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ABSTRACT Bacteria belonging to the genus Bacillus and their cognate viruses are
easily found in the environment. Soil sampled from Rockingham County, VA, yielded
the bacteriophage Ray17, which was isolated on Bacillus amyloliquefaciens. Presented
here is the complete genome sequence of the unique bacteriophage Ray17 with
43,733 bp and 75 predicted genes.

n isolate of Bacillus amyloliquefaciens was cultured from a soil sample in Rocking-
ham County, VA (global positioning system [GPS] coordinates 38°23" N 79°03" W),
and identified by 16S rRNA gene sequence analysis. Categorized as a plant growth-
promoting rhizobacterium, B. amyloliquefaciens initiates plant growth and produces
secondary metabolites that reduce the activity of soilborne plant pathogens (1).
Bacteriophage Ray17 was isolated as part of an undergraduate research course using a
double-layer agar plate method from the same soil sample (2).
Phage genomic DNA was extracted from 0.5 ml of lysate (>1.0 X 10° PFU/ml) by
adding a lysing solution (10 mM EDTA, 2.5% Ficoll-400, 3.3 mM Tris-HCI [pH 8.0], 0.08%
SDS) and leaving the mixture at room temperature for 10 min. One milliliter of
isopropanol was added, mixed, allowed to sit for 5 min, and centrifuged at 13,000 rpm
for 10 min. The pellet was resuspended in 100 ul of sterile water. DNA was sequenced
by the North Carolina State Genomic Sciences Laboratory (Raleigh, NC). All methods for
sequencing, assembly, and gene predictions were as previously described (3), using
default parameters for all programs. Approximately 36,000 high-quality reads randomly
derived from 10° reads were assembled into one contig with an average coverage of
120-fold.
Ray17 was a siphophage (head, ~60 nm; tail, ~285 nm) (Fig. 1). The 43,733-bp
genome had a G+C content of 44.55%, correlating closely with the host G+C content
of 43.50%. Using PhageTerm, the genome was predicted to be circularly permuted and
terminally redundant (4). Whole-genome BLASTn analysis using the nonredundant
database (5) revealed that Ray17 was related to the Bacillus subtilis siphovirus SPP1 (6),
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FIG 1 Transmission electron micrograph of Ray17. For electron microscopy, phages from lysate were
negatively stained with 1% uranyl acetate on Formvar-coated copper grids and photographed on a
Morgagni 268 transmission electron microscope (FEl, Hillsboro, OR).

peptidoglycan layer (7). The spacing between the endolysin and holin genes strongly
suggested a potential secondary structure similar to that of Escherichia coli bacterio-
phage lambda, indicating that site-directed initiation may be possible in Ray17 (8).
There was an additional endolysin gene found in Ray17 that could be a tail lysin;
however, it was not found near any other tail structural genes.

The relatively low percent coverage and identity with the most closely related
phage, SPP1, determined by using phages catalogued in the Bacillus Phage Database
(http://bacillus.phagesdb.org/) for phylogenetic analysis (9), indicate that phage Ray17
may constitute a new cluster of Bacillus phages.

Data availability. This whole-genome shotgun project has been deposited in
DDBJ/ENA/GenBank under the accession number MH752385. The short-read sequences
have been deposited under BioProject number PRJNA517682 and BioSample number
SAMN10840650.
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