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Background
Breast cancer (BC) is the most common malig-
nancy in females. Metastases to the brain occurs 
in 10–16% patients with BC.1,2 Compared with 
hormone receptor (HR)-positive BCs, which are 
more likely to recur in bone, triple-negative BCs 
(TNBC) and HER-2 positive BCs more 
commonly recur in the brain.3 BC with brain 

metastasis (BCBM) is a devastating cause of mor-
bidity and mortality. The mean interval time from 
primary BC diagnosis to BCBM existence is 
about 35 months. The two main risk factors for 
developing BCBM are large primary tumor size 
and lymph node metastasis.4 Clinically, brain 
metastases are treated with surgery, radiation 
therapy [whole brain radiation therapy (WBRT)] 
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Abstract
Background: The survival status of patients with breast cancer and brain metastasis (BCBM) 
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OS. Compared with non-BM MBC patients, BCBM patients had more fibroblast growth 
factor receptor (FGFR) aberrations. The combination of FGFR, TP53 and FLT1 aberrations 
plus immunohistochemistry HER2-positive were associated with an increased risk of 
brain metastasis (AUC = 77.13%). FGFR aberration alone was not only a predictive factor 
(AUC = 67.90%), but also a significant risk factor for poor progression-free survival (Logrank 
p = 0.029). FGFR1 aberration was more frequent than other FGFR family genes in BCBM 
patients, and FGFR1 aberration was significantly higher in BCBM patients than non-BM MBC 
patients. Most FGFR1-amplified MBC patients progressed within 3 months of the late-line (>2 
lines) treatment.
Conclusion: A group of genetic events, including FGFR, TP53 and FLT1 genetic aberrations, and 
HER2-positivity, forecasted the occurrence of BM in breast cancers. FGFR genetic aberration 
alone predicted poor prognosis.
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or stereotactic radiosurgery. In practice, no uni-
formly standard chemotherapy drugs are availa-
ble for BCBM; in the National Comprehensive 
Cancer Center guideline, the category 2A recom-
mendations include high-dose methotrexate, 
capecitabine, temozolomide monotherapy and 
cisplatin plus etoposide.5 Despite a lack of con-
sensus, preliminary data suggests that chemother-
apy and targeting therapies after WBRT may 
improve survival outcomes.6

The majority of BCBM patients receive a 
multimodality therapy approach, including anti-
HER2 therapy in HER2-positive tumors and 
hormonal therapy in estrogen receptor (ER) and/
or progesterone receptor (PR) positive tumors.7 
Trastuzumab and lapatinib, administered con-
currently or sequentially, may improve overall 
survival (OS) in HER2-positive BCBM patients.8,9 
Compared with an OS of 16.7 months for a tras-
tuzumab-based regimen alone, trastuzumab plus 
lapatinib and capecitabine show a significantly 
longer OS of 27.9 months (p = 0.01).10 The tar-
geting therapy options for triple-negative BCBM 
are currently not available in clinical practice. For 
some triple-negative BCBM patients who  
harbor BRCA1 and BRCA2 aberrations, PARP 
inhibitor olaparib has demonstrated activity in 
BRCA1/2(MUT+) BC.11 In addition, quite a few 
advanced clinical trials for new targeting agents 
are in process, including EGFR/VEGFR inhibi-
tors, PARP inhibitors, PIK3CA/mTOR inhibitors 
and CDK4/6 pathway inhibitors.12–15 Targeted 
therapy with anti-PD-L1 antibody atezolizumab 
in PD-L1 positive-TNBC is a new standard of 
care.16 Compared with placebo plus nab-pacli-
taxel, atezolizumab plus nab-paclitaxel could sig-
nificantly improve the progression-free survival 
(PFS) of PD-L1-positive TNBC patients 
[7.5 months versus 5.0 months, hazard ratio  = 0.62; 
95% confidence interval (CI) = (0.49–0.78), 
p < 0.001]. Several studies also suggest a benefit of 
capecitabine-based chemotherapy in triple-nega-
tive BCBM patients.17,18

Magnetic resonance imaging (MRI) is a sensitive 
imaging tool which is widely used in the detection, 
treatment planning, and follow-up of BCBM. 
Circulating tumor DNA (ctDNA) testing is prom-
ising regarding to tumor treatment response and 
progression.19 Derived from cell-free DNA 
(cfDNA), ctDNA analysis is a powerful surveil-
lance tool for effective and continuous detection 
of potential tumor-related gene mutations.20–23 

Compared with imaging and serum biomarkers, 
ctDNA testing provides valuable and sensitive infor-
mation about gene mutations in tumors following 
drug-based therapies.24 ctDNA does provide valua-
ble information, but ctDNA is less likely to be 
informative about brain disease than extra-cranial 
disease.25 However, metastatic BC (MBC) is a sys-
tematic disease, and often times BC patients develop 
brain metastases after metastases have appeared 
systemically in the lung, liver, and/or bone.26 Our 
previous study reports a ctDNA gene mutation pro-
file in MBC patients.24 Thymidine phosphorylase 
(TP53), PIK3CA, and ERBB2 are the top mutated 
genes. Angiogenesis-related vascular endothelial 
growth factor (VEGF) variation is not detected. 
Instead, fibroblast growth factor receptor 1 (FGFR1) 
variations are detected in 4/68 (5.88%) of MBC 
patients.24 A total of 18% of BC patients are 
reported to be affected with FGFR aberrations, and 
the most common of which is FGFR1 amplification 
(~14%).27 The FGFR pathway plays a major role in 
angiogenesis and metastasis; FGFR alterations pro-
mote carcinogenesis, cell proliferation, angiogene-
sis, and drug resistance.28–30

In this study, we recruited 146 BCBM patients in 
our single center and retrospectively assessed the 
clinical risk factors. In addition, by using ctDNA 
testing, we examined the genetic risk factor in 195 
single-center cases and in 1501 cases from 
Geneplus database.

Methods

BCBM patient cohort and data flow
The study was approved by the Ethics Committee 
at Hunan Cancer Hospital, the Affiliated Cancer 
Hospital of Xiangya School of Medicine/Central 
South University. As shown in Online Supplemental 
Figure S1 data flow, a total of 146 BCBM patients 
were enrolled in this study. Inclusion criteria were 
as follows: (a) CT/MRI confirmed BCBM; (b) tol-
erable to chemotherapy or target therapy with nor-
mal heart, liver, and renal function. Basic 
demographic and clinical information includes age 
of primary BC diagnosis, age of BCBM diagnosis, 
time-to-brain metastasis (TTB, from primary BC 
diagnosis to BCBM diagnosis), primary BC lateral-
ity, HR/HER2 status, TNM (T, primary tumor; N, 
nodal involvement; M, distant metastasis) stage of 
the primary BC at diagnosis, treatment history 
before BCBM diagnosis, treatment after BCBM 
diagnosis, and other metastatic sites. 
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Sample collection and plasma ctDNA testing
To investigate the genetic risk factor, plasma 
ctDNA test was performed. As shown in Figure 
S1, a total of 195 MBC patients received plasma 
ctDNA testing at the Department of Breast 
Cancer Medical Oncology in Hunan Cancer 
Hospital. Other inclusion criteria included: (a) 
⩾1 measurable metastatic lesion; (b) age 18–
70 years old; (c) normal liver and renal function 
(aspartate aminotransferase (AST) and alanine 
aminotransferase (ALT) > 0.5 upper limit of 
normal value (ULN), total bilirubin (TBIL) < 1.5 
ULN, and creatinin (Cr) < 1.0 ULN); (d) rou-
tine-blood test: neutrophil count >2.0 × 109/l, 
Hb >11 g/l, platelet count >100 × 109/l. The 
exclusion criteria were: (a) serious heart disease; 
(b) multiple primary malignancies; (c) immune-
deficiency; (d) organ-transplantation history. 
The plasma ctDNA testing study was also 
approved by the Ethics Committee of Hunan 
Cancer Hospital. Of these 195 patients, 30 were 
BCBM patients as described above, whereas the 
other 165 were non-brain-metastatic (BM) MBC 
patients. To compare the different genetic aber-
rations between BCBM patients and non-BM 
MBC patients, 1:1 propensity score matching 
(PSM) was performed to reduce the potential 
bias between these two subgroups. Propensity 
scores were calculated through logistic regression 
with covariates including age, treatment history, 
and metastatic disease (lung, liver, bone, and 
lymph node metastases) and recurrent disease. 
After PSM, 28 BCBM patients and 28 non-BM 
MBC patients were selected for genetic aberra-
tion comparison (heatmap).

From 2016, the Geneplus database pool collected 
1501 BC samples; among these BC patients, 86 
were BCBM patients. We collected the peripheral 
blood samples from the patients, and then 
extracted the DNA content according to the pro-
tocol.24 We sequenced the genomic DNA (gDNA) 
and used the gDNA sequence as the control.

Target capture, next-generation sequencing, 
and data analysis
Sequencing libraries of ctDNA were prepared 
using the DNA Library Preparation Kit for 
Illumina (New England Biolabs, Ipswich, MA, 
USA). Custom biotinylated oligonucleotide 
probes (IDT, Coralville, IA, USA) covering the 
exons of 1021 genes that are highly mutated in 
12 common solid tumors were used for hybrid 
capture, as described previously.31 The Illumina 

HiSeq 3000 Sequencing System (Illumina, San 
Diego, CA, USA) was used for DNA sequenc-
ing with a 2 × 101-bp paired-end strategy, as 
described previously.24

Terminal adaptor sequences were removed from 
the raw sequencing data. Subsequently, reads 
with more than 50% low-quality bases, or more 
than 50% undefined bases, were discarded. The 
remaining reads were mapped to the reference 
human genome (hg19) using the Burrows-Wheel 
Aligner with default parameters. Picard’s Mark 
Duplicates tool (version 1.98) was used to iden-
tify duplicate reads. Local realignment and qual-
ity recalibration were performed using the Gene 
Analysis Toolkit. Single-nucleotide variants and 
small insertions and deletions were called using 
the MuTect2 algorithm, and further filtration and 
validation was performed according to estab-
lished criteria.31 The Contra algorithm was used 
to identify somatic copy-number alterations 
defined using the ratio between the adjusted 
depths of ctDNA and control gDNA. After auto-
matic calling, candidate variants were manually 
validated using an online visualization tool.

ctDNA gene aberration frequency
Total cfDNA included ctDNA and other normal 
cfDNA. Aberrations in ctDNA were identified by 
comparing the reference genome (hg19) and 
gDNA. The ctDNA aberration frequency was 
defined as the proportion of ctDNA gene aberra-
tions in the total cfDNA.

Statistical analyses
Categorical variables were recorded as counts 
with percentage, and continuous variables were 
calculated as the mean with standard deviation 
and median with interquartile range. Chi-square 
tests were used to compare categorical variables 
between subgroups. When the sample size was 
less than five in the comparing subgroup, Fisher’s 
exact test were applied. Mentel–Haenszel chi-
square tests were used when the number of com-
pared subgroups was more than two. To compare 
continuous variables with symmetrical distribu-
tions across subgroups, an analysis of variance 
test was used. Both the univariate and multivari-
ate Cox proportional hazards regression analyses 
were used to evaluate the prognostic factors for 
OS. Log rank tests and drawn Kaplan–Meier 
curves were also performed to assess the overall 
survival OS.
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To search for significant ctDNA aberrations for 
BCBM, R package “ComplexHeatmap” was 
applied to rank the hot genetic aberrations in 
PSM BCBM and non-BM MBC subgroups. 
The top aberrations were put into a logistic 
model for BM prediction. A receiver operating 
characteristic (ROC) curve was drawn to deter-
mine the areas under the ROC curve (AUC) for 
BM. All statistical analyses were conducted by 
using SAS 9.4 or R 3.6.0 software. All tests of 
hypotheses were two-tailed and conducted at a 
significance level of 0.05 and at a marginal sig-
nificant level of 0.15.

Results

Clinical risk factors for poor prognosis  
in BCBM patients
For the 146 recruited BCBM patients, the mean 
age at BC first diagnosis was 45.30 (±9.80) 
years old and the mean age at BCBM diagnosis 
was 48.48 (±9.64) years old. The mean TTB 
was 3.18 (±2.98) years (Online Supplemental 
Table S1). A total of 64.83% BCBM patients 
had bone metastasis and 76.56% BCBM 
patients had visceral metastasis. Both univariate 
and multivariate Cox regression analyses were 
performed to evaluate the potential clinical risk 
factors for poor OS in BCBM patients. 
Ki67 > 14% and metastatic brain tumors >3 
were significant risk factor for OS in both uni-
variate and multivariate Cox regression analyses 
(Table 1). Brain radiotherapy and chemother-
apy after BM diagnosis were significant benefi-
cial factors for longer OS in both univariate and 
multivariate Cox regression analyses. In multi-
variate Cox regression analysis, HER2-positive 
was a marginally significant favorable factor for 
OS (p = 0.10, Table 1). A Kaplan–Meier curve 
with Logrank test analyses showed that the 
median OS of all the enrolled 146 BCBM 
patients was approximately 31.8 months (Online 
Supplemental Figure S2a). The OS were longer 
in the patients with ⩽3 metastatic brain tumors 
than in the patients with >3 metastatic brain 
tumors (Logrank test p = 0.04, Online 
Supplemental Figure S2b). In the patients with 
Ki-67 ⩽ 14%, the OS were longer than in the 
patients with Ki-67 > 14% (Online Supplemental 
Figure S2c). After 18 months, the OS was longer 
in the patients with HER2 positive as compared 
with that of the patients with HER2 negative 
(Figure S2d).

Genetic aberration of BCBM patients
BCBM group and non-BM MBC group had dis-
tinct ctDNA aberration patterns (Figure 1). 
BCBM patients had a significantly higher FGFR 
aberration rate compared with non-BM MBC 
patients (32.14% versus 3.57%, Fisher’s Exact 
test p = 0.01). FLT1 gene aberration was also 
higher in BCBM patients, while ALK, CCNE1 
and CDK12 aberrations were more frequent in 
non-BM MBC patients.

Compared with non-BM MBC patients, more 
BCBM patients were HER2-positive (40% versus 
23.75%, p = 0.06, Table S2), and more BCBM 
patients had bone or liver metastases (p = 0.04 
and p = 0.001, respectively). Based on these fea-
tures, a panel of genetic events (including aber-
rant FGFR, TP53, FLT1, and wild-type ALK, 
CDK12 and CCNE1) and HER2-positive were 
correlated with an increased risk of BM 
(AUC = 0.8050, Online Supplemental Figure 
S3a). An even smaller panel of genetic aberra-
tions (FGFR, TP53, FLT1) and HER2-positive 
were still significantly correlated with an increased 
risk of BM (AUC = 0.7713). But such a panel of 
genetic and HER2-positive events was less likely 
correlated with liver, lung, bone, and lymph node 
metastases (AUC: 0.6136 ~ 0.7075, Online 
Supplemental Figure S3b–e).

FGFR aberration in MBC patients
FGFR pathway plays a major role in angiogenesis, 
metastasis, cell proliferation and drug resist-
ance.28–30 In squamous cell lung cancer and BC, 
FGFR inhibitors showed promising antitumor 
activity, especially for patients with FGFR1 and/or 
FGFR3 amplification.32 Here, among 195 MBC 
patients, FGFR aberration was not only signifi-
cantly related to poor PFS (Logrank test p = 0.029, 
Figure 2), but also had AUC of 0.6790 in predict-
ing brain metastases (Online Supplemental Figure 
S3b–e), suggesting a strong correlation of FGFR 
aberration with poor prognosis and brain metasta-
ses. Compared with non-FGFR aberrant group, 
FGFR-aberrant group had significantly more brain, 
liver, lung, and lymph node metastatic patients 
(p < 0.05, Table 2).

Among 197 MBC patients, 22 patients had FGFR 
aberrations, including 14 FGFR1 aberrations, 4 
FGFR2 aberrations, 3 FGFR3 aberrations and 1 
FGFR4 aberration (Figure 3). Besides TP53 and 
PIK3CA, MAP3K1 mutation was the most 
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Table 1.  Univariate and multivariate analysis of the clinical risk factors for OS.

Covariates Level Univariate Multivariate

  Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

Age at diagnosis (of BC)* 1.016 (0.982, 1.052) 0.47 − −

Age at brain metastasis 
(years)

1.006 (0.968, 1.045) 0.76 0.980 (0.869, 1.105) 0.74

TTB (years)** 0.840 (0.713, 0.991) 0.04 1.185 (0.552, 2.545) 0.19

BC Laterality Left 0.863 (0.405, 1.841) 0.70 0.615 (0.048, 7.883) 0.71

  Right Ref  

ER Positive 0.751 (0.370, 1.523) 0.43 0.035 (0, 4.193) 0.17

  Negative Ref Ref  

PR Positive 0.692 (0.334, 1.431) 0.32 9.226 (0.276, 308.245) 0.21

  Negative Ref Ref  

HER2 Positive 0.838 (0.503, 1.396) 0.50 0.497 (0.195, 1.267) 0.10

  Negative Ref Ref  

HR/HER2 subtypes Triple Negative Ref Ref  

  HR+/HER2– 0.447 (0.177, 1.129) 0.09 0.540 (0.007, 41.856) 0.54

  HR–/HER2+ 2.033 (0.618, 6.711) 0.24 1.318 (0.008, 142.857) 0.92

  HR+/HER2+ 1.828 (0.646, 5.183) 0.26 1.113 (0.087,14.225) 0.95

Ki67 (%) ⩽14% Ref Ref  

  >14% 6.842 (1.022, 45.805) 0.05 10.156 (1.009, 102.224) 0.05

Stage at BC diagnosis I Ref Ref  

  II 1.148 (0.316, 4.173) 0.83 0.352 (0.008, 16.537) 0.60

  III 0.895 (0.231, 3.471) 0.87 0.055 (0.001, 5.821) 0.22

  IV 1.658 (0.432, 6.362) 0.46 0.234 (0, 177.657) 0.67

Treatment history before 
BCBM diagnosis

Primary site surgery 0.775 (0.291, 2.065) 0.61 0.174 (0.002, 12.880) 0.43

  Primary site Radiation 1.330 (0.645, 2.742) 0.44 1.868 (0.109, 32.130) 0.32

  Chemotherapy 0.426 (0.057, 3.199) 0.41 0.866 (0.251, 3.091) 0.74

  Capecitabine usage*** 0.902 (0.439, 1.852) 0.78 0.382 (0.033, 4.477) 0.44

  Anti-Her2 targeting 
therapy

0.746 (0.460, 1.210) 0.25 0.805 (0.034, 23.676) 0.75

  Endocrine therapy 0.753 (0.385, 1.460) 0.52 0.917 (0.027, 49.464) 0.93

Treatment after BCBM 
diagnosis

Brain radiation 0.263 (0.113, 0.613) 0.002 0.150 (0.036, 0.625) 0.010

  Chemotherapy 0.286 (0.137, 0.597) 0.0009 0.014 (0.001, 0.702) 0.014

  Capecitabine usage*** 0.638 (0.272, 1.496) 0.30 2.434 (0.186, 31.644) 0.50

(Continued)
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Figure 1.  Circulating tumor DNA gene mutation profiles for matched 28 brain metastatic breast cancer (BC) 
patients (a) and 28 non-brain-metastatic metastatic BC patients (b).

Covariates Level Univariate Multivariate

  Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

  Anti-Her2 targeting 
therapy

0.515 (0.179, 1.481) 0.22 0.708 (0.009, 54.457) 0.88

  Endocrine therapy 0.446 (0.106, 1.876) 0.27 0.502 (0.016, 54.457) 0.69

Brain metastases number ⩽3 Ref Ref  

  >3 2.208 (1.022, 4.768) 0.04 7.947 (1.012, 62.406) 0.05

Other metastasis# Bone 1.918 (0.821, 4.477) 0.13 1.765 (0.128, 24.401) 0.67

  Visceral 2.051 (0.825, 5.103) 0.12 4.685 (0.019, 242.439) 0.44

*Age at diagnosis was evaluated by using univariate Cox regression; but this variable did not exist in the multivariate model because age at brain 
metastasis and TTB were analyzed in a multivariate model (Age at diagnosis=Age at brain metastasis-TTB).
**TTB indicated the time from diagnosis of BC to the diagnosis time of brain metastasis.
***Capecitabine usage represents the capecitabine usage history before or after BCBM diagnosis.
#Other metastasis indicated the metastatic sites other than brain.
BC, breast cancer; BCBM, breast cancer and brain metastasis; CI, confidence interval; ER, estrogen receptor; HER2, human epidermal growth 
factor receptor-2; PR, progesterone receptor; TTB, time-to-brain metastasis.

Table 1.  (Continued)

frequent in FGFR-aberrant patients (Figure 3 and 
Table 3, p = 0.001). A small panel of genetic aber-
rations (including TP53, PIK3CA, MAP3K1, 
ESR1, and DNMT3A) could potently predict the 
FGFR aberration in MBC patients (AUC = 0.7349, 
Online Supplemental Figure S3f). Our findings 
suggested that FGFR aberration was coupled with 
multiple oncogenic pathways and drug-resistant 

pathways, such MAPK/ERK signaling pathway 
and mTOR pathway.33

FGFR1 aberration increased in MBC patients 
with brain metastases
FGFR1 aberration was the most frequent FGFR 
aberration in BCBM patients (Figure 3). To 
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further explore the FGFR1 aberration pattern in 
MBC patients, we used ctDNA surveillance data 
from Geneplus database. Among 1501 BC 
patients in Geneplus database (Table 4), 379 
patients had bone metastases but the FGFR1 
aberration rate was almost the same with non-
bone metastatic BC patients (4.75% versus 
3.48%, p = 0.26). In lung metastatic BC patients, 
the FGFR1 aberration was significantly higher 
than the rate in non-lung metastatic BC patients 
(5.83% versus 3.26%, p = 0.04). For liver meta-
static and brain metastatic BC patients, the 
FGFR1 aberration rates were even higher (8.18% 
and 8.14%, respectively), significantly higher 
than those without liver- and brain-metastases 
(p < 0.0001 and p = 0.03, respectively, Table 4). 
Based on these findings, we hypothesized that 
patients with more aggressive metastases would 
have higher FGFR1 aberration rate.

Among 57 FGFR1-aberrant BC patients from 
Geneplus database, 61 FGFR1 aberrations were 
identified. More than half were FGFR1 amplifi-
cation (35/61 [57.38%], Online Supplemental 
Table S3), one (1.64%) was splicing variation, 

three (4.92%) were stop-gain mutations, and the 
rest twenty-two (36.07%) were missense muta-
tions. Among seven FGFR1-aberrant BCBM 

Table 2.  Differences of metastases/recurrence between FGFR-aberrant group and wild-type FGFR group.

  FGFR group (n = 22) wild type-FGFR group (n = 173) p-value*

Brain 9 (40.91%) 12 (6.94%) <0.0001

Liver 12 (54.55%) 36 (20.81%) 0.0005

Lung 12 (54.55%) 42 (24.28%) 0.003

Bone 12 (54.55%) 59 (34.10%) 0.06

Lymph node 15 (68.18%) 70 (40.46%) 0.01

Recurrence 40 (23.12%) 8 (36.36%) 0.17

*p-values were calculated by using Chi-square tests or Fisher’s exact tests (n < 5) for categorical variables.

Figure 2.  Kaplan–Meier curves for progression-free survival (PFS) 
probabilities (probs.) stratified by circulating tumor DNA FGFR aberrations.

Table 3. Differences of ctDNA mutation pattern between FGFR-aberrant group and wild-type group.

  FGFR group (n = 22) wild type-FGFR group (n = 173) p-value*

TP53 12 (54.55%) 84 (48.55%) 0.60

PIK3CA 11 (50.00%) 62 (35.84%) 0.20

MAP3K1 5 (22.73%) 4 (2.31%) 0.001

ESR1 3 (13.64%) 13 (7.51%) 0.40

DNMT3A 3 (13.64%) 15 (8.67%) 0.43

*p-values were calculated by using Chi-square tests or Fisher’s exact tests (n < 5) for categorical variables.
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patients from Geneplus database, eight FGFR1 
aberrations were identified. Five (62.5%) were 
copy number amplification, one (12.5%) was 
stop-gain mutation and two (25.0%) were mis-
sense mutations. Among 14 FGFR1 aberrant 
BCBM patients (Figure 3), ten were amplifica-
tion, one was stop-gain mutation and three were 
missense mutations. The average level of FGFR1 

amplification was 4.05 (±2.32) copy number. 
The median level of FGFR1 amplification was 3.2 
[range = (2.1, 10)] copy number.

FGFR aberrations predict poor PFS
Kaplan–Meier curve with lifetest showed that 
FGFR aberrations were also significantly related to 

Figure 3.  Circulating tumor DNA gene mutation profiles (top) and metastases (bottom) for 22 FGFR-aberrant 
metastatic breast cancer patients.
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N Xie, C Tian et al.

journals.sagepub.com/home/tam	 9

poor PFS (Logrank test p = 0.029, Figure 2), sug-
gesting a strong correlation of FGFR aberration 
with poor treatment response. The median PFS 
for FGFR-wild type patients and FGFR-aberrant 
patients was 7.5 (95% CI = 5.3–9.3) months and 
4.7 (95% CI = 2.0–7.1) months, respectively.  
As shown in Table 5, 13/18 (72%) FGFR aberrant 
MBC patients progressed within 6 months. 60% 
FGFR1-amplified patients progressed within 
3 months. Only one FGFR1 amplified HR+/
HER2+ patient (ID53) with capecitabine + lapat-
inib + Herceptin treatment had a PFS longer than 
6 months, and the ctDNA surveillance data also 
suggested a decrease in tumor mutation burden. 
The treatment response for FGFR1 stop-gain and 
missense mutant patients (ID52, 22, 104 and 177) 
was better than FGFR1-amplified patients, with a 
longer PFS (patients with PFS > 6 months were 
highlighted in red). Besides FGFR1 amplification, 
FGFR2 and FGFR3 aberrant patients also had 
short PFS, except one FGFR2-amplified patient 
with Exemestane plus Chidamide treatment 
(ID58). Consistent to the RECIST evaluation, 
ctDNA surveillance showed FGFR aberration 
sustained or increased in resistant patients 
(PFS < 6 months) and FGFR aberration decreased 
in sensitive patients (PFS > 6 months, Table 5).

Specifically, FGFR1 missense mutant HR-positive 
MBC patient had longer PFS than FGFR1 ampli-
fied HR-positive MBC patient. ID144 and ID177 
were both HR-positive MBC patients with 
CDK4/6 inhibitor plus Fulvestrant treatment. 
ID144 had FGFR1 amplification and progressed 

within 2 months of treatment. ID177 had FGFR1 
p.N546K missense mutation, and she kept partial 
response for more than 1 year (Table 4). Evero
limus plus exemetane also showed potency in 
FGFR1 p.N546K missense mutant HR-positive 
patient (ID104). Compared to epirubicin plus 
cyclophosphamide plus taxel (ECT) regimen 
(ID142), chidamide plus exemestane was more 
effective in FGFR2-amplified HR-positive patient 
(ID58). By using the ctDNA test, we could find 
more specific drug-resistant mutations, such as 
ESR1, PIK3CA p.E545K/E525K mutations, 
FGFR1 amplification, etc.

FGFR aberrations concentrated in HR-positive 
BCBM patients
Compared to non-BM MBC patients, more 
BCBM patients were HER2-positive (40% versus 
23.75%, p = 0.06, Table S2). But compared with 
FGFR-wild type patients, more FGFR-aberrant 
patients were ER-positive or PR-positive (ER: 
68.18% versus 48.55%, p = 0.08; PR: 68.18% versus 
43.93%, p = 0.03; Table S4). Both FGFR aberra-
tion and HER2-positive were correlated with BM, 
but their combination showed a more significant 
correlation. As shown in Online Supplemental 
Figure S3a, the combination of FGFR aberration 
and HER2-positive was significantly correlated 
with the increased risk of BM (AUC = 0.7228), but 
such a correlation of individual aberration was 
not as significant as their combination (FGFR 
aberration alone AUC = 0.6790, HER2-positive 
alone AUC = 0.5431, Figure S3A).

Table 4.  FGFR1 aberration rate comparison in bone-, brain-, lung-, and liver-metastatic breast cancer 
patients in Geneplus database.

Metastatic sites Level Number FGFR1 aberration p-value*

  Yes No  

Bone Yes 379 18 (4.75%) 361 (95.25%) 0.26

  No 1122 39 (3.48%) 1083 (96.52%)  

Lung Yes 309 18 (5.83%) 291 (94.17%) 0.04

  No 1195 39 (3.26%) 1156 (96.74%)  

Liver Yes 269 22 (8.18%) 247 (91.82%) <0.0001

  No 1232 35 (2.84%) 1197 (97.16%)  

Brain Yes 86 7 (8.14%) 79 (91.86%) 0.03

  No 1415 50 (3.53%) 1365 (96.47%)  

*p-values were calculated by using Chi-square tests or Fisher’s exact tests (n < 5) for categorical variables.
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Discussion
In practice, we found that some other brain metas-
tases sequentially occurred after bone or other vis-
ceral metastases, especially in HR-positive BC 
patients, suggesting brain metastases as the final 
deadly stage for this group of patients; some brain 
metastases appeared earlier than bone and other 
visceral metastases, especially in HER2-positive 
BC patients. In this study, we found that FGFR 
aberrations concentrated in HR-positive patients 
(Online Supplemental Table S4); the FGFR aber-
rant group also had significantly more liver, lung, 
and brain metastases than the non-FGFR aber-
rant group (Table 3), implying a role of FGFR 
aberration in the late stage (migration and metas-
tases) of HR-positive patients (especially in lumi-
nal B subtype Ki > 14%). HER2 was another 
important factor related to BM: the proportion of 
HER2-positive tumors was higher in BCBM 
patients, compared with non-BM MBC patients 
(Online Supplemental Table S2). The combina-
tion of HER2-positive and FGFR aberration could 
reach an AUC of 72.28% in the prediction of 
brain metastases (Online Supplemental Figure 
S3a), indicating that 72.28% BCBMs were either 
HER2-positive and/or FGFR-aberrant.

Genetic risk factor FGFR aberration was identi-
fied to relate to BCBM in both our single-center 
and Geneplus database. Similarly, in the brain 
metastases of lung adenocarcinomas, FGFR1 
amplification is also reported to be higher than 
the expected rate.44 FGFR1 amplification is iden-
tified in up to 10% of all BCs, 16–27% of luminal 
B type BCs, and is correlated with endocrine 
therapy resistance.35,36 In HER2-positive BCs, 
the co-amplification of FGFR1, ERBB1, and 
ERBB2 results in a worse prognosis compared 
with patients with individual amplification or 
without amplification.45 In this study, among 22 
detected FGFR-aberrant patients, 16 were 
HR-positive MBC patients (14 were HR+/
HER2- and 2 were HR+/HER2+), 5 were 
TNBC and 1 was HR–/HER2+ (Table 5). 
Moreover, ctDNA FGFR aberrations were more 
frequently detected in ER-positive [15/99 
(15.15%) versus 7/96 (7.29%), p = 0.08] or 
PR-positive [15/91 (16.48%) versus 7/104 
(6.73%), p = 0.03, Online Supplemental Table 
S2] MBC patients than ER-negative or 
PR-negative MBC patients. FGFR aberrant 
HR+/HER2- patients had short PFS and poor 
drug response (Table 5), suggesting FGFR aber-
rations might result in therapy resistance and 
tumor progression in HR-positive MBC patients. 

Among 22 detected FGFR-aberrant patients, 5 
mutations were not ones that were known to  
be pathogenic (no record in Catalogue Of  
Somatic Mutations In Cancer), including FGFR1 
p.G459R missense mutation, FGFR2 p.V463D 
missense mutation, FGFR3 p.l16_A18dup 
frameshift mutation, FGFR3 p.R571W missense 
mutation, and FGFR4 p.R3128 missense muta-
tion (Table 5). Some patients with these non-
pathogenic mutations had poor response to 
anti-cancer treatment, so in future we need to 
focus on the function of these mutations.

Recently, due to the application of new targeting 
agents, such as pertuzumab, ado-trastuzumab 
emtansine, and lapatinib, the survival outcome has 
been improved for HER2-positive BC patients 
with brain metastases. Anti-HER2 therapies could 
extend the median OS from a few months up to 
16–20 months.46,47 Lapatinib plus capecitabine 
regimen is, at present, the most effective option for 
HER2-postive BCBM patients, with favorable 
tumor response, disease control, and survival 
rates.10,48,49 Lapatinib is a lipophilic, small-molec-
ular inhibitor of EGFR and HER2.50 For patient 
ID53 in this study, we found that the brain meta-
static lesion shrank after capecitabine plus lapat-
inib and trastuzumab treatment. Besides lapatinib, 
a recent study suggests neratinib plus capecitabine 
is active against refractory HER2-positive 
BCBM51; Tucatinib in combination with capecit-
abine and trastuzumab also shows preliminary 
anti-tumor activity in advanced HER2-positive 
BCBMs48 (HER2Climb trial to be presented at the 
San Antonio Breast Cancer Symposium 2019). In 
addition, pyrotinib plus capecitabine exhibits effi-
cacy in HER2-positive BCBM (Phoenix TRAIL, 
2019 American Society of Clinical Oncology).

Besides FGFR, TP overexpression correlates 
with the pro-angiogenic (VEGF) to promote 
angiogenesis and metastasis in human tumor tis-
sues.52,53 Since capecitabine is a prodrug which is 
activated to 5-fluorocytidine by carboxylesterase, 
cytidine-deaminase and TP, capecitabine is sup-
posed to be more effective in TP-positive tumors, 
including BC.52 In this study, capecitabine-based 
treatment showed activity in FGFR-aberrant 
BCBM patients (ID52 and 53), suggesting a 
potential crosstalk of TP and FGFR in BCBM. 
In HER2-positive BCBM patients, lapatinib 
(small molecule tyrosine kinase inhibitor) is par-
ticularly active when combining with capecit-
abine.54 By using the clinical and genetic features, 
we successfully constructed BM prediction 
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models. Both FGFR aberration and HER2-
positive were important elements in the predic-
tion model.

Novelty and impact statement
A group of genetic events could forecast the 
occurrence of brain metastases in BCs (BCBM), 
including FGFR, TP53 and FLT1 genetic aberra-
tions, and HER2-positive. FGFR aberration 
alone not only increased BCBM, but also was 
associated with poor prognosis in metastatic BCs 
(MBC). FGFR aberration, especially FGFR1 
amplification, correlated with short progression-
free survival in MBC patients.
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