare PARC with four clustering tools
used in the mentioned study: three of which are the previously
benchmarked in Section 2 (FlowSOM, Seurat and KMeans) and the
fourth is SC3, which is competitive on smaller data. The gold-
standard datasets after filtering for the 10% most highly variable
genes (HVG) comprise: Zheng8eq (3798 cells, 1572 HVG),
Zheng4uneq (5079 cells, 1644 HVG), Koh (531 cells, 4898 HVG)
and Kumar (246 cells, 4516 HVG).

As seen in Figure 8, PARCs accuracy is highly competitive in
both the dimensionality reduced case (Fig. 8a) and the case where
no dimensionality reduction is applied to the count matrix of filtered
genes (Fig. 8b). Although Seurat and SC3 also demonstrate good ac-
curacy on the count matrix inputs, their runtimes are prohibitively
long as the dimensionality increases. The runtimes for Seurat and
SC3 are 1.5 and 7 h on the 1000 most HVG of the 68 K PBMC data-
set, compared with 50 s for PARC, without compromising the accur-
acy (we find that Seurat has memory allocation errors for some very
high-dimensional datasets, Supplementary Fig. S13). As scRNA-seq
analyses generally rely on various gene filtering and dimensionality
reduction steps to handle the challenges posed by the large number
of genes and the issue of dropouts, we also show that PARC remains
stable for different types of common preprocessing (following the
same filtering steps of Duò et al., 2018) (Supplementary Figs S7 and
S8). For instance, on the Zheng8eq dataset (3798 cells), we show
that the performance is stable with PCA or UMAP (using first 100
components which corresponds to �97% of cumulative variance on
all the benchmarked scRNA-seq datasets) on two types of gene fil-
tering, as well as the corresponding filtered count matrices
(Supplementary Fig. S8). A comprehensive comparison of all the
gold-standard datasets using various preprocessing is provided in
the Supplementary Materials.

We next consider a mid-size dataset of 68 K PBMCs to show an
example of PARC used for detailed analysis. The cells in the mixture
are annotated (Zheng et al., 2017) by correlating each cell against
the average expression profile of purified populations
(Supplementary Fig. S11). We adopt the same preprocessing steps as
Zheng et al. which are: filtering out genes based on unique molecu-
lar identifier (UMI) count, log normalizing the 1000 most variable
genes and subsequently using the first 50 principal components
(PCs) generated by PCA applied to the UMI counts (50 PCs corre-
sponds to the inflection point on the scree plot). The issue of ‘drop-
outs’ is not addressed but partially mitigated by UMI-count-based
filtering. We compute log2 fold-changes at the cluster level to infer
cell type based on the 10 most differentially expressed genes per
cluster (Fig. 6a–c) and plot only 3–5 of these per cluster.

PARC is a high performer in terms of F1-score (Fig. 5a and b),
but more importantly, it identifies subpopulations that were masked
by the original manual gating (Fig. 6a–c). This is attributed to the
fact that the annotation was mainly given to T-cell subpopulations
on a mesoscopic level (e.g. CD4þ, CD8þ, memory and regulatory T
cells) (see the ‘ground truth’ annotation in Supplementary Fig. S11).
In contrast, other subtypes of PBMCs (e.g. monocytes, dendritic cells
and NK cells) are not annotated by any of their known subtypes.

Nevertheless, PARC is able to reveal the clusters showing high ex-
pression of CD14 (cluster 9) and CD16 (or FCGR3A) (cluster 10),
markers for classical and non-classical monocytes, respectively (Ong,
2018). It also identifies subsets of NK cells as inferred by the expres-
sion level of CD160 and CD16 (FCGR3A) (clusters 3 and 5), which
is known to be associated to the CD56dim CD16þ cytotoxic NK cell
phenotype (cluster 5) (Le Bouteiller et al., 2011). Notably, PARC
also detects rare populations of IL-3RAþ (Zhang et al., 2017) plas-
macytoid dendritic cells (cluster 11, 0.6%) and megakaryocytes (clus-
ter 12, 0.4%). The marker genes identified for each cluster are
summarized in Figure 6b and Supplementary Table S1.

We further employ PARC to explore the scRNA-seq dataset of
1 308 421 embryonic mouse neurons. The single-cell transcriptomic
profiles were obtained with Cell Ranger 1.2 (10� Genomics Datasets,
2017) and preprocessed in the same manner as the Zheng et al. (2017)
dataset using python package SCANPY (Wolf et al., 2018).

Bypassing approaches that downsample data and thus risk losing
the original data structure (especially, rare populations; Linderman
et al., 2019), PARC completes clustering with a run time of only
15 min on 1.3 million cells (using the first 50 PCs on UMI counts of
the 1000 most variable genes found after initial filtering). This is sig-
nificantly faster than runtimes reported by recent methods that also
do not rely on downsampling, that is, ScScope (Deng et al., 2019)
and SCANPY (Wolf et al., 2018), with clustering runtimes of 104
and 97 min.

The clusters are annotated by major cell types according to the
maximal expression of well-known marker genes from the Allen
Brain Atlas and Tasic et al. (2016) (Fig. 6d–g), and have the follow-
ing composition: GABAergic 18%, Glutamatergic 65% and non-
neuronal 17%. The composition concurs with previous studies on
embryonic brain cell composition which suggest �90% of cells are
neuronal (Bandeira et al., 2009), with �1 in every five neurons being
GABAergic (Sahara et al., 2012). The composition also agrees with
the reported fractions by ScScope and SPLiT-Seq (Deng et al., 2019)
(Fig. 6g).

Further classification of subtypes is inferred by plotting the aver-
age cluster expression for well-known gene markers, thus verifying
the segregation of established (non-) neuronal types (Fig. 6g and
Supplementary Table S2). Our results thus demonstrate the ability
of PARC to enable efficient and effective exploration of the large
heterogeneous single-cell datasets.

3.4 PARC clusters 1.1 million label-free single-cell

images
An emerging challenge in single-cell analysis is to adapt to the pro-
gressively diverse sets of single-cell data generated by the wide range
of new single-cell technologies, each with multiple modalities. This
becomes a prerequisite for multifaceted single-cell analysis. Apart

Fig. 5. Performance of PARC on scRNA-seq datasets compared to other methods.

(a) F1-scores on principal components (PCs) of top 10% highly variable genes

(HVG); (b) F1-scores when input is the count matrix of top 10% HVG or 1000

HVG for 68K PBMC shows PARC maintains a high level of accuracy relative to

other methods on both types of inputs
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from the flow/mass cytometry and sequencing technologies, a not-
able example is high-throughput and high-content single-cell imag-
ing, empowering large-scale image analysis that extracts several
features (or phenotypes) representing cell states and types (Caicedo
et al., 2017).

In contrast to fluorescence image cellular assay that specifically
probes different biomolecular signatures of cellular components and
provides functional annotation of genes by morphological similarity
(Rohban et al., 2017), a substantial body of work has shown that
cellular biophysical properties, extracted from label-free optical
imaging (Otto et al., 2015; Tse et al., 2013; Kasprowicz et al.,
2017), are effective intrinsic markers for probing cellular rocesses
(e.g. cell proliferation, death, differentiation and malignancy).
Bypassing the need for costly and time-consuming sample prepar-
ation, single-cell biophysical phenotyping could be significant in
single-cell analysis especially when other biomolecular assays are
not effective.

Here, we test the adaptability of PARC to cluster an in-house
niche single-cell image-based dataset which describes the biophysical
phenotypic profiles of 1.1 million lung cancer cells [7 cell lines repre-
senting three major subtypes: (i) adenocarcinoma, (ii) squamous cell
carcinoma and (iii) small cell carcinoma]. The biophysical phenotypes
of individual cells were extracted from a recently developed ultrahigh-
throughput microfluidic quantitative phase imaging cytometer, multi-
ATOM (Lee et al., 2019a), which captures label-free single-cell images
at an ultrahigh throughput (>10 000 cells/s) without compromising
subcellular resolution. In multi-ATOM, each imaged cell generates
three different label-free image contrasts, from which 23 biophysical
features are derived, for example, cell size, mass, density, optical opa-
city and statistical subcellular texture characteristics (see definitions in
Supplementary Table S4). After feature Z-score normalization, we
apply PARC to cluster a total 1 113 369 single cells.

PARC unambiguously separates (mean-F1 98.8%) between and
within the three broad groups of lung cancer cells (Fig. 7a and b). As
seen on the heatmap, the three main groups show their characteristic

phenotypic profile. We observe subtle differences in some texture
features within the same subtype that further differentiate individual
cell lines—demonstrating the discriminative power of label-free bio-
physical phenotypes.

PARC and Phenograph score the highest in terms of accuracy
compared with the other methods (Fig. 7c, left), with PARC com-
pleting the task in 800 s versus the 7200 for Phenograph using the
same computational resources. Seurat is terminated after 5 h with a
memory allocation error (at 120 Gb RAM). Furthermore, by run-
ning PARC on the randomly selected n¼100 of H1975 cells mixed
with an increasing cell count of each of the other six cell lines
(multi-ATOM_rare), we demonstrate PARCs consistent perform-
ance in rare-population detection based on biophysical features
(Fig. 4a and Supplementary Fig. S12).

As an example of image-based phenotypic exploration, we use
PARC to investigate the significance of the label-free subcellular
texture-based features in distinguishing different cell types.
Although cell size and shape are the most conceivable cellular bio-
physical features, subcellular textures parameterized from label-free
imaging are intimately linked to a variety of subcellular spatial char-
acteristics, for example, protein localization (Yan et al., 2018), nu-
cleus architectural changes (e.g. DNA fragmentation, Almassalha
et al., 2016; cytoskeletal network, Bon et al., 2014). Hence, they can
be harnessed as information-rich single-cell phenotypes. This is evi-
denced by the negligible drop (1%) in the F1-score when exclusively
the texture features (excluding volume, area, circularity and their
moments) are input to PARC, compared with the case of using the
complete feature set (Fig. 7c (right)). The adjusted rand index be-
tween the two sets of clusters (with and without volume features) is
80%, indicating the two sets are well aligned.

4 Discussion

The rapid advancement in bioassay technologies now allows diverse
characterization of single cells at an unprecedented throughput and

Fig. 6. (a) t-SNE visualization of 68K PBMCs (Zheng et al. 2017) colored based on PARC clusters, delineates well-known cell subtypes not captured in original annotation

(Supplementary Fig. S12, and Table S1 for references of marker genes). (b) table of marker genes (extracted from heatmap) used to infer cell type (c) Heatmap of most differen-

tially (log2-fold) expressed genes in each cluster (d) t-SNE visualization of the entire mouse brain data (1.3M cells). Cluster colors reflect PARC clustering of major neuronal

type (Glutamatergic, Gabaergic and non-neuronal) inferred by the marker genes (Allen Brain Atlas and Tasic 2016, Tasic 2018). (e) Mean cluster-level gene expressions of

known marker genes and (f) inferred sub-cell types. (g) PARC’s major cell-type composition concurs with ScScope and SplitSeq, and prior studies on embryonic mouse brain

cells (Table S2).
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content, creating a need for new computational tools that efficiently
handle the scale and complexity of single-cell data. PARC addresses
this gap by employing a combinatorial graph-based clustering ap-
proach that outperforms other methods not only in speed and scal-
ability but also the ability to accurately capture data structure and
detect rare populations.

To deal with large-scale data processing, PARC does not incur
prohibitive computational costs nor resort to data downsampling.
Instead, PARC is built on three integrated elements: (i) HNSW for
accelerated K-NN graph construction, (ii) data-driven two-step
graph pruning and (iii) the community-detection Leiden algo-
rithm. Our results show that pruning, guided by the local and
global single-cell data structure, refines and improves the data
graph representation which in turn accelerates Leiden and allevi-
ates the common problem of the resolution limit in community
detection.

We anticipate that the clustering performance can be augmented
by incorporating other preprocessing methodologies. For instance,
prior to PARC, one could apply correction steps to remove batch
effects (MNN by Haghverdi et al., 2018) and imputation strategies
for combating noise and dropouts in scRNA-seq data (e.g. scScope,
DeepImpute). As PARC does not require prior knowledge of the
data, it is easily adaptable to popular single-cell analysis pipelines
(e.g. SCANPY, Cell Ranger).

Our results demonstrate that PARC accurately clusters various
data types, namely scRNA-seq, flow/mass and imaging cytometry.

We thus anticipate that PARCs versatility lends itself to play an
important role in emerging techniques that empower integrative
characterization of single-cell biochemical/biophysical phenotypes
and transcriptional profiles (regarded as single-cell multi-omics;
Chappell et al., 2018; Hasin et al., 2017)—the major pursuit to
crafting the human cell atlas (Regev et al., 2017). This could
offer a deeper mechanistic understanding of biological processes,
particularly those driving cellular heterogeneity associated
with diseases.
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