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ABSTRACT
The MPF and MAPK genes play crucial roles during oocyte maturation processes.
However, the pattern of MPF and MAPK gene expression induced by melatonin (MT)
and its correlation to oocyte maturation quality during the process of porcine oocyte
maturation in vitro remains unexplored. To unravel it, in this study, we cultured the
porcine oocytes in maturation medium supplemented with 0, 10−6, 10−9, and 10−12

mol/L melatonin. Later, we analyzed theMPF andMAPK gene expression levels by RT-
PCR and determined the maturation index (survival and maturation rate of oocytes).
The GSH content in the single oocyte, and cytoplasmic mitochondrial maturation
distribution after porcine oocyte maturation in vitro was also evaluated. We also
assessed the effects of these changes on parthenogenetic embryonic developmental
potential. The oocytes cultured with 10−9mol/L melatonin concentration showed
higher oocyte maturation rate, and MPF and MAPK genes expression levels along
with better mitochondrial distribution than the 0, 10−6, and 10−12 mol/L melatonin
concentrations (p < 0.05). No significant difference was observed in the survival
rates when the oocytes were cultured with different melatonin concentrations. The
expression of the MPF gene in the oocytes cultured with 10−6 mol/L melatonin was
higher than with 10−12 and 0 mol/L melatonin, and the expression of the MAPK
gene in 10−6 and 10−12 group was higher than the control (p< 0.05). As far as the
embryonic developmental potential is concerned, the cleavage and blastocyst rate of
oocytes cultured with 10−6 and 10−9 mol/L melatonin was significantly higher than
the 10−12 mol/L melatonin and control. In conclusion, 10−9–10−6 mol/L melatonin
significantly induced the MPF and MAPK gene expression; besides, it could also be
correlated with GSH content of single oocyte, mitochondrial maturation distribution,
and the first polar body expulsion. These changes were also found to be associated with
parthenogenetic embryo developmental potential in vitro.
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INTRODUCTION
Oocyte maturation is an extensively used experimental technique in animal reproduction
biotechnology. It involves the immature oocyte extraction from the ovaries, and it’s in
vitro culture until it has reached thematuration stage (Hoelker et al., 2017; Lonergan & Fair,
2016). During in vitro culture and maturation, oocytes generate a high amount of Reactive
Oxygen Species (ROS) as a result of mechanical treatment, air, light, and other factors
(Waiz et al., 2016). Although the physiological dose of ROS is favorable for the oocyte
maturation and development, excessive ROS leads to adverse effects due to the DNA
damage, mitochondrial dysfunction, lipid peroxidation, abnormal protein modification,
and so on (Rajani et al., 2012).

Melatonin is an antioxidant, which binds and inhibits the oxygen free radical. Also, it
serves as a protective barrier against the oxidative stress damage during oocyte maturation
and development primarily by enhancing the intracellular glutathione level (Agarwal
& Majzoub, 2017; Gao et al., 2012; He et al., 2019; Tamura et al., 2008). Glutathione is
a crucial factor in the maturation and development of the oocyte as it eliminates the
intracellular ROS (Lee et al., 2016). Mitochondria are ATP production sites, which are
evenly distributed and diffused across the cytoplasm during the formation of oocytes
with a high maturation quality (Cui et al., 2009). Mitochondria lead to energy production
during the oocytes maturation and embryo development, and hence the mitochondrial
distribution is correlated with oocyte maturation quality (Babayev & Seli, 2015), as well as
with the oocyte fertilization and early embryo development (Chappel, 2013).

In the oocytes meiotic maturation, MAPK performs a vital role in the early embryo
development processes, such as the initiation of GV, the promotion of nuclear maturation,
and the oocytes maintenance at the MII stage (Tripathi, Kumar & Chaube, 2010). MPF, a
cyclin B1, and cyclin-dependent kinase complex play a crucial in the meiosis maturation of
oocytes. It maintains the normal meiosis cycle of oocytes and the normal cleavage of early
embryos (Baek et al., 2017; López-Cardona et al., 2017).

Previous studies have comprehensively reported the roles ofmelatonin in thematuration
and embryonic development of bovine oocytes (Liang et al., 2017), sheep oocytes (Xiao
et al., 2019), porcine oocytes (Li et al., 2015) and mice oocytes (Nikmard et al., 2016).
However, the melatonin-induced MPF andMAPK gene expression and its correlation with
the oocyte maturation quality during porcine oocyte maturation in vitro, remains obscure.
In-line with our previous findings, we hypothesize that MPF and MAPK genes expression
also play a crucial role in the effect of melatonin promoting oocyte maturation quality in
vitro. In the current study for the first time, we reported the expression patterns of MPF
and MAPK genes induced by 0, 10−6, 10−9 and 10−12 mol/L melatonin and its association
with oocytes maturation index during porcine oocytes maturation in vitro. The outcome
of this study serve as a reference point for the improvement of oocyte utilization, which in
turn will benefit the related biotechnological applications.
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MATERIALS & METHODS
Unless otherwise stated, all reagents used in the present study were purchased from Sigma
Chemicals (St. Louis, MO, USA).

Oocyte collection and in vitro maturation
Porcine ovaries were procured from a local abattoir. The oocytes were collected from
3–6 mm diameter ovarian follicles by aspirating them with the 18-gauge needle attached
to a disposable 20 mL syringe. We washed the oocytes four times with the Tyrode’s lactate
(TL)–Hepes–PVA (0.1%) and the compact Cumulus and Oocyte Complexes (COCs) were
cultured inmicrodrops ofmaturationmedium supplemented with 0, 10−6, 10−9, and 10−12

mol/L MT for in vitro maturation (IVM); 100 µL microdrop contained 30 COCs. All the
groups were incubated at 39 ◦ C with 5% CO2 in 95% humidified air for 42 h (Huang et al.,
2016). The maturation medium, TCM199 (with Earle’s Salts; Gibco), contained cysteine
(0.1 mg/mL), penicillin (0.065 mg/mL), porcine follicular fluid (PFF)(10%), epidermal
growth factor (EGF) (10 ng/mL), equine chorionic gonadotropin (eCG; Intervet Pty. Ltd,
Australia) (10 IU/mL), and human chorionic gonadotrophin (hCG; Intervet Pty. Ltd.) (10
IU/mL).

The assessment of oocyte maturation quality
After 42 h of maturation culture, COCs from each group were denuded by gentle pipetting
in phosphate-buffered saline (PBS) supplemented with 0.1% hyaluronidase. The denuded
oocytes from different groups were transferred to the TCM199 medium supplemented
with 0.5% fetal bovine serum (FBS) and 25 mM Hepes (for washing). We marked the
oocytes as survival oocytes after observing them for homogeneous cytoplasm and intact,
bright membrane under a stereomicroscope (Fig. 1A); besides, the matured oocytes were
the survival oocytes with the expulsed polar body into the perivitelline space (Fig. 1D).
Survival and maturation of the oocytes were validated by the FDA and Hoechst33342
staining, respectively. The survived oocytes were characterized by the presence of bright
fluorescence in the ooplasmic membrane (Fig. 1B); however, the absence of fluorescence
indicated dead oocytes (Fig. 1C). The oocytes with the expulsed polar body exhibited
nucleus and polar body fluorescence (Fig. 1E); however, the oocytes with no expulsed polar
body showed fluorescence only in the nucleus (Fig. 1F). The matured oocytes were used
for subsequent experimentations.

Quantification of intracellular glutathione
As per the method reported by Huang et al., we performed a 5,5′-Dithiobis (2-nitrobenzoic
acid) (DTNB)-GSH reductase recycling assay to determine the total intracellular
concentration of GSH in a single oocyte of different groups (Zhao et al., 2017). A total of
20–30 oocytes fromeach groupwere frozen into a 1.5mL centrifuge at−80 ◦C till we assayed
the GSH content. The frozen oocytes were thawed and homogenized by repeated pipetting
during the GSH content detection. Later, we transferred this homogenized solution into
a 96-well plate and added a 150 mL assaying solution to each well. After the solution
equilibration at 25 ◦C for 5 min, we added 50 mL of 0.16 mg/mL nicotinamide adenine
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Figure 1 Survival andmatured oocytes observed under stereomicroscopy and confirmed by fluores-
cence staining. (A) Stereomicroscopic examination of oocytes. (B) Survival oocyte FDA staining validated.
(C) Dead oocytes showed no or very low fluorescence as red arrow pointed. (D) The stereoscopic exam-
ination of the matured oocytes with the first polar body expulsed. (E) The matured oocytes stained with
fluorescent dye Hoechst 33342 showed two fluorescent spots. (F) Oocytes with no polar body expulsed
confirmed by fluorescent dye Hoechst 33342 only showed one fluorescent spot.

Full-size DOI: 10.7717/peerj.9913/fig-1

dinucleotide phosphate (NADPH) to each well, which led to the formation of 5-thio-2-
nitro-benzoic acid. We measured the absorbance at 412 nm using a spectrophotometer
(Beckman DU-40, USA) for five times at 30 s interval. The standard curve was plotted for
the calculation of GSH value. We divided the value by oocytes number in each sample and
detected a blank sample, i.e., without GSH, in our study.

Mitochondrial distribution analysis
We washed one hundred oocytes from each group for four times in PBS containing 0.2 M
sodium phosphate buffer. Oocytes were incubated in TCM-199 medium with 12.5 mmol/L
Mito Tracker Red (Invitrogen, USA) at 37 ◦C under 5% CO2 for 30 min and washed four
times in PBS. Later, they were mounted on a slide and placed under a coverslip. The oocytes
were observed under the fluorescence microscope (TE2000-s, Nikon, Japan). Two main
distribution features characterized the porcine oocytes mitochondrial distribution pattern:
homogeneous or even distribution (Fig. 2A) and heterogeneous or uneven distribution
throughout the ooplasm (Figs. 2B–2E).

Parthenote production and culture
A total of 80 oocytes from each group were transferred to the activation medium
containing 1.0 mM CaCl2, 0.1 mM MgCl2, 0.3 Mm mannitol, and 0.5 mM HEPES
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Figure 2 Mitochondrial distribution status in matured oocyte. (A) Oocyte with better maturation qual-
ity and even distribution of mitochondria in the ooplasm. (B–E) Oocytes with heterogeneous and uneven
distribution of mitochondria in the ooplasm.

Full-size DOI: 10.7717/peerj.9913/fig-2

for the parthenogenetic activation (PA). Matured oocytes were activated with two pulses
of 120 V/mm DC for 60 ms with the Electro-Cell Manipulator BTX 2001 (BTX Inc, USA).
Subsequently, the parthenotes were cultured in 2 mM 6-dymethylaminopurine (6-DAMP)
for 6 h, and later transferred into PZM-3 medium and incubated at 39 ◦C for 7 h at 5%
CO2 (Huang et al., 2016). We observed cleavage and blastocyst formation on days 2 and 7,
respectively, after oocytes activation.
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Table 1 The primers and Genebank source accessions for each gene used in the study. RT-PCR primers
and Genebank source.

Gene Primer sequence (5′–3′) Accession number

GAPDH F:TCAAATGGGGTGATGCTGGT
R:GCAGAAGGGGCAGAGATGAT

XM_021091114

MAPK F:AGTGCCTACCATGCTTCTCG
R:TTGTGGTTGTCCTCAACGGG

XM_021071922

MPF F:ACTGGCTAGTGCAGGTTCAG
R:TTGGAGCATCTTCTTGGGCA

XM_003124695

Detection of gene expression with real-time polymerase chain
reaction (RT-PCR)
RT-PCR was used to detect the expression activity of MAPK and MPF genes. RNA was
extracted from a total of 100 oocytes from each group by using TRIzol reagent (Invitrogen)
as per the manufacturer’s instructions. cDNA synthesis was performed for 30 min at 55 ◦C
using Omniscript reverse transcription Kit (Invitrogen) with oligo-dT primer, and PCR
was performed by using the Maxime PCR Premix with SYBR Green (TaKaRa Bio Inc.,
Otsu, Japan). The PCR reaction mixture contained specific primers for cDNA samples.
The cDNA was amplified under the following conditions: predenaturation at 95 ◦C for 3
min, denaturation at 95 ◦C for 15 s, annealing at 56 ◦C for 30 s, elongation at 72 ◦C for
30 s, and final extension at 72 ◦C for 5 min for 40 cycles using Eppendorf Mastercycler
(Eppendorf, Hamburg, Germany). We designed primers with Primer 5.0 software on
the basis of the mRNA sequences of Sus scrofa genes published in GenBank, which were
synthesized by Shanghai bioengineering co., LTD (Shanghai, China). The primers used in
the present study had been verified to be available by RT-PCR. Real-time quantitative PCR
data were analyzed by employing the comparative Ct (2−44Ct ) method, and the relative
expression level of each gene from each cDNA pool was normalized against the reference
gene GAPDH. PCR amplification efficiency of each pair of primers was assessed before
quantification, and was found to be in an acceptable range (between 0.9 and 1.1).

The primers and Genebank source accessions for each gene are reported in Table 1.

Statistics
We performed the log transformation of the percentage values before the analyses. The
quantitative data were analyzed by least-squares ANOVA using the General Linear Models
(GLM) procedures of the Statistical Analysis System (SAS, version 9.4) (Institute, Cary,
NC, USA). We corrected Real-time PCR data by using the GAPDH data as a covariate for
different analyses. All data were expressed as mean ±SEM, and different letters, such as
a, b,or c over a bar or a column was considered as statistically significant (p< 0.05). All
experiments were repeated thrice.
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Table 2 The effect of melatonin on the qualities of porcine oocytes maturation in vitro.

MT concentration
(mol/L) (mol/L)

Total
oocytes

Rate of survival
oocytes (%)

Rate of matured
oocytes (%)

0 200 89.67± 1.86a 78.00± 0.58a

10−12 200 89.33± 1.48a 80.50± 0.76b

10−9 200 91.33± 1.97a 85.50± 1.26c

10−6 200 91.67± 1.17a 81.33± 1.17b

Notes.
Within a column, percentages with a common superscript mean no significant difference (p> 0.05), and with different super-
script (a–c) means a significant difference (p< 0.05). Each experiment was repeated thrice.

Table 3 The GSH content in a single oocyte of different groups.

MT concentration (mol/L) Oocyte
numbers

GSH content
(pmol/oocyte)

0 100 8.25± 0.13a

10−12 100 9.25± 0.08b

10−9 100 9.34± 0.05b

10−6 100 8.99± 0.07b

Notes.
Within a column, the percentage with different superscript (a–b) means a significant difference (p < 0.05). Each experiment
was repeated thrice.

RESULTS
Effects of melatonin on survival and maturation rate after porcine
oocytes maturation culture in vitro
As shown in Table 2, no significant difference in survival rate was observed among the
four groups (p> 0.05), however, the maturation rates in the three experiment groups
were all significant higher than the Control, and the maturation rate in 10−9 mol/L group
was significant higher than the 10−6 and 10−12 group (p< 0.05). There was no significant
difference existed between 10−6 and 10−12 group (p> 0.05). Figures 1A, and 1D represents
the survival and matured oocytes, respectively. Figures 1B, 1C, 1E and 1F show that the
survival and mature oocytes were confirmed by fluoresent staining.

The effect of melatonin on glutathione content of single oocyte in
different groups
Table 3 shows that the GSH content of a single oocyte in three experimental groups was
significantly higher than the control group (p< 0.05); Although the GSH content in
10−9 mol/L group was the highest, there was no significant difference among the three
experimental groups (p> 0.05).

Mitochondrial maturation distribution of porcine oocytes in different
groups
Figure 3 shows that the proportions of oocytes with better mitochondrial distribution
in the 10−12, 10−9 and 10−6 mol/L group were all significantly higher than that in the
0 mol/L group, and the proportion in 10−9 mol/L group was significantly higher than
that in the 10−12 and 10−6 mol/L group (p< 0.05), whereas 10−12 mol/L group had a
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Figure 3 The proportion of oocyte with better mitochondrial distribution in different groups. The
proportion of oocyte with better mitochondria distribution. Different lowercase letters (a–d) over a bar
mean significant difference (p< 0.05). Each experiment was repeated three times.

Full-size DOI: 10.7717/peerj.9913/fig-3

significantly higher proportion of oocytes with better mitochondrial distribution than
that in the 10−6mol/L group (p< 0.05). Figure 2 represents the status of mitochondrial
maturation distribution.

To study the developmental potential of the parthenogenetic embryo
in different groups
As illustrated in Fig. 4 the cleavage rate in the 10−6 mol/L and 10−9 mol/L groups were
significantly higher than those in the 0 and 10−12 mol/L group (p< 0.05). Similarly, the
blastocyst rate in the 10−6 mol/L and 10−9 mol/L groups were also significantly higher
than those in the 0 and 10−12 mol/L group (p< 0.05). However, we did not observe a
significant difference in the cleavage and blastocyst rate between the 10−6 mol/L and 10−9

mol/L groups and the 0 and 10−12 mol/L group (p> 0.05).

The effects of melatonin on the mRNA expression of MPF and MAPK
genes in oocytes
Figure 5 demonstrates that the mRNA expression levels of MPF and MAPK genes in the
10−9 mol/L group were significantly higher than the other three groups (p< 0.05). The
MPF gene expression level of 10−6 mol/L group was higher than those in the 0 and 10−12

mol/L group (p< 0.05), however, no significant difference existed between the 0 and 10−12

mol/L group. There was no significant difference in MAPK gene expression between the
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Figure 4 Cleavaged embryos and blastocyst rate in different groups.Developmental potential of the
embryos in different groups. Different lowercase letters (a–b) over a bar of cleavage rate or over a bar of
blastocyst rate represent a significant difference (p< 0.05). Each experiment was repeated thrice.
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10−6 and 10−12 group (p> 0.05), whereas, they were both significantly higher than the 0
mol/L group (p< 0.05).

Zhao et al. (2020), PeerJ, DOI 10.7717/peerj.9913 9/16

https://peerj.com
https://doi.org/10.7717/peerj.9913/fig-4
https://doi.org/10.7717/peerj.9913/fig-5
http://dx.doi.org/10.7717/peerj.9913


DISCUSSION
Previous studies have shown the beneficial effect of melatonin on the in vitro maturation
(IVM) of porcine oocytes (Li et al., 2015), embryo development (Choi et al., 2008), and the
in vitro protection of fertilized embryos (Rodriguez-Osorio et al., 2007). We did not find a
significant influence on porcine oocyte survival after oocyte had been maturation cultured
with different concentration of melatonin for 42 h in vitro. We attribute this results to
the ideal maturation conditions established in our lab, where the culture environment
was suitable to meet the requirements of oocyte’s energy, nutrients, and other maturation
demands (Huang et al., 2016). As shown in Table 2, the lowest survival rates of the four
groups was 88.94%. However, the maturation rate was significantly increased in the 10−6,
10−9 or 10−12 mol/L group comparing to the 0 mol/L group. Because the process of oocyte
maturation involves manymolecular events and biochemical reactions, which coordinating
nuclear and cytoplasmic maturation (Arias-lvarez et al., 2017), so our study demonstrated
that 10−12–10−6 mol/L melatonin could further promote oocyte maturation in vitro.
Besides, we found that different melatonin concentrations can elevate the porcine oocyte
maturation quality, as indicated by the single oocyte’s GSH content and the higher ratio
of the oocyte with better mitochondrial distribution, especially, 10−9 mol/L melatonin
was found to be the most effective concentration in the present experiments. Previous
studies suggest that melatonin acts as an antioxidant and protects the oocytes from the
adverse effect of ROS during in vitro maturation. Thus, it promotes oocyte’s maturation
and developmental ability (Shi et al., 2009). Melatonin significantly improves the oocytes
cytoplasmic maturation by improving the ratio of oocytes with the normal distribution
of organelles and by increasing the intracellular GSH and ATP levels (Zhao et al., 2017),
which were consistent with our study that melatonin could significantly improve the
mitochondrial maturation distribution in cytoplasm. In the recent study by our group,
we found that melatonin concentration of 10−5 M significantly improved the quality of
mitochondria maturation in porcine oocyte as compared to the control group. However,
these beneficial effects of melatonin could be blocked by 10−5 M luzindole, which is a
melatonin receptor antagonist (Yang et al., 2020). As per the previous report, the melatonin
concentrations of 10−3–10−11 Mpositively affects the porcine oocyte maturation, and 10−9

M melatonin is the optimum concentration for porcine oocyte maturation in vitro (Shi et
al., 2009). The outcomes of our analysis were in line with this study.

The physiological dose of ROS plays an important role in cell growth and metabolism
(Rajani et al., 2012) and the enhanced of ROS content in cells can induce DNA damage
and lipid peroxidation, disrupt mitochondrial function (Loven, 1988; Lord-Fontaine &
Averill-Bates, 2002). We speculate that 10−9 mol/L melatonin keeps the ROS content at an
appropriate level and protect the oocytes fromoxidative stress damage, therebymaintaining
the physiological dose of ROS to support the ooplasmic maturation of the porcine oocytes
in vitro. From the perspective of the embryo cleavage and blastocyst rate, they were both
significantly higher in 10−6 mol/L and 10 −9 mol/L groups against the 0 and 10−12 mol/L
group. These results might be correlated with the better maturation quality of porcine
oocytes. We had already shown that 10−6 mol/L and 10−9 mol/L groups exhibit a higher
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GSH content in single oocyte and a higher ratio of the oocyte with better cytoplasmic
mitochondrial distribution, which were essential for embryo development (Huang et al.,
2016). Numerous studies have reported that melatonin, an antioxidant, scavenge ROS
(Tamura et al., 2012), and promotes porcine oocyte maturation as well as embryonic
development (Choi et al., 2008; El-Raey et al., 2011; Lord et al., 2013; Tamura et al., 2009;
Tian et al., 2014). Li et al. (2015) also tested the concentration of 10−6 mol/L-10−9 mol/L
melatonin to the influence of oocyte maturation and development when oocytes were heat
stressed, in which 10−9 mol/L melatonin exhibited the best protective effects from heat
stress and boosted porcine oocytes maturation and development. These studies are in line
with our experimental outcomes.

The MPF and MAPK genes play an essential role in the maturation and development of
oocytes (López-Cardona et al., 2017). Other studies also illuminated the fact that the MPF
gene plays a central role in oocyte maturation and embryonic development by regulating
oocytes meiosis and cell cycle; also, it promotes nuclear maturation of porcine oocytes
(Dadashpour Davachi et al., 2017; Liu et al., 2018; Oqani et al., 2017). In our study, the
expression pattern of the MPF gene varied with the changes of oocyte maturation quality
and developmental potential, and the supplement of melatonin with 10−9 mol/L is most
beneficial to porcine oocytes maturation and development during maturation in vitro,
while the higher concentration with 10−6 mol/L or the lower concentration with 10−12

mol/L melatonin supplement both decreased the expression of theMPF gene. Nevertheless,
another report showed that themost suitable concentration ofmelatonin for porcine oocyte
maturation and development was 10−7 mol/L (Li et al., 2015). Li et al. studied the porcine
oocytes under heat stress conditions (42 ◦C for 20–24 h during IVM). The findings of this
study suggested that 10−7mol/L melatonin protected and promoted the oocyte maturation
and development under heat stress condition; however, in the normal IVM condition,
10−9 mol/L melatonin promoted the maturation and development of the oocytes. Previous
studies suggested that a highMAPK gene expression activity is an essential marker of oocyte
maturation and a necessary criterion for the oocyte’s maturation quality (Li et al., 2017;
Sun et al., 2016). Melatonin can activate the MAPK protein and regulate the MPF protein
by interacting with intracellular transcription factors or cell inhibitory factor (CIF), which
control the meiosis of oocyte and promote oocyte maturation and embryo development
(Mayo et al., 2016; Tiwari et al., 2017). However, in our present study, the MAPK gene
expression level was showed significantly higher in 10−9 mol/L goup than the other groups
(p< 0.05), which was also consistent with the results of maturation indexes and MPF
gene expression. The outcome of the current study shows that the group with 10−9 mol/L
group melatonin supplement exhibits the highest maturation quality and developmental
potential consistent with the heightened MPF and MAPK mRNA expression.

CONCLUSION
Based on our previous findings, in the current study, we reported the optimummelatonin-
supplement concentration (10−9 mol/L) for porcine oocyte maturation culture at 39 ◦C,
5% CO2,95% humidity for 42 h in the vitro condition. We found increased single oocyte
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GSH content, better mitochondrial maturation distribution, maturation rate, MPK, and
MAPK gene expression in the 10−9 mol/L group, which increased the developmental
potential of oocytes. The outcome of the current study extended our understanding
of melatonin-induced porcine oocyte maturation and embryo development, which has
provided a reference point for the biotechnological applications of oocyte maturation and
development in vitro.
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