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Aim: To understand the pathological progress of COVID-19 and to explore the potential biomarkers. Back-
ground: The COVID-19 pandemic is ongoing. There is metabolomics research about COVID-19 indicating
the rich information of metabolomics is worthy of further data mining. Methods: We applied bioinformat-
ics technology to reanalyze the published metabolomics data of COVID-19. Results: Benzoate, β-alanine
and 4-chlorobenzoic acid were first reported to be used as potential biomarkers to distinguish COVID-19
patients from healthy individuals; taurochenodeoxycholic acid 3-sulfate, glucuronate and N,N,N-trimethyl-
alanylproline betaine TMAP are the top classifiers in the receiver operating characteristic curve of COVID-
severe and COVID-nonsevere patients. Conclusion: These unique metabolites suggest an underlying im-
munoregulatory treatment strategy for COVID-19.
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The world is in the midst of the COVID-19 pandemic caused by the new SARS-CoV-2. According to Johns Hopkins
Coronavirus Resource Center, more than 19 million people worldwide have been infected. It was estimated that
approximately 60% of cases were nonsevere, but the severe cases may lead to critical results, such as death and serious
sequela [1]. Approximately 5% of COVID-19 patients and 20% of hospitalized patients have severe symptoms and
require intensive care. Among patients hospitalized in the intensive care unit (ICU), the fatality rate is as high as
40% [2]. The increasing number of infected cases has debilitated the public health system, affecting people’s daily
lives and global economic activity in an unprecedented fashion. Although emergency vaccines have been urgently
approved for use, more clinical trials are still needed regarding their safety and effectiveness [2]. Therefore, on
the basis of previous clinical diagnosis and treatment experience, strengthening the basic and clinical research of
COVID-19 will help to achieve effective clinical intervention, curb transmission and reduce mortality. There is
an urgent need to understand the pathological mechanism of COVID-19 and explore effective treatment methods.

Mass spectrometry brought the dawn of ‘omics’ sciences and is widely used in the analysis of complex mix-
tures, such as proteomics and metabolomics [3]. At the end of the omics cascade, metabolome acts as the interface
between the genome and the environment and therefore is a useful phenotype indicator. In addition, the greater
temporal sensitivity compared with other omics makes it an attractive approach to probing transient phenotypic
changes caused by sudden incidents. Unlike immunoassays, mass spectrometry does not require antibodies, and
can analyze a wide range of substances with high reproducibility and low limit of quantitation [4,5]. The features
of metabolites, lipoproteins, proteomic and amino acids in COVID-19 patients were determined by nuclear mag-
netic resonance spectroscopy (NMR) and liquid chromatography–mass spectrometry (LC-MS) [5–9]. The studies of
NMR by Lodge et al. [5], revealed that plasma supramolecular phospholipid composite signals (SPC total) and SPC
total/GlycA are proposed as sensitive molecular markers for SARS-CoV-2 positivity and in functional assessment
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of the disease recovery process in patients with long-term symptoms. They analyzed 1H NMR spectroscopy data
in human plasma and modeled them together with a variety of plasma cytokines and chemokines. The results [6]

showed a unique pattern for SARS-CoV-2-infected cells with multiple levels. The immune response interacts with
the plasma lipoprotein group to give a strong and unique immune metabolic phenotype of the disease. Meoni et
al. [7] analyzed the metabolomics and lipidomics of COVID-19 patients and showed that COVID-19 patients
had characteristic NMR-based metabolomic and lipidomic characteristics. There was an exploratory study [8] on
162 metabolites in the plasma of ICU patients (both COVID-19+ and COVID-19-) and the data was analyzed
using advanced machine learning. A unique COVID-19 plasma metabolome was discovered, which is mainly
determined by the changes in kynurenine, arginine, sarcosine and LysoPCs. Moreover, creatinine alone or the
creatinine/arginine ratio can predict ICU mortality with 100% accuracy, suggesting that metabolites (kynurenine,
arginine and creatinine) can be regarded as potential biomarkers and prognostic markers for diagnosis of COVID-
19. Guo et al. [9] compared metabolomic and proteomic profiles of serum samples obtained from COVID-19
patients with that of healthy volunteers and symptomatic patients diagnosed with non-COVID-19 disease control.
From their results, they discovered protein and metabolite dysregulation in severe COVID-19 patient sera, which
may contribute to macrophage modulation. The application of bioinformatics to clinical medicine can improve
the accuracy of diagnosis and treatments. We applied bioinformatics technology to reanalyze the previously pub-
lished metabolomics data of COVID-19 patients. Previous studies [9] on the characteristics of plasma metabolism
in patients with COVID-19 have found that the proteins and metabolites in the serum of patients with severe
COVID-19 are imbalanced, which may contribute to the regulation of macrophages. This integration of pro-
teomics and metabolomics methods provides a view of the underlying pathology of disease progression, but the
rich information in metabolomics may be overlooked. Therefore, it is worthy of more detailed research.

Herein, we conducted further statistical analysis on the data from the previously reported metabolomics studies.
Our analysis suggests that COVID-19 infection affected the cell signal, nucleic acid metabolism and amino acid
metabolism networks in the COVID-19 patients. Metabolites, including benzoic acid, phosphate and inosine,
were first reported to significantly increase in sera from COVID-19 patients, promoting immune response and
inflammation development, contributing to damage of multiple tissues and organs such as lung, liver and kidney.
The metabolomics profiles of COVID-19 patients were also distinct from the disease control group, suggesting a
clue to targeted treatment strategy for nonsevere and severe patients.

Methods
Data source
The data used in the study was retrieved from the CoronaMassKB database (dataset ID MSV000085507) which
consisted of 25 samples from nonsevere patients diagnosed with COVID-19, 21 samples from severe patients
diagnosed with COVID-19, 25 samples from healthy individuals and 25 samples from non-COVID-disease
control patients. The detailed patient descriptions including the sampling date and the metabolite data for each
patient can be found in the original paper [9] and are shown in Supplementary Tables 1–3. According to the
source information, 65 COVID-19 patients were classified into four subgroups based on the Chinese Government
Diagnosis and Treatment Guideline (Trial 5th version) [10]. Mild: mild symptoms without pneumonia; typical:
fever or respiratory tract symptoms with pneumonia; severe: fulfill any of the three criteria: respiratory distress,
respiratory rate R 30 times/min; means oxygen saturation 93% in resting state; arterial blood oxygen partial
pressure/oxygen concentration 300 mmHg (1 mmHg = 0.133 kPa); critical: fulfilling any of the following three
criteria: respiratory failure and requirement for mechanical ventilation, shock incidence or admission to ICU with
other organ failure [9]. The mild and typical subgroups made up the nonsevere subgroup. The disease control group
in the study consisted of 25 non-COVID-19 patients with similar clinical characteristics including fever and/or
cough as COVID-19 patients, but tested negative for COVID-19 [9]. Causal analysis of the infection showed that
four patients were infected by herpes simplex virus, one patient infected by varicella-zoster virus, one by respiratory
syncytial virus, one by Klebsiella pneumoniae and Acinetobacter baumannii and one by Enterococcus faecium [9]. Some
patients had other diseases, including cancer, cerebral hemorrhage or lymphoma [9]. No infection was detected in
the other patients according to respiratory tract virus antigen test [9]. The healthy group included serum samples
from 28 healthy individuals [9].
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Statistical analysis
We performed a two-sample t-test on COVID-19 patients’ group and the healthy group to understand the pathology
of the disease, followed by another two-sample t-test to distinguish the COVID-19 patients’ group from the disease
control group; finally, we examined the difference between the severe and nonsevere subgroups to predict disease
progression. Statistical analysis was performed on MetaboAnalyst (https://www.metaboanalyst.ca/) a metabolomics
analysis platform that has integrated R scripts [11–23]. Missing values were estimated using k-nearest neighbors.
Metabolites with missing values in 50% or more samples were excluded. Subsequently, the data were normalized by
sum of the total ion intensity, log transformed and scaled using Pareto scaling to facilitate the downstream hypothesis
testing. In the subsequent two-sample t-test of each group, metabolites with a concentration change greater than
twofold and a false discovery rate-adjusted p-value <0.05 were considered significantly altered. For hierarchical
clustering analysis, the distance measure was Euclidean, and the clustering algorithm was ward. Classification using
random forest and subsequent characteristic (ROC) analysis was carried out using seven predictors and up to
500 trees. To analyze the disease-related metabolic pathways and cell signaling networks, pathway analysis was
performed using Ingenuity Pathway Analysis (IPA), which is a cloud computing-based bioinformatics software
utilising integrated metabolomics analysis for the over-represented metabolic pathways.

Results
Metabolomics profiles of COVID-19 patients were significantly different from those of the healthy
group
We first conducted the two-sample t-tests of metabolites between COVID-19 patients and healthy individuals.
The analysis revealed that COVID-19 patients’ plasma metabolomic profiles were distinctly different from those of
healthy individuals (Figure 1A). Using the cutoff of adjusted p < 0.05 and fold change >2 (the same thereafter),
88 metabolites were identified as being significantly changed in COVID-19 patients. Twenty of the 88 significantly
altered metabolites were mapped into metabolic pathways to identify overrepresented pathways, which were
discussed in detail later. The concentration changes of eight altered metabolites with the most significantly adjusted
p and fold change is shown in Figure 1B. A heat map using the top 25 differentially produced metabolites
demonstrated a clear difference between COVID-19 patients and healthy individuals (Figure 1C). The partial
least squares discriminant analysis (PLS-DA) successfully separated the COVID patients from healthy individuals
(Figure 1D). ROC analysis based on random forest yielded an area under the curve (AUC) of 0.997 when the five
most significant metabolites are used as classifiers (95% CI: 0.968–1) (Figure 1E), indicating the practicality of
using metabolite biomarkers to differentiate COVID from healthy individuals. On the basis of the mean decrease in
the accuracy of the random forest classification, the top three biomarkers that can be used to differentiate COVID-
19 patients from healthy individuals were β-alanine (Q = 1.26 × 10-21), o-cresol sulfate (Q = 2.38 × 10-9),
4-methoxyphenol sulfate (q = 3.77 × 10-9) (Figure 1F).

Ingenuity pathway analysis indicated alteration of purine ribonucleotides degradation (p = 4.19 × 10-4), purine
nucleotides degradation II (aerobic) (p = 1.24 × 10-3), salvage pathways of pyrimidine (p = 1.24 × 10-3).
Furthermore, network analysis of prioritized metabolites in the COVID-19 patients (Figure 2) suggested that
the networks of cell-to-cell signaling and interaction (score = 30) and nucleic acid metabolism and amino acid
metabolism (score = 24) played a very active regulatory role in COVID-19.

Metabolomics profiles of COVID-19 patients were distinct from those of the disease control group
Two-sample t-test between COVID-19 patients and non-COVID disease control samples was carried out to
identify biomarkers that could be used to differentiate the two pathological conditions. The result suggested that
COVID-19 patients’ plasma metabolomics profiles were different from those of disease controls but to a lesser
extent than the comparison between COVID-19 and healthy individuals (Figure 3A). On the basis of the criteria
described earlier, 35 metabolites were identified as significantly changed, and the differential production of eight
metabolites with most significant fold change and adjusted p-value is shown in Figure 3B. Hierarchical clustering
using top 25 significant metabolites revealed that there was moderate distinction between the metabolomics profiles
of the two groups (Figure 3C). Meanwhile, based on PLS-DA analysis, the COVID-patients and disease control
samples were largely distinguishable (Figure 3D), although less so compared to COVID versus healthy analysis
(Figure 4). Finally, ROC curve based on a random forest using five metabolites as classifiers resulted in an AUC of
0.935 (95% CI: 0.836–1) (Figure 3E). In random forest analysis, we listed top 15 metabolites with marked mean
decreases in accuracy. On the basis of the mean decrease in accuracy of the random forest classification, the top
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Figure 1. Comparative analysis of the plasma metabolome could differentiate significantly COVID-19 patients and
healthy group. (A) Volcano plot significantly separated COVID-19 patients and the healthy group, purple dots are the
compounds that are both significant in adjusted p-value and fold change and black dots are the compounds that are
not significant. (B) The expression level change (Z-scored original value) of eight selected metabolites with significant
difference. Asterisks indicate statistical significance based on unpaired two-sided Welch’s t-test. Red boxes are
COVID-19 patients, green boxes are healthy individuals and the y axis is the normalized fold change. (C) Heat map of
selected average plasma metabolite expression levels. (D) COVID-19 patients and healthy group were separated by
components one and two in the PLS-DA machine learning analysis. (E) Receiver operating characteristic using five
metabolites as classifiers. (F) Fifteen metabolites prioritized by random forest analysis ranked by the mean decrease in
accuracy.
*p < 0.05; **p < 0.01; ***p < 0.001.

three biomarkers with significant adjusted p-value that could be used to differentiate COVID-19 patients from
disease control patients were cysteine sulfinic acid (Q = 7.118 × 10-5), phosphocholine (Q = 2.253 × 10-10),
3-sulfo-L-alanine (Q = 0.00164) (Figure 3F).

Selected metabolites profiles could differentiate severe group and non-severe group COVID-19
patients
To determine the practicality of using biomarker to assess disease progression, we examined the metabolomes from
severe and nonsevere patients in the volcano plot (Figure 5A). On the basis of the same criteria described earlier,
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Figure 2. Network of prioritized metabolites in the COVID-19 patients. Red and green nodes indicate upregulated
and downregulated molecules, respectively. White nodes represent molecules not detected in our dataset.

11 metabolites were noted as significantly altered, of which nine are shown in Figure 5B. PLS-DA analysis showed
that the severe and nonsevere cases could be separated by differentially regulated metabolomes (Figure 5D). The
differences between the metabolomics profiles of severe and nonsevere COVID-19 patients were revealed in the
heat map (Figure 5C). The differential metabolomics profile was also analyzed by ROC analysis (0.805; 95% CI:
0.625–0.974) using ten classifiers (Figure 5E), and a number of differential metabolites with significantly adjusted
p-values were identified, such as taurochenodeoxycholic acid 3-sulfate (Q = 0.00479), 5α-pregnan-diol disulfate
(Q = 0.00762) and N,N,N-trimethyl-alanylproline betaine TMAP (Q = 0.00302) (Figure 5F).

Discussion
We first reported that the metabolites benzoate, β-alanine and 4-chlorobenzoic acid to be used as potential
biomarkers to distinguish COVID-19 patients from healthy individuals with an AUC of 0.997 (95% CI: 0.988–
1). Further analysis of severe and nonsevere COVID resulted in an ROC curve with an AUC of 0.805 (95%
CI: 0.625–0.974), and the top classifiers were taurochenodeoxycholic acid 3-sulfate, glucuronate and N,N,N-
trimethyl-alanylproline betaine TMAP. In the comparison of the ROC analysis of healthy and COVID-19 groups
and non-COVID-19 and COVID-19 patients mentioned earlier, differentiating severe from nonsevere COVID-19
patients was more challenging but still generated a fair result [24]. In general, the ROC analysis established in our
research can distinguish severe from nonsevere patients, which can provide an important basis for personalized and
precise treatment. The immediate analysis of these metabolites can be developed rapidly, and patient stratification
is essential for future COVID-19 treatment drug trials. The results of these studies on the metabolome need to be
verified in a larger COVID-19 population before they are useful.

Among the differentially produced metabolites found in patients carrying COVID-19, benzoic acid, phosphate,
inosine and sucrose have been suggested to promote immune response and inflammation development [25–27].
(R)-3-hydroxybutyric acid was correlated to phagocytosis cell damage [28]. It was also reported that N-formyl
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Figure 3. Two-sample t-test analysis of the plasma metabolome of COVID-19 patients and non-COVID disease
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of eight selected metabolites with significant fold change and adjusted p-values. Asterisks indicate statistical
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random forest analysis ranked by the mean decrease in accuracy.
*p < 0.05; **p < 0.01; ***p < 0.001.
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phenyl alanine chemotaxis can regulate the aggregation of human neutrophils [29]. The aforementioned metabolites
were all inflammation-promoting factors and were all significantly increased in samples from COVID-19 patients,
indicating an important role of inflammation in COVID-19 disease progression. There was a significant increase in
cytosine and ribose, indicated by the overrepresentation of purine ribonucleotides degradation. The upregulations
of purine nucleotides degradation II (aerobic) and other nucleic acid metabolome pathways were indicators of
inflammation [30]. On the other hand, β-alanine, tauroursodeoxycholic and taurocholic acid were also elevated in
COVID-19 patients, which have been suggested to be involved in the negative feedback of the inflammation that
plays a certain role in immune regulation [31–33].

More negative feedback modulators were decreased, such as lenticin, which contained a protective mechanism
during the damage to maintain the stability of the internal environment [34], 15(S)-HETE, which was the negative
feedback regulator of immune response [35], 2,7,8-trimethyl-2-(β-carboxyethyl)-6-hydroxychroman, which was the
peroxy free radical scavenger that maintains stability [36]. Their disorder served as a potential indicator that some
negative feedback modulators were overconsumed in COVID-19 patients, which made the inflammatory response
control ineffective.

The recent study [8] on critically ill COVID-19 patients showed that there are unique metabolomes in the
plasma of COVID-19 ICU patients, including kynurenine, arginine, sarcosine and LysoPCs. They proposed a diet
supplementation of tryptophan, arginine, sarcosine and LysoPCsas adjuvant therapy may contribute to COVID-
19 outcome. Our study has similar results, such as increased kynurenine, suggesting that the immune response

future science group 10.2217/fmb-2021-0047



Research Article Chen, Gu, Li & Sun

Log2 (FC)
-3 -2-4 -1 0 1 65432

0.0

0.5

1.0

1.5

2.0

2.5
-L

o
g

10
 (

p
)

3.0
Sig.down [10] Sig.up [1] Unsig. [782]

N,N,N-trimethy

Taurochenodeox

Glycoursodeoxy

0.0

0.2

0.4

0.6

0.8

S
en

si
ti

vi
ty

 (
tr

u
e-

p
o

si
ti

ve
 r

at
e)

1.0

1 – specificity (false-positive rate)

0.20.0 0.4 0.6 0.8 1.0

Area under the curve (AUC) = 0.805
95% CI: 0.625–0.974

3-4-hydroxyphe
3�, 7�-d

Mannose
Taurochenodeox

Homoarginine
1-stearoyl-2-a

1-arachidonoyl
3�-hydroxy-

N2,N2-dimethyl
Glucuronate

Stearoylcholin
Cholesterol su
1-stearoyl-2-a

Cytosine
Glycochenodeox

ClassClass
Bilirubin degradat

Taurochenodeoxycho

Glycochenodeoxycho

Mannose

5 �-pregnan-dio

Tiglyl carnitine C

N,N,N-trimethyl-al

N,N-dimethyl-pro-p

1-palmitoyl-2-doco

Maltose

Kynurenine

Kynurenate

Glucuronate

3-4-hydroxyphelyll

1-carboxyethylphen

1-1-enyl-stearoyl-

1-1-enyl-palmitoyl

1-1-enyl-palmitoyl

1-1-enyl-stearoyl-

1-1-enyl-palmitoyl

Thyroxine

Betaine

1-arachidonoyl-GPI

1-stearoyl-2-arach

1-stearoyl-2-arach

Non-severe
Severe

79787776757473474645444342411615141312111072717069636766654039383736353433987654321

1.0

0.5

0.0

-0.5

-1.0

N,N,N-trimethyl-alanylproline
betaine TMAP

N
on

-s
ev

er
e

S
ev

er
e

**

1

0

-1

Taurochenodeoxycholic
acid 3-sulfate

N
on

-s
ev

er
e

S
ev

er
e

** 1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

Glycochenodeoxycholate
3-sulfate

N
on

-s
ev

er
e

S
ev

er
e

**

N
on

-s
ev

er
e

S
ev

er
e

1.0

0.5

0.0

-0.5

-1.0

5 �-pregnan-diol
disulfate

**

1

0

-1

S-methylcysteine
sulfoxide

N
on

-s
ev

er
e

S
ev

er
e

*2

1

0

-1

N
on

-s
ev

er
e

S
ev

er
e

Kynurenine

*
2

1

0

-1

N
on

-s
ev

er
e

S
ev

er
e

Maltose

**
1.5

1.0

0.0

0.5

-0.5

N
on

-s
ev

er
e

S
ev

er
e

Tiglyl carnitine

**

Mean decrease in accuracy 

0.0020 0.00350.00300.0025

N
on

-s
ev

er
e

S
ev

er
e

High

Low

-5

0

5

C
o

m
p

o
n

en
t 

tw
o

 (
6.

6%
)

10

Component one (8.3%)
-5 0 5 10

Scores plot

Non-severe
Severe

4

2

0

-2

-4

Figure 5. Comparative analysis of the plasma metabolome could differentiate the severe and nonsevere COVID-19
patient groups. (A) Volcano plot of the nonsevere and severe groups; purple dots are significant in fold change and
adjusted p-value. (B) The expression level change (Z-scored original value) of eight selected metabolites with
significant adjusted p-values and fold change; green boxes are the severe sample, and red boxes are the nonsevere
sample. Asterisks indicate statistical significance based on unpaired two-sided Welch’s t-test. (C) Heat map of selected
average plasma metabolite expression levels. (D) Severe and nonsevere groups were separated with component one
and two in partial least squares discriminant analysis machine-learning analysis. (E) Receiver operating characteristic
with ten metabolites. (F) Fifteen metabolites prioritized by random forest analysis ranked by the mean decrease in
accuracy.
*p < 0.05; **p < 0.01; ***p < 0.001.
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is overactivated. Activating COVID-19 causes strong T-cell activation, and IFN-γ rises, which in turn causes the
degradation of tryptophan to increase, and kynurenine also increases. Targeting metabolism markedly modulates
the proinflammatory cytokines release by peripheral blood mononuclear cells isolated from SARS-CoV-2-infected
rhesus macaques ex vivo according to the most recent study on fatal cytokine-release syndrome in COVID-19 [37].
The results suggest that patients’ immune regulatory mechanism may be a potential therapeutic target for COVID-
19. Clinical treatment also showed that suppressing inflammation can help alleviate disease symptoms [38]. These
unique metabolites are accurate diagnostic/prognostic biomarkers for future research, representing a variety of
metabolites that affect immune function and can be used for stratified evaluation of patients in clinical treatment.

Conclusion
Together, the analysis results revealed that COVID-19 infection affected patients’ cell signal, nucleic acid
metabolism and amino acid metabolism networks. Our research on the COVID-19 metabolome pathways con-
tributed to the understanding of the role of immune regulatory pathways during viral infection, which will also
serve as an important therapeutic target for more effective treatment of COVID-19.

Future perspective
Although vaccines are bringing hope to the fight against the COVID-19 virus, we have experienced a third wave of
the pandemic involving variants of COVID-19. Therefore, exploring biomarkers related to COVID-19 disease has
important long-term significance for appropriate personalized treatment and prevention of COVID-19. Studies have
shown that with regard to the pathogenesis of COVID-19, in addition to direct virus invasion and damage to target
tissues, the increase in inflammatory biomarkers such as C-reactive protein reflects the development of the disease.
Moreover, the metabolomics research on COVID-19 suggests that some characteristic metabolites can be used as
biomarkers related to COVID-19, such as SPC total and SPC total/GlycA, kynurenine, arginine and creatinine,
forming a unique immune metabolic phenotype. However, due to the large number of molecules involved, in
further research, mathematical models could be established by deep learning, taking into account various factors
related to the disease to guide more accurate application of antiinflammatory and immunostimulatory activities,
reducing the severity of the disease and preventing multiple organ failure and death. In addition, it also has guiding
significance for diagnosis and treatment of other viral infections in the future.
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Summary points

• Two-sample t-tests on COVID-19 patients and healthy participants to understand the pathology of the disease
were conducted, followed by two-sample t-tests to distinguish COVID-19 patients from a disease control group
and differentiate severe and nonsevere subgroup of COVID-19 patients.

• Pathway analysis was performed using Ingenuity Pathway Analysis (IPA), a cloud computing-based bioinformatics
software with integrated metabolomics analysis for the overrepresented metabolic pathways.

• The metabolomics profiles of COVID-19 patients were significantly different from those of the healthy group.
Receiver operating characteristic (ROC) analysis based on a random forest plot yielded an area under the curve
(AUC) of 0.997 when the five most significant metabolites were used as classifiers (95% CI: 0.968–1), indicating
the practicality of using metabolite biomarkers to differentiate COVID patients from healthy individuals. The top
three biomarkers that can be used to differentiate COVID-19 patients from healthy individuals were β-alanine,
o-cresol sulfate and 4-methoxyphenol sulfate.

• IPA indicated alteration of purine ribonucleotides degradation, purine nucleotides degradation II (aerobic) and
salvage pathways of pyrimidine. Network analysis suggested that the networks of cell-to-cell signaling and
interaction, nucleic acid metabolism and amino acid metabolism played active regulatory roles in COVID-19.

• The metabolomic profiles of COVID-19 patients were distinctive from disease control group. An ROC curve based
on a random forest plot using five metabolites as classifiers resulted in an AUC of 0.935 (95% CI: 0.836–1). The top
three biomarkers with significant adjusted p-values that can be used to differentiate COVID-19 patients from
disease control patients were cysteine sulfinic acid, phosphocholine and 3-sulfo-L-alanine.

• The selected metabolites profiles could differentiate severe and nonsevere subgroups of COVID-19 patients.
Partial least squares discriminant analysis showed that the severe and nonsevere cases could be separated by
differentially regulated metabolomes. The differential metabolomics profile was also analyzed by ROC analysis
(0.805, 95% CI 0.625–0.974) using ten classifiers and a number of differential metabolites with significantly
adjusted p-values were identified, such as taurochenodeoxycholic acid 3-sulfate, 5α-pregnan-diol disulfate and
N,N,N-trimethyl-alanylproline betaine TMAP.

• β-alanine, o-cresol sulfate, 4-methoxyphenol sulfate, taurochenodeoxycholic acid 3-sulfate, 5α-pregnan-diol
disulfate and N,N,N-trimethyl-alanylproline betaine TMAP could be biomarkers in COVID-19, which contributes to
understanding the role of immune regulatory pathways during infection and could serve as an important
therapeutic target for treatment of COVID-19.
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