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Cell lineage determination and differentiation 
are essential for the normal development of the 
human body. Cellular identity is hard-wired in an 
array of signaling pathways that converge upon the 
nuclear genome to orchestrate proper patterns of 
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Abstract 
Vascular smooth muscle cells have attracted considerable interest as a model for a flexible program of gene 

expression. This cell type arises throughout the embryo body plan via poorly understood signaling cascades 
that direct the expression of transcription factors and microRNAs which, in turn, orchestrate the activation of 
contractile genes collectively defining this cell lineage. The discovery of myocardin and its close association 
with serum response factor has represented a major break-through for the molecular understanding of vascular 
smooth muscle cell differentiation. Retinoids have been shown to improve the outcome of vessel wall remodeling 
following injury and have provided further insights into the molecular circuitry that defines the vascular smooth 
muscle cell phenotype. This review summarizes the progress to date in each of these areas of vascular smooth 
muscle cell biology.

Our lab is focused on elucidating the transcriptional and 
post-transcriptional mechanisms underlying smooth muscle cell 
(SMC) differentiation. Various diseases such as atherosclerosis, 
transplant arteriopathy, cancer, and Alzheimer's disease 

exhibit defects in the normal program of SMC differentiation.  
Our lab uses computer algorithms to interrogate genomes 
for the presence of functional CArG boxes which are bound 
by the Serum Response Factor and, which, together with 
myocardin, constitutes a switch for the SMC differentiation 
program.  Identification of SNPs within or near CArG boxes 
is a goal to assist efforts by geneticists to define variants of the 
genome associated with disease phenotypes. We also employ 
transgenic and knockout mouse models to specifically address 
the activity of promoters and SMC differentiation gene function, 
respectively.  Recent work has centered around the expression 
control and activity of microRNAs that fine-tune levels of protein 
expression in SMC.  Our multi-faceted approach is designed to 
leverage expertise across disciplines in order to obtain a fuller 
understanding of what defines a differentiated SMC and how 
the program is regulated during normal development and disease 
states.
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gene expression requisite for the specific functions 
performed by the ~250 distinct cell types. Thus 
any given cell type's identity and phenotypic 
characteristics are determined primarily by the 
signaling input, both intrinsic and extrinsic, and the 
subset of nuclear genes that are transcriptionally 
and post- transcriptionally controlled through 
such signaling events. One cell type of paramount 
importance in the developing and postnatal body plan 
is the vascular smooth muscle cell (VSMC). These 
cells are derived from a variety of distinct regions in 
the developing embryo[1] and function as structurally 
supportive cells lying immediately subjacent to the 
inner lining endothelial cells of blood vessels. VSMC 
also control the caliber of blood vessels (especially 
resistance vessels in the microcirculation) and thus 
the flow of blood through their intrinsic contractile 
properties. The purpose of this review is three-
fold. First, the molecular definition of VSMC is 
reviewed with a brief listing of the major signaling 
pathways involved in the specification of this cell 
lineage.  Second, the major transcriptional switch 
for VSMC lineage differentiation will be described. 
Finally, the role of retinoids as ligands for nuclear 
receptors in VSMC will be outlined with special 
attention to retinoid-response genes that function to 
maintain a normal VSMC differentiated phenotype. 
The reader should consult additional, complementary 
reviews on the subject of vascular smooth muscle cell 
differentiation[2-5].

DEFINING VASCULAR SMC
The positioning of VSMC within the tunica media 

of blood vessels offers a histological definition of 
this cell type. However, like all human cell types, 
VSMC may also be defined in molecular terms by the 
expression of a subset of the > 23,000 genes in the 
human genome. Over the last 25 years, major progress 
has been made in defining the unique transcriptome 
of VSMC[3,6]. Molecular cloning studies and careful 
developmental expression assays have revealed a 
unique molecular signature for VSMC that collectively 
define this cell lineage in molecular terms (Table 1). As 
a muscle type, many of the genes expressed in VSMC 
encode for elements of the contractile apparatus. For 
example, the smooth muscle isoforms of myosin heavy 
chain (MYH11), alpha actin (ACTA2), gamma actin 
(ACTG2), and calponin (CNN1) as well as SM22 alpha 
(TAGLN) and smoothelins (SMTNA and SMTNB) all 
show adult VSMC-specific patterns of expression.  
Interestingly, however, many of these genes show 
transient expression in developing skeletal and/or 
cardiac muscle[7-11]. The mechanism for such early 

embryonic expression across muscle types is unknown 
but probably relates to a combination of shared 
expression of key transcription factors as well as the 
absence of silencing pathways that would normally 
repress VSMC-specific genes in sarcomeric muscle. 
A larger question is why VSMC-specific genes are 
even expressed in skeletal and/or cardiac muscle 
during development; there have been no studies, to 
date, examining the physiological role of VSMC-
specific protein activity in embryonic skeletal or 
cardiac muscle. As discussed in section two below, the 
major transcriptional switch for VSMC differentiation 
controls virtually all of the aforementioned genes.

The majority of genes in the human genome 
undergo alternative splicing[12]. In this manner, 
VSMC contractile genes (e.g., MYH11) can undergo 
alternative splicing to generate functionally distinct 
proteins. Such splicing events likely explain how such 
a complex organism as a human being is endowed 
with only a marginal increase in gene number 
over more simple animals (e.g., Caenorhabditis 
elegans with only 19,000 genes). Some VSMC-
specific genes arise from alternative splicing of more 
widely expressed genes. The latter include the alpha 
tropomyosin gene (TPM1), telokin (MLCK_v7), and 
heavy caldesmon (CALD). VSMC-specific splice 
variants likely require specialized components of 
the spliceosome found only in the VSMC lineage. In 
sharp contrast to the transcriptional events underlying 
VSMC-specific gene expression, the nature of VSMC-
specific splicing is only marginally understood[13]. 
In addition to contractile genes that encode for 
proteins involved in the unique contractile properties 
of VSMC, a variety of matrix-associated genes are 
expressed that provide the essential anchor points 
for VSMC to remain stationary in the vessel wall 
and respond to appropriately coordinated extrinsic 
signaling inputs[14]. Finally, very recent data from the 
microRNA (miR) revolution has revealed a uniquely 
expressed miR (miR-143-145) that, like some VSMC 
contractile genes, shows early embryonic expression 
in cardiac muscle only to become specific for adult 
VSMC[15-17]. miRs are transcribed from the genome in 
the same manner as protein-coding genes and, through 
a series of RNAse III-dependent cleavage events, 
these small non-coding RNA sequences fine tune the 
proteome through partial Watson-Crick base pairing 
across the processed mRNA (with some bias for the 3' 
un-translated region) resulting in either the repression 
of translation or the direct destabilization of target 
mRNA sequences[18]. In VSMC, the miR-143/145 
bicistronic gene is uniquely expressed in postnatal 
vascular SMC with little to no expression throughout 
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the rest of the adult body[15-17]. Both miR-143 and miR-
145 play auxiliary roles in defining VSMC through 
their ability to control expression of key transcription 
factors that, in turn, directly activate (or repress) 
VSMC gene expression[15-17,19,20].

A myriad of signaling pathways has been described 
that positively regulate the VSMC differentiated 
phenotype. One strong stimulus for VSMC gene 
expression is stretch due to the increasing pressure 
exerted by the heart on the vascular tree[21,22]. 
Another well-defined signaling pathway for VSMC 
differentiation is via TGFβ1 acting through two 
receptors with serine-threonine kinase activity[23]. The 
canonical signaling pathway for TGFβ1 involves the 
activation of SMAD4 and its nuclear translocation 

in concert with other SMADs to directly bind 
SMAD response elements near VSMC promoters 
or cooperate through protein-protein interactions 
with other transcription factors to direct VSMC-
specific gene expression[24,25]. During development, 
PDGF-BB arising from endothelial cells directs 
VSMC or pericyte differentiation as evidenced by 
the hemorrhagic phenotype in PDGF-B or PDGF-β1 
receptor knockout mice[26,27]. A recent elegant study 
showed how sonic hedgehog signaling directs 
the differentiation of adventitial progenitor cells 
into VSMC[28]. In addition to these well described 
pathways leading to VSMC differentiation, there 
exists numerous other signal transduction pathways 
that contribute to the VSMC differentiated phenotype 

Table 1  Gene symbols (and aliases) defining the molecular signature of VSMC
                      Gene name
MYH11 (smooth muscle myosin heavy chain)
MYLK_v7 (telokin)
ACTA2 (smooth muscle alpha actin)
CNN1 (smooth muscle calponin)
TPM1 (alpha tropomyosin)
TPM2 (beta tropomyosin)
CALD_v1 (heavy caldesmon)
MYLK_v6 (smooth muscle myosin light chain kinase)
ACTN1 (alpha actinin)
ACTG2 (smooth muscle gamma actin)
SMTNA (smoothelin A)
SMTNB (smoothelin B)
VCL_v1 (meta-vinculin)
DMD (dystrophin)
TAGLN (Sm22 alpha)
APEG1 (SPEG complex locus)
DES (desmin)
ITGA8 (alpha 8 integrin)
ITGA1 (alpha 1 integrin)
HEY2 (CHF-1)
BARX2b
MYOCD (myocardin)
SRF (serum response factor)
AEBP1 (ACLP)
HDAC8 (histone deacetylase 8)
PTK2 (FRNK)
NOTCH3
ELN (elastin)
LPP (lipoma preferred partner)
GLMN (glomulin)
CSRP1 (CRP1)
PGM5 (phosphoglucomutase)
HRC (histine-rich calcium binding protein)
KCNMB1 (maxi-K beta 1 subunit)

  Function
Contractile
Contractile
Contractile
Contractile
Contractile
Contractile
Contractile
Contractile
Contractile
Cytoskeleton
Cytoskeleton
Cytoskeleton
Cytoskeleton
Cytoskeleton
Cytoskeleton
Cytoskeleton
Cytoskeleton
Cytoskeleton
Cytoskeleton
Transcription
Transcription
Transcription
Transcription
Transcription
Transcription
Signaling
Signaling
Structural
Protein binding
Protein binding
Protein binding
Metabolism
Calcium binding
Ion channel
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including, p38 MAPK[29], calcineurin/NFAT[30,31], 
sphingosine 1/2 phosphate and its G protein-coupled 
receptors[32,33], BMP4[34], Notch[35], thrombin[36], PKGI 
alpha[37], NOX4 and redox signaling[38,39], and RhoA[40]. 
As will be discussed next, there is a common genomic 
code for the transcriptional regulation of most VSMC-
specific genes where essentially all of the signaling 
pathways converge.

TRANSCRIPTIONAL SWITCH FOR 
VSMC DIFFERENTIATION

Most signal transduction pathways converge upon 
the nucleus to direct cell-specific gene expression 
through the action of DNA-binding transcription 
factors and a litany of co-regulators that are recruited 
to discrete elements bound by the signal-responsive 
transcription factor.  In VSMC, as in cardiac 
and skeletal muscle, the principal DNA-binding 
transcription factor involved in cellular differentiation 
is serum response factor (SRF)[41]. SRF binds to at 
least 1,216 permutations of a cis element known as the 
CArG box[42]. Functional CArG boxes are more often 
found in the immediate vicinity of the transcription 
factor start site probably because of SRF's ability to 
work with components of the general transcriptional 
machinery[43]. Recent computational and wet-lab 
screening assays have greatly expanded the co-called 
CArGome to include, not only contractile genes, but 
cytoskeletal, signaling, and transcription factor genes 
as well[44-48]. All total, there are 217 validated CArG 
boxes in the genome with more than 300 awaiting 
wet-lab confirmation.  Ironically, SRF-binding 
CArG boxes are also found in an array of growth-
related genes[41,49]. Indeed, the first SRF target gene 
described was FOS, which is known to be associated 
with the growth response of many cell types including 
VSMC[50-52]. A major conundrum in the field therefore 
was how a widely expressed transcription factor 
could "toggle" between distinct programs of gene 
expression, namely growth and differentiation. As 
described next, the discovery of a key SRF cofactor 
has revolutionized our understanding of the molecular 
key to the VSMC-specific program of differentiation.

The paradigm for differentiation of a multi-
potential cell to one of more definitive nature carrying 
out specific functions to maintain homeostasis was 
established with MyoD in skeletal muscle. These 
seminal findings, first described by Andrew Lassar 
in the late Harold Weintraub's lab[53-55], demonstrated 
the importance of a single transcription factor (MyoD) 
in establishing and maintaining the skeletal muscle 
lineage. Subsequent studies across organ systems have 

exploited the beauty of this system to make inroads 
into the transcriptional basis for other cell types. In 
VSMC, this journey has been a long one beginning 
on the heels of the great MyoD discovery. Numerous 
labs used a variety of arduous, wet-lab methods to try 
and identify MyoD-like factors that could positively 
influence the VSMC differentiated phenotype. In 
the end, however, it took only the key strokes of a 
computer to find the elusive factor we now know as 
myocardin (MYOCD).

Dazhi Wang, in the laboratory of Eric Olson, sifted 
through EST databases for genes uniquely expressed 
in cardiac muscle and found, among many, a gene 
initially thought to be restricted only to cardiac muscle, 
hence its designation as MYOCD [56]. Remarkably, 
MYOCD makes physical contacts with SRF bound 
to CArG elements to increase gene transcription by 
several orders of magnitude[56]. Even more fascinating 
is the discrimination MYOCD makes between SRF-
bound CArG elements in growth-related genes 
(e.g., FOS and EGR1) versus cardiac muscle genes; 
MYOCD does not effect  growth-related gene 
expression. A subsequent study extended MYOCD's 
expression to cultured VSMC and adult aortic tissue 
and, predictably, this SRF cofactor greatly enhanced 
VSMC-specific promoter activity where CArG 
elements reside[57]. More importantly, using the classic 
MyoD conversion assay, which showed MyoD's 
ability to convert other cell types to skeletal muscle, 
overexpression of MYOCD in a non-VSMC cell type 
activated endogenous expression of CArG-containing 
VSMC-specific genes[57]. Indeed, MYOCD has 
been suggested to be a MyoD-like master regulator 
for VSMC-specific gene expression[58]. Moreover, 
MYOCD, like MyoD in skeletal muscle, is sufficient 
to direct structural and physiological attributes of 
VSMC[59]. A notable exception to the MyoD paradigm 
is MYOCD's apparent lack of intrinsic DNA binding to 
a canonical cis element, though the atomic structure of 
MYOCD bound to SRF over a CArG element has yet 
to be solved.  Since the first description of MYOCD 
as a molecular switch for the VSMC differentiated 
phenotype[57], numerous other labs have confirmed and 
extended the finding that MYOCD directs endogenous 
VSMC-specific gene expression[58,60-62]. Two additional 
MYOCD paralogs have been cloned and characterized 
called MRTFA and MRTFB, with the former 
exhibiting virtually identical activity to MYOCD[63].  
Further evidence for MYOCD's role as an important 
regulator for VSMC differentiation is offered through 
gene inactivation studies that show defective VSMC-
specific gene expression as well as a synthetic 
ultrastructural phenotype with much lower content 
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of contractile myofilaments resulting in premature 
death[64,65]. Similarly, SRF inactivation in VSMC 
results in embryonic lethality due to a reduction in 
VSMC contractile genes and altered cyto-contractile 
elements, likely because of MYOCD's inability to 
be anchored over CArG-containing VSMC-specific 
genes[66]. Taken together, the results from many labs 
have firmly demonstrated the importance of MYOCD 
(and SRF) for the appropriate expression of VSMC-
specific genes and, by extension, the establishment of 
a functionally differentiated VSMC.

For more than 40 years, VSMC biologists have 
struggled to understand the basis for so-called VSMC 
phenotypic modulation. This process was initially 
described, inappropriately, as "de-differentiation" 
when VSMC were cultured in vitro and shown 
to exhibit accelerated growth with the loss of 
contractile properties[67]. Subsequent studies showed 
similar phenomena in vivo when blood vessels were 
subject to mechanical or dietary injury[68,69]. With 
the identification of MYOCD as a master switch 
for VSMC-specific gene expression, it was clear 
from the start that VSMC phenotypic modulation 
was likely a manifestation of lowered MYOCD 
expression[57]. Indeed, in vivo arterial injury studies 
have  shown repeatedly that MYOCD mRNA 
expression is reduced following balloon angioplasty 
or endothelial cell denudation[70,71]. The molecular 
basis for MYOCD down-regulation, whether in vitro 
or in vivo following arterial insult, is not clear since 
the promoter to MYOCD is very complex. Recently, 
however, evidence has emerged for an important role 
of miR-145 in MYOCD regulation. Just as MYOCD 
is down-regulated under conditions favoring VSMC 
phenotypic modulation, miR-145 expression levels 
are greatly reduced after mechanical injury or diet-
induced atherosclerosis[15,19]. Increasing levels of miR-
145 in the injured vessel wall appears to reconstitute 
normal expression of VSMC contractile genes[15,19].  
Moreover, MYOCD itself is elevated with miR-145 
over-expression[15]. The latter result was surprising 
since miRs are generally thought to act as silencers.  
However, it appears that miR-145 augments MYOCD 
through its repression of two targets (KLF4 and 
KLF5)[15,17,19,72] that themselves appear to repress 
MYOCD[19,73]. Thus, VSMC phenotypic modulation is 
finally being understood in molecular terms through 
complex circuitry involving transcription factors and 
miRs that exert post-transcriptional control, either 
directly or indirectly, over key transcription factors. It 
will be of cardinal importance to determine whether 
VSMC phenotypic modulation can be thwarted in vivo 
with small molecules that stabilize the program of 

MYOCD/miR-145 expression.
Although MYOCD is without question, the 

critical factor for the establishment and maintenance 
of VSMC differentiation, there are additional 
transcription factors that play some role in this process 
as well. For example, GATA6 was shown to be down-
regulated in the injured vessel wall concomitant with 
reduced contractile genes.  Adenoviral-mediated gene 
transfer of GATA6 to the injured vessel wall restored 
contractile gene expression and reduced vascular 
neointimal formation[74]. Interestingly, GATA6 can 
displace MYOCD and thus reduce MLCK_v7 (telokin) 
promoter activity and expression (which is low in 
VSMC) or synergize with MYOCD and activate 
MYH11 promoter activity. In addition, GATA6 turns 
on other VSMC contractile genes[75]. More recently, 
statins were shown to up-regulate GATA6 binding 
activity to the MYH11 promoter region and increase 
endogenous expression of some VSMC-specific 
contractile genes[76]. It will be of interest to assess the 
effects of statins on MYOCD expression or activity.  
C-MYB, which is most often linked to hematopoietic 
cell differentiation, has recently been implicated in 
VSMC differentiation as well.  Embryonic stem cells 
lacking c-MYB were incapable of differentiating into 
contractile VSMC[77]. As might be expected, MYOCD 
expression levels were also compromised suggesting 
that c-MYB either directly or indirectly activates the 
MYOCD gene. Finally, a very recent study has shown 
that the NRF3 transcription factor, involved with 
redox control in a cell, positively enforces the VSMC 
contractile phenotype, in part, through the elevated 
binding of SRF and MYOCD to CArG elements as 
well as the up-regulation of MYOCD itself[78]. It is 
not clear at this time how NRF3 increases MYOCD 
expression. Collectively, these few examples highlight 
the fact that the VSMC differentiated phenotype, 
while determined mainly by levels of MYOCD, can 
be influenced by additional transcription factors as 
well.

RETINOIDS AND  VSMC PHENOTYPE
Even before MYOCD was discovered, labs 

world-wide were exploring ways to prevent VSMC 
phenotypic modulation, and by extension vascular 
disease, in an array of vascular injury models. One 
such foray involved the study of retinoids, which are 
natural and synthetic derivatives of vitamin A that 
act as ligands for nuclear transcription factors[79].  
The motivation for studying retinoids came with the 
realization that the pathogenesis of arterial disease 
resemblance that of cancer[80], where retinoids were 
being evaluated as potential therapeutic drugs. Indeed, 
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several retinoids, most notably all trans retinoic acid 
(ATRA; vesanoid), have shown variable efficacy in 
the treatment of several human cancers[81]. Application 
of ATRA or other synthetic retinoids (e.g., Am80) 
to animals subjected to balloon angioplasty or an 
atherosclerotic regimen showed reductions in vascular 
occlusive disease[82-85]. Moreover, evidence exists 
showing a preservation of VSMC differentiation 
as revealed by the expression of VSMC-specific 
contractile genes/proteins[84-86]. At this time, there 
has been no study showing effects of retinoids on 
MYOCD expression or activity; however, given 
the positive influence of ATRA on VSMC marker 
expression, one might hypothesize that ATRA would 
augment MYOCD expression/activity. Certainly, 
studies should be performed addressing this question.

Retinoids exert their biological actions primarily 
through the activation of nuclear receptors that upon 
ligand activation, direct changes in gene expression.  
There are 6 retinoid receptors, three retinoic acid 
receptors (RAR) that mainly bind ATRA and three 
retinoid X receptors (RXR) that mainly bind the 
9-cis stereoisomer of ATRA[87]. Cultured VSMC 
express all retinoid receptors except RXR gamma and 
respond to both ATRA and 9cis RA by exhibiting 
growth inhibition[88]. Both in vitro and in vivo studies 
of retinoids in the vessel wall prompted a screen for 
retinoid-response genes. Using a modified subtractive 
hybridizat ion assay wherein cul tured VSMC 
stimulated with or without ATRA, 14 novel retinoid-
response genes were identified that showed either 
immediate early responses to ATRA that did not 
require de novo protein synthesis or delayed responses 
requiring new protein synthesis for induction[89].  
Many genes were down-regulated by ATRA but none 
were followed up for further study. A brief summary 
of some of the more relevant retinoid-response target 
genes is provided next.
Tissue transglutaminase

There are at least four transglutaminase genes 
whose encoded proteins play critical roles in the 
cross-linking of proteins[90]. Tissue transglutaminase 
(TGM2) exhibited very robust and early activation 
with ATRA and other stereoisomers of ATRA[91]. 
Moreover, the protein product was elevated as was 
the ability of TGM2 to cross-link known substrates.  
Importantly, TGM2-mediated programmed cell death 
in cultured VSMC suggesting retinoid-mediated 
growth suppression in vivo may involve an element 
of apoptosis[91]. Indeed, expression of TGM2 mRNA 
could be demonstrated in the neointima of balloon 
angioplastied carotid arteries[89].

Alpha 8 integrin
The superfamily of integrin genes are involved 

with diverse biological properties such as growth, 
differentiation, and outside-in signaling events. 
Application of ATRA to cultured VSMC resulted in 
the delayed induction of alpha 8 integrin (ITGA8)[89]. 
Interestingly, ITGA8 protein expression is highly 
specific for VSMC[92] making this particular integrin 
subunit part of the molecular signature of VSMC 
(Table 1). Analysis of the 5' promoter region reveals 
a conserved CArG box; however studies to date have 
failed to demonstrate this gene as an SRF target and 
mRNA levels do not appreciably change upon forced 
expression of MYOCD (unpublished).  On the other 
hand, several other integrin genes are direct targets 
of SRF including ITGA1, ITGA5, and ITGB1[48,93,94]. 
Balloon injury to the vessel wall appears to up-
regulate ITGA8[95], but rather than acting as a pro-
proliferative or pro-migratory mediator, ITGA8 seems 
to block VSMC proliferation and migration[96,97]. 
Moreover, ITGA8 can promote the expression of 
VSMC differentiation markers, possibly through the 
stimulation of actin filament polymerization and the 
nuclear translocation of MRTFA that together with 
SRF directs VSMC contractile gene expression[98]. 
Thus, retinoid-induced ITGA8 expression could 
confer, in part, the beneficial effects of retinoids 
seen in vivo  following balloon injury, that  is 
reduced proliferation and the promotion of a more 
differentiated VSMC phenotype.
A-Kinase Anchoring Protein 12

In order for generic signaling to confer varied 
responses across each of the some 250 cell types, 
cells must compartmentalize signaling in a manner 
that best befits the cell's homeostatic balance. One 
manner in which cells do this is through the action 
of A-Kinase Anchoring Proteins (AKAPs) that 
can bind both effector protein (e.g., a kinase) and 
downstream substrates of the effector protein[99]. In 
the screen for retinoid-response genes, the AKAP12 
(aka SSeCKS) gene was induced within only a few 
hours of stimulation. Thus, AKAP12 is an immediate 
early retinoid-response gene[89]. AKAP12 has tumor 
suppressor properties and is indeed one of the only 
tumor suppressors known to be induced by retinoids. 
Early studies showed how AKAP12 could inhibit 
the growth and migration of cells, most notably 
cancer cells[100]. Analysis of the AKAP12 locus has 
revealed a complex organization with at least three 
independent transcription units each under control 
of its own promoter residing within a >100 kb gene 
locus[101]. Interestingly, the AKAP12 alpha gene is 
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an atypical SRF target gene because while its paired 
CArG boxes bind SRF and are required for SRF-
dependent promoter activity, they appear to be 
unresponsive to the two main signaling arms leading 
to SRF-dependent gene expression, namely MYOCD 
and the MAPK-ELK1 pathway[102]. Current work is 
focused on the knockout of AKAP12 and the retinoid 
responsive elements that must exist in one of the 
internal promoters.
Vascular Cell Adhesion Molecule

Part of the VSMC program of differentiation 
involves the expression of various adhesion proteins 
required for the establishment of a sessile, non-motile 
state in the normal vessel wall. Although vascular 
cell adhesion molecule 1 (VCAM-1) is largely known 
for its important role in endothelial cells during fatty 
streak formation in early atherogenesis, this marker of 
inflammation is also known to be expressed in VSMC.  
In fact, the initial knockout of VCAM-1 exhibited 
a defect in VSMC differentiation[103]. A subsequent 
report indicated that the concurrent induction of 
VCAM-1 with the gold standard marker of VSMC 
differentiation, MYH11[104], occurred independently 
of NF-κB[105]. Thus, VCAM-1 appears to have 
d i s t i nc t  fu nc t i on s  i n  V SM C  re l a t e d  t o  t h e 
differentiated phenotype and the inflammatory 
response to such agonists as TNFα[105,106]. ATRA 
was shown to consistently up-regulate VCAM-1 
mRNA in cultured VSMC[89]. It is thus tempting 
to speculate that expression of this adhesion 
molecule with ATRA contributes to the known 
effects of retinoids on the differentiated phenotype 
of VSMC; it will be imperative to elucidate the 
mechanisms through which VCAM-1 confers a 
VSMC differentiated state.
D9

One of the "genes" found to be induced with 
ATRA in VSMC goes by the provisional name of 
D9. Initial Northern blotting studies revealed that 
D9 is a small transcript (less than 1 kb) suggesting 
that it could represent a novel microRNA. Attempts 
to clone other orthologs of D9 from other species 
have been unsuccessful and screening of a rat 
genomic library failed to uncover a genomic clone. 
Remarkably, sequence analysis of D9 has failed 
to reveal any homology to anything in all of the 
annotated databases. At this period of time, we are 
completely at a loss as to whether D9 represents an 
unknown protein coding gene, a non-protein coding 
RNA gene or something vestigial to an infection of 
the rat genome from which we derived the initial 

VSMC for the retinoid-response gene screen.
Retinoid-Inducible Serine Carboxypeptidase 
(RISC)

One of the retinoid-response genes originally 
cloned was a novel gene we called RISC due to its 
amino acid homology to a large family of plant serine 
carboxypeptidases bearing a classic catalytic triad 
comprising the amino acids serine, aspartic acid, 
and histidine[107]. This name was quickly changed to 
serine carboxypeptidase 1 (SCPEP1) because of the 
emerging field of RISC biology and more importantly, 
the subsequent finding that SCPEP1 is not induced 
by retinoids. Nevertheless, SCPEP1 is expressed 
in VSMC and across multiple tissues as shown by 
antibody studies[108]. There are at least two variants 
of SCPEP1 resulting from an apparent proteolytic 
cleavage event near the carboxy terminal end of 
the protein[108,109]. SCPEP1 is a lysosomal protein 
and its cleavage appears to occur in the lysosome 
since treatment of VSMC with chloroquine blocks 
cleavage (unpublished). Despite extensive surveying 
and testing, there are no known substrates for 
SCPEP1 making this protein an "orphan protease". 
Genetic inactivation of SCPEP1 does not show an 
overt phenotype as mice survive and breed without 
any histological evidence of pathology[109,110]. 
However, upon ligation injury of the carotid artery, 
SCPEP1 null mice show reduced neointimal load 
suggesting that SCPEP1 directs VSMC migration 
and proliferation. Indeed, adenoviral delivery of 
SCPEP1 to VSMC causes accelerated growth and 
migration in a catalytic triad-dependent manner[110]. 
Interestingly, SCPEP1 is secreted from cells in a non 
cleaved manner though it is not clear as yet whether 
extracellular SCPEP1 exhibits biological activity. 
There is much work to be done on SCPEP1 including 
the elucidation of its substrates and precise functions 
in the vessel wall as well as its molecular control in 
gene expression.

Several other retinoid-response genes in VSMC 
exist that await further study. These include endolyn, 
ceruloplasmin, importin alpha, cathepsin-L, and an 
unusual transcription factor called SALF that results 
from the fusion of two co-transcribed genes[89]. One 
of the future goals should be to ascertain whether 
these and other retinoid-response genes harbor 
retinoic acid response elements that bind the ligand-
activated nuclear retinoid receptors. Another goal 
should be to find out if, like AKAP12 alpha[102], any 
of the genes show SRF-dependency for expression 
and, if so, whether SRF incorporates MYOCD or 
some other cofactor to direct gene expression. Finally, 
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whether retinoids such as Am80 will make their way 
into the clinic for the treatment of arterial disease 
in conjunction with standard therapies (e.g., eluting 
stents) is unclear at the moment. One would think that 
given the years of clinical experience with retinoids 
for the treatment of cancer and dermatopathologies, 
that an application in the setting of certain vascular 
diseases such as recalcitrant transplant arteriopathies 
would be warranted.

P E R S P E C T I V E S  A N D  F U T U R E 
DIRECTIONS

A series of scientific revolutions has occurred 
in only the last 57 years since the elucidation of 
the structure of DNA[111] that heralded the age of 
molecular biology and its subsequent confluence with 
the genomics and bioinformatics revolutions. We are 
now poised to gain the most fundamental insights into 
what it is, biologically, to be human and, by extension, 
how normal human life processes are subverted in 
disease states such as cancer, cardiovascular disease, 
and neurodegenerative disorders such as Alzheimer's 
disease. VSMC represent only one of some 250 distinct 
cell types that exist in humans to establish normal life 
processes. The existence of an SRF-MYOCD molecular 

switch for the VSMC differentiation program allows 
for an unprecedented molecular view into the inner 
workings of these cells during development and in 
postnatal disease states such as occurs following 
iatrogenic injuries (Fig. 1). Future studies should 
exploit mouse models of knocking each component of 
the switch out at discrete times during embryonic or 
postnatal development. Further, it will be necessary 
to fully disclose the SRF-MYOCD program of gene 
expression in VSMC using, for example, ChIP-sequence 
in both wildtype and knockout conditions. How this 
switch interfaces with other transcriptional (and post-
transcriptional) events is also an important goal as is 
the definition and rules of signaling that govern VSMC 
differentiation. Atomic structure studies would also 
be of great utility in the design of small molecules 
that could either impede interactions between SRF 
and MYOCD or promote expression or activity of this 
switch so as to maintain a normal VSMC phenotype 
in the face of disease. The information acquired thus 
far, coupled to the array of tools we have in hand, 
should be enticing for the next generation of scientists 
interested in further expanding our knowledge base of 
the differentiated VSMC phenotype.

Fig. 1 Phenotypic modulation of arterial smooth muscle cells. Shown is a micrograph from a rat carotid 
artery 14 days following balloon de-endothelialization with transmission electron micrographs taken from either the 
tunica media prior to injury (left) or within the neointima at 14 days (right). Note the marked ultrastructural changes 
accompanying the neointimal lesion at right where myocardin levels are considered to be lower, leading to loss in 
SRF-dependent contractile filaments and the emergence of the classic synthetic phenotype with a rich quantity of 
rough endoplasmic reticulum. Myocardin levels are thus seen as a critical determinant of either the contractile state 
(left, with high myocardin) or the less differentiated, synthetic phenotype (right, with low myocardin). See text for 
details.
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