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FGFR aberrations increase the risk of brain
metastases and predict poor prognosis in
metastatic breast cancer patients

Ning Xie*, Can Tian*, Hui Wu, Xiaohong Yang, Liping liu, Jing Li, Huawu Xiao, Jianxiang Gao,
Jun Lu, Xuming Hu, Min Cao, Zhengrong Shui, Yu Tang, Xiao Wang, Jianbo Yang,

Zhe-Yu Hu'2 and Quchang Ouyang

Abstract

Background: The survival status of patients with breast cancer and brain metastasis (BCBM]

receiving current treatments is poor.

Method: We designed a real-world study to investigate using patients’ clinical and genetic
aberrations to forecast the prognoses of BCBM patients. We recruited 146 BCBM patients
and analyzed their clinical features to evaluate the overall survival (0S). For genetic testing,
30 BCBM and 165 non-brain-metastatic (BM) metastatic breast cancer (MBC]) patients from
Hunan Cancer Hospital, and 86 BCBM and 1416 non-BM MBC patients from the Geneplus
database who received circulating tumor DNA testing, were compared and analyzed.

Results: Ki67 >14% and >3 metastatic brain tumors were significant risk factors associated
with poor 0S, while chemotherapy and brain radiotherapy were beneficial factors for better
0S. Compared with non-BM MBC patients, BCBM patients had more fibroblast growth

factor receptor (FGFR) aberrations. The combination of FGFR, TP53 and FLT1 aberrations
plus immunohistochemistry HER2-positive were associated with an increased risk of

brain metastasis (AUC=77.13%). FGFR aberration alone was not only a predictive factor
(AUC=67.90%], but also a significant risk factor for poor progression-free survival (Logrank
p=0.029). FGFR1 aberration was more frequent than other FGFR family genes in BCBM
patients, and FGFR1 aberration was significantly higher in BCBM patients than non-BM MBC
patients. Most FGFRT-amplified MBC patients progressed within 3months of the late-line (>2

lines) treatment.

Conclusion: A group of genetic events, including FGFR, TP53 and FLT1 genetic aberrations, and
HER2-positivity, forecasted the occurrence of BM in breast cancers. FGFR genetic aberration

alone predicted poor prognosis.

Keywords: breast cancer with brain metastasis, circulating tumor DNA, FGFR aberrations,

HER2-positive, PFS and 0S
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Background

Breast cancer (BC) is the most common malig-
nancy in females. Metastases to the brain occurs
in 10-16% patients with BC.12 Compared with
hormone receptor (HR)-positive BCs, which are
more likely to recur in bone, triple-negative BCs
(TNBC) and HER-2 positive BCs more
commonly recur in the brain.?> BC with brain

metastasis (BCBM) is a devastating cause of mor-
bidity and mortality. The mean interval time from
primary BC diagnosis to BCBM existence is
about 35months. The two main risk factors for
developing BCBM are large primary tumor size
and lymph node metastasis.* Clinically, brain
metastases are treated with surgery, radiation
therapy [whole brain radiation therapy (WBRT)]
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or stereotactic radiosurgery. In practice, no uni-
formly standard chemotherapy drugs are availa-
ble for BCBM; in the National Comprehensive
Cancer Center guideline, the category 2A recom-
mendations include high-dose methotrexate,
capecitabine, temozolomide monotherapy and
cisplatin plus etoposide.> Despite a lack of con-
sensus, preliminary data suggests that chemother-
apy and targeting therapies after WBRT may
improve survival outcomes.®

The majority of BCBM patients receive a
multimodality therapy approach, including anti-
HER2 therapy in HER2-positive tumors and
hormonal therapy in estrogen receptor (ER) and/
or progesterone receptor (PR) positive tumors.”
Trastuzumab and lapatinib, administered con-
currently or sequentially, may improve overall
survival (OS) in HER2-positive BCBM patients.8°
Compared with an OS of 16.7 months for a tras-
tuzumab-based regimen alone, trastuzumab plus
lapatinib and capecitabine show a significantly
longer OS of 27.9months (p=0.01).19 The tar-
geting therapy options for triple-negative BCBM
are currently not available in clinical practice. For
some triple-negative BCBM patients who
harbor BRCA1 and BRCA2 aberrations, PARP
inhibitor olaparib has demonstrated activity in
BRCA1/2(MUT+) BC.!! In addition, quite a few
advanced clinical trials for new targeting agents
are in process, including EGFR/VEGFR inhibi-
tors, PARP inhibitors, PIK3CA/mTOR inhibitors
and CDK4/6 pathway inhibitors.12-15> Targeted
therapy with anti-PD-L1 antibody atezolizumab
in PD-L1 positive-TNBC is a new standard of
care.!® Compared with placebo plus nab-pacli-
taxel, atezolizumab plus nab-paclitaxel could sig-
nificantly improve the progression-free survival
(PFS) of PD-Ll-positive TNBC patients
[7.5 months versus 5.0 months, hazard ratio =0.62;
95% confidence interval (CI)=(0.49-0.78),
$<<0.001]. Several studies also suggest a benefit of
capecitabine-based chemotherapy in triple-nega-
tive BCBM patients.17:18

Magnetic resonance imaging (MRI) is a sensitive
imaging tool which is widely used in the detection,
treatment planning, and follow-up of BCBM.
Circulating tumor DNA (ctDNA) testing is prom-
ising regarding to tumor treatment response and
progression.!® Derived from cell-free DNA
(cfDNA), ctDNA analysis is a powerful surveil-
lance tool for effective and continuous detection
of potential tumor-related gene mutations.20-23

Compared with imaging and serum biomarkers,
ctDNA testing provides valuable and sensitive infor-
mation about gene mutations in tumors following
drug-based therapies.2* ctDNA does provide valua-
ble information, but ctDNA is less likely to be
informative about brain disease than extra-cranial
disease.?> However, metastatic BC (MBC) is a sys-
tematic disease, and often times BC patients develop
brain metastases after metastases have appeared
systemically in the lung, liver, and/or bone.2® Our
previous study reports a ctDNA gene mutation pro-
file in MBC patients.?* Thymidine phosphorylase
(TP53), PIK3CA, and ERBB2 are the top mutated
genes. Angiogenesis-related vascular endothelial
growth factor (VEGF) variation is not detected.
Instead, fibroblast growth factor receptor 1 (FGFRI1)
variations are detected in 4/68 (5.88%) of MBC
patients.>* A total of 18% of BC patients are
reported to be affected with FGFR aberrations, and
the most common of which is FGFR1 amplification
(~14%).?” The FGFR pathway plays a major role in
angiogenesis and metastasis; FGFR alterations pro-
mote carcinogenesis, cell proliferation, angiogene-
sis, and drug resistance.28-30

In this study, we recruited 146 BCBM patients in
our single center and retrospectively assessed the
clinical risk factors. In addition, by using ctDNA
testing, we examined the genetic risk factor in 195
single-center cases and in 1501 cases from
Geneplus database.

Methods

BCBM patient cohort and data flow

The study was approved by the Ethics Committee
at Hunan Cancer Hospital, the Affiliated Cancer
Hospital of Xiangya School of Medicine/Central
South University. As shown in Online Supplemental
Figure S1 data flow, a total of 146 BCBM patients
were enrolled in this study. Inclusion criteria were
as follows: (a) CT/MRI confirmed BCBM; (b) tol-
erable to chemotherapy or target therapy with nor-
mal heart, liver, and renal function. Basic
demographic and clinical information includes age
of primary BC diagnosis, age of BCBM diagnosis,
time-to-brain metastasis (TTB, from primary BC
diagnosis to BCBM diagnosis), primary BC lateral-
ity, HR/HER?2 status, TNM (T, primary tumor; N,
nodal involvement; M, distant metastasis) stage of
the primary BC at diagnosis, treatment history
before BCBM diagnosis, treatment after BCBM
diagnosis, and other metastatic sites.
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Sample collection and plasma ctDNA testing

To investigate the genetic risk factor, plasma
ctDNA test was performed. As shown in Figure
S1, a total of 195 MBC patients received plasma
ctDNA testing at the Department of Breast
Cancer Medical Oncology in Hunan Cancer
Hospital. Other inclusion criteria included: (a)
=1 measurable metastatic lesion; (b) age 18-
70years old; (c) normal liver and renal function
(aspartate aminotransferase (AST) and alanine
aminotransferase (ALT)>0.5 upper limit of
normal value (ULN), total bilirubin (TBIL) <1.5
ULN, and creatinin (Cr) <1.0 ULN); (d) rou-
tine-blood test: neutrophil count >2.0 X 1091,
Hb>11g/l, platelet count >100X10%1. The
exclusion criteria were: (a) serious heart disease;
(b) multiple primary malignancies; (¢) immune-
deficiency; (d) organ-transplantation history.
The plasma ctDNA testing study was also
approved by the Ethics Committee of Hunan
Cancer Hospital. Of these 195 patients, 30 were
BCBM patients as described above, whereas the
other 165 were non-brain-metastatic (BM) MBC
patients. To compare the different genetic aber-
rations between BCBM patients and non-BM
MBC patients, 1:1 propensity score matching
(PSM) was performed to reduce the potential
bias between these two subgroups. Propensity
scores were calculated through logistic regression
with covariates including age, treatment history,
and metastatic disease (lung, liver, bone, and
lymph node metastases) and recurrent disease.
After PSM, 28 BCBM patients and 28 non-BM
MBC patients were selected for genetic aberra-
tion comparison (heatmap).

From 2016, the Geneplus database pool collected
1501 BC samples; among these BC patients, 86
were BCBM patients. We collected the peripheral
blood samples from the patients, and then
extracted the DNA content according to the pro-
tocol.2* We sequenced the genomic DNA (gDNA)
and used the gDNA sequence as the control.

Target capture, next-generation sequencing,

and data analysis

Sequencing libraries of ctDNA were prepared
using the DNA Library Preparation Kit for
Illumina (New England Biolabs, Ipswich, MA,
USA). Custom biotinylated oligonucleotide
probes (IDT, Coralville, IA, USA) covering the
exons of 1021 genes that are highly mutated in
12 common solid tumors were used for hybrid
capture, as described previously.3! The Illumina

HiSeq 3000 Sequencing System (Illumina, San
Diego, CA, USA) was used for DNA sequenc-
ing with a 2X 101-bp paired-end strategy, as
described previously.24

Terminal adaptor sequences were removed from
the raw sequencing data. Subsequently, reads
with more than 50% low-quality bases, or more
than 50% undefined bases, were discarded. The
remaining reads were mapped to the reference
human genome (hgl9) using the Burrows-Wheel
Aligner with default parameters. Picard’s Mark
Duplicates tool (version 1.98) was used to iden-
tify duplicate reads. Local realignment and qual-
ity recalibration were performed using the Gene
Analysis Toolkit. Single-nucleotide variants and
small insertions and deletions were called using
the MuTect2 algorithm, and further filtration and
validation was performed according to estab-
lished criteria.3! The Contra algorithm was used
to identify somatic copy-number alterations
defined using the ratio between the adjusted
depths of ctDNA and control gDNA. After auto-
matic calling, candidate variants were manually
validated using an online visualization tool.

ctDNA gene aberration frequency

Total cfDNA included ctDNA and other normal
cfDNA. Aberrations in ctDNA were identified by
comparing the reference genome (hgl9) and
gDNA. The ctDNA aberration frequency was
defined as the proportion of ctDNA gene aberra-
tions in the total cfDNA.

Statistical analyses

Categorical variables were recorded as counts
with percentage, and continuous variables were
calculated as the mean with standard deviation
and median with interquartile range. Chi-square
tests were used to compare categorical variables
between subgroups. When the sample size was
less than five in the comparing subgroup, Fisher’s
exact test were applied. Mentel-Haenszel chi-
square tests were used when the number of com-
pared subgroups was more than two. To compare
continuous variables with symmetrical distribu-
tions across subgroups, an analysis of variance
test was used. Both the univariate and multivari-
ate Cox proportional hazards regression analyses
were used to evaluate the prognostic factors for
OS. Log rank tests and drawn Kaplan—Meier
curves were also performed to assess the overall
survival OS.
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To search for significant ctDNA aberrations for
BCBM, R package “ComplexHeatmap” was
applied to rank the hot genetic aberrations in
PSM BCBM and non-BM MBC subgroups.
The top aberrations were put into a logistic
model for BM prediction. A receiver operating
characteristic (ROC) curve was drawn to deter-
mine the areas under the ROC curve (AUC) for
BM. All statistical analyses were conducted by
using SAS 9.4 or R 3.6.0 software. All tests of
hypotheses were two-tailed and conducted at a
significance level of 0.05 and at a marginal sig-
nificant level of 0.15.

Results

Clinical risk factors for poor prognosis

in BCBM patients

For the 146 recruited BCBM patients, the mean
age at BC first diagnosis was 45.30 (*=9.80)
years old and the mean age at BCBM diagnosis
was 48.48 (£9.64) years old. The mean TTB
was 3.18 (£2.98) years (Online Supplemental
Table S1). A total of 64.83% BCBM patients
had bone metastasis and 76.56% BCBM
patients had visceral metastasis. Both univariate
and multivariate Cox regression analyses were
performed to evaluate the potential clinical risk
factors for poor OS in BCBM patients.
Ki67 >14% and metastatic brain tumors >3
were significant risk factor for OS in both uni-
variate and multivariate Cox regression analyses
(Table 1). Brain radiotherapy and chemother-
apy after BM diagnosis were significant benefi-
cial factors for longer OS in both univariate and
multivariate Cox regression analyses. In multi-
variate Cox regression analysis, HER2-positive
was a marginally significant favorable factor for
OS (p=0.10, Table 1). A Kaplan—Meier curve
with Logrank test analyses showed that the
median OS of all the enrolled 146 BCBM
patients was approximately 31.8 months (Online
Supplemental Figure S2a). The OS were longer
in the patients with <3 metastatic brain tumors
than in the patients with >3 metastatic brain
tumors (Logrank test p=0.04, Online
Supplemental Figure S2b). In the patients with
Ki-67 <14%, the OS were longer than in the
patients with Ki-67 > 14% (Online Supplemental
Figure S2¢). After 18 months, the OS was longer
in the patients with HER2 positive as compared
with that of the patients with HER2 negative
(Figure S2d).

Genetic aberration of BCBM patients

BCBM group and non-BM MBC group had dis-
tinct ctDNA aberration patterns (Figure 1).
BCBM patients had a significantly higher FGFR
aberration rate compared with non-BM MBC
patients (32.14% wversus 3.57%, Fisher’s Exact
test p=0.01). FLTI gene aberration was also
higher in BCBM patients, while ALK, CCNE]I
and CDK]2 aberrations were more frequent in
non-BM MBC patients.

Compared with non-BM MBC patients, more
BCBM patients were HER2-positive (40% versus
23.75%, p=0.06, Table S2), and more BCBM
patients had bone or liver metastases (p =0.04
and p=0.001, respectively). Based on these fea-
tures, a panel of genetic events (including aber-
rant FGFR, TP53, FLT1, and wild-type ALK,
CDKI12 and CCNEI1) and HER2-positive were
correlated with an increased risk of BM
(AUC=0.8050, Online Supplemental Figure
S3a). An even smaller panel of genetic aberra-
tions (FGFR, TP53, FLT1) and HER2-positive
were still significantly correlated with an increased
risk of BM (AUC=0.7713). But such a panel of
genetic and HER2-positive events was less likely
correlated with liver, lung, bone, and lymph node
metastases (AUC: 0.6136 ~ 0.7075, Online
Supplemental Figure S3b-e).

FGFR aberration in MBC patients

FGFR pathway plays a major role in angiogenesis,
metastasis, cell proliferation and drug resist-
ance.2830 In squamous cell lung cancer and BC,
FGFR inhibitors showed promising antitumor
activity, especially for patients with FGFR1 and/or
FGFR3 amplification.3? Here, among 195 MBC
patients, FGFR aberration was not only signifi-
cantly related to poor PFS (LLogrank test p=0.029,
Figure 2), but also had AUC of 0.6790 in predict-
ing brain metastases (Online Supplemental Figure
S3b-e), suggesting a strong correlation of FGFR
aberration with poor prognosis and brain metasta-
ses. Compared with non-FGFR aberrant group,
FGFR-aberrant group had significantly more brain,
liver, lung, and lymph node metastatic patients
(p<0.05, Table 2).

Among 197 MBC patients, 22 patients had FGFR
aberrations, including 14 FGFRI aberrations, 4
FGFR?2 aberrations, 3 FGFR3 aberrations and 1
FGFR4 aberration (Figure 3). Besides 7P53 and
PIK3CA, MAP3K1 mutation was the most

journals.sagepub.com/home/tam


https://journals.sagepub.com/home/tam

N Xie, C Tian et al.

Table 1. Univariate and multivariate analysis of the clinical risk factors for 0S.

Covariates Level Univariate Multivariate
Hazard ratio (95% Cl) p-value Hazard ratio (95% CI) p-value
Age at diagnosis (of BC)* 1.016 (0.982, 1.052) 0.47 - -
Age at brain metastasis 1.006 (0.968, 1.045) 0.76 0.980 (0.869, 1.105) 0.74
(years)
TTB (years)** 0.840(0.713, 0.991) 0.04 1.185 (0.552, 2.545) 0.19
BC Laterality Left 0.863(0.405, 1.841) 0.70 0.615(0.048, 7.883) 0.71
Right Ref
ER Positive 0.751(0.370, 1.523) 0.43 0.035 (0, 4.193) 0.17
Negative Ref Ref
PR Positive 0.692 (0.334, 1.431) 0.32 9.226 (0.276, 308.245) 0.21
Negative Ref Ref
HER2 Positive 0.838 (0.503, 1.396) 0.50 0.497(0.195, 1.267) 0.10
Negative Ref Ref
HR/HER2 subtypes Triple Negative Ref Ref
HR-+/HER2- 0.447 (0.177, 1.129) 0.09 0.540 (0.007, 41.856) 0.54
HR-/HER2+ 2.033(0.618, 6.711) 0.24 1.318 (0.008, 142.857) 0.92
HR+/HER2+ 1.828 (0.646, 5.183) 0.26 1.113 (0.087,14.225) 0.95
Ki67 (%) <14% Ref Ref
>14% 6.842 (1.022, 45.805) 0.05 10.156 (1.009, 102.224) 0.05
Stage at BC diagnosis | Ref Ref
I 1.148 (0.316, 4.173) 0.83 0.352 (0.008, 16.537) 0.60
11 0.895 (0.231, 3.471) 0.87 0.055 (0.001, 5.821) 0.22
v 1.658 (0.432, 6.362) 0.46 0.234 (0, 177.657) 0.67
Treatment history before Primary site surgery 0.775 (0.291, 2.065) 0.61 0.174 (0.002, 12.880) 0.43
BCBM diagnosis
Primary site Radiation 1.330 (0.645, 2.742) 0.44 1.868(0.109, 32.130) 0.32
Chemotherapy 0.426 (0.057, 3.199) 0.41 0.866 (0.251, 3.091) 0.74
Capecitabine usage*** 0.902 (0.439, 1.852) 0.78 0.382(0.033, 4.477) 0.44
Anti-Her2 targeting 0.746 (0.460, 1.210) 0.25 0.805 (0.034, 23.676) 0.75
therapy
Endocrine therapy 0.753 (0.385, 1.460) 0.52 0.917 (0.027, 49.464) 0.93
Treatment after BCBM Brain radiation 0.263(0.113, 0.613) 0.002 0.150 (0.036, 0.625) 0.010
diagnosis
Chemotherapy 0.286 (0.137, 0.597) 0.0009 0.014 (0.001, 0.702) 0.014
Capecitabine usage*** 0.638(0.272, 1.496) 0.30 2.434(0.186, 31.644) 0.50
(Continued)]
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Table 1. (Continued)

Covariates Level Univariate Multivariate
Hazard ratio (95% CI) p-value Hazard ratio (95% Cl) p-value
Anti-Her2 targeting 0.515(0.179, 1.481) 0.22 0.708 (0.009, 54.457) 0.88
therapy
Endocrine therapy 0.446 (0.106, 1.876) 0.27 0.502 (0.016, 54.457) 0.69
Brain metastases number <3 Ref Ref
>3 2.208 (1.022, 4.768) 0.04 7.947 (1.012, 62.406) 0.05
Other metastasis* Bone 1.918 (0.821, 4.477) 0.13 1.765(0.128, 24.401) 0.67
Visceral 2.051(0.825, 5.103) 0.12 4.685 (0.019, 242.439) 0.44

*Age at diagnosis was evaluated by using univariate Cox regression; but this variable did not exist in the multivariate model because age at brain
metastasis and TTB were analyzed in a multivariate model (Age at diagnosis=Age at brain metastasis-TTB].

**TTB indicated the time from diagnosis of BC to the diagnosis time of brain metastasis.

***Capecitabine usage represents the capecitabine usage history before or after BCBM diagnosis.

#0ther metastasis indicated the metastatic sites other than brain.
BC, breast cancer; BCBM, breast cancer and brain metastasis; Cl, confidence interval; ER, estrogen receptor; HER2, human epidermal growth
factor receptor-2; PR, progesterone receptor; TTB, time-to-brain metastasis.
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Figure 1. Circulating tumor DNA gene mutation profiles for matched 28 brain metastatic breast cancer (BC)
patients (a) and 28 non-brain-metastatic metastatic BC patients (b).

frequent in FGFR-aberrant patients (Figure 3 and
Table 3, p=0.001). A small panel of genetic aber-
rations (including 7P53, PIK3CA, MAP3Kl1,
ESRI, and DNMT3A) could potently predict the
FGFR aberrationin MBC patients (AUC =0.7349,
Online Supplemental Figure S3f). Our findings
suggested that FGFR aberration was coupled with
multiple oncogenic pathways and drug-resistant

pathways, such MAPK/ERK signaling pathway
and mTOR pathway.??

FGFR1 aberration increased in MBC patients

with brain metastases

FGFRI aberration was the most frequent FGFR
aberration in BCBM patients (Figure 3). To
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Table 2. Differences of metastases/recurrence between FGFR-aberrant group and wild-type FGFR group.

FGFR group (n=22) wild type-FGFR group (n=173) p-value*
Brain 9 (40.91%]) 12 (6.94%) <0.0001
Liver 12 (54.55%) 36 (20.81%) 0.0005
Lung 12 (54.55%) 42 (24.28%) 0.003
Bone 12 (54.55%) 59 (34.10%) 0.06
Lymph node 15 (68.18%) 70 (40.46%) 0.01
Recurrence 40 (23.12%) 8 (36.36%) 0.17

*p-values were calculated by using Chi-square tests or Fisher’s exact tests (n <5) for categorical variables.

Table 3. Differences of ctDNA mutation pattern between FGFR-aberrant group and wild-type group.

FGFR group (n=22) wild type-FGFR group (n=173) p-value*
TP53 12 (54.55%) 84 (48.55%) 0.60
PIK3CA 11 (50.00%) 62 (35.84%) 0.20
MAP3K1 5 (22.73%) 4(2.31%) 0.001
ESR1 3(13.64%) 13 (7.51%) 0.40
DNMT3A 3(13.64%) 15 (8.67%) 0.43

*p-values were calculated by using Chi-square tests or Fisher's exact tests (n <5 for categorical variables.

further explore the FGFRI1 aberration pattern in
MBC patients, we used ctDNA surveillance data
from Geneplus database. Among 1501 BC
patients in Geneplus database (Table 4), 379
patients had bone metastases but the FGFRI
aberration rate was almost the same with non-
bone metastatic BC patients (4.75% wversus
3.48%, p=0.26). In lung metastatic BC patients,
the FGFRI aberration was significantly higher
than the rate in non-lung metastatic BC patients
(5.83% wversus 3.26%, p=0.04). For liver meta-
static and brain metastatic BC patients, the
FGFRI1 aberration rates were even higher (8.18%
and 8.14%, respectively), significantly higher 0.0 -
than those without liver- and brain-metastases 0 3 6 9
(»p<0.0001 and p=0.03, respectively, Table 4).
Based on these findings, we hypothesized that
patients with more aggressive metastases would
have higher FGFRI1 aberration rate.

Product-Limit Survival Estimates
With 85% Confidence Limits

+ Censored
Logrank p=0.0292

0.8

0.6

PFS probs

0.4

0.2

12 15
PFS survival time (months)

[aroup abberent FGFR — — — wild-type FGFR |

Figure 2. Kaplan-Meier curves for progression-free survival (PFS)
probabilities (probs.) stratified by circulating tumor DNA FGFR aberrations.
Among 57 FGFRI-aberrant BC patients from

Geneplus database, 61 FGFRI1 aberrations were

identified. More than half were FGFRI amplifi-
cation (35/61 [57.38%], Online Supplemental
Table S3), one (1.64%) was splicing variation,

three (4.92%) were stop-gain mutations, and the
rest twenty-two (36.07%) were missense muta-
tions. Among seven FGFRI-aberrant BCBM
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Figure 3. Circulating tumor DNA gene mutation profiles (top) and metastases (bottom) for 22 FGFR-aberrant

metastatic breast cancer patients.

patients from Geneplus database, eight FGFRI
aberrations were identified. Five (62.5%) were
copy number amplification, one (12.5%) was
stop-gain mutation and two (25.0%) were mis-
sense mutations. Among 14 FGFRI aberrant
BCBM patients (Figure 3), ten were amplifica-
tion, one was stop-gain mutation and three were
missense mutations. The average level of FGFRI

amplification was 4.05 (*+2.32) copy number.
The median level of FGFRI amplification was 3.2
[range=(2.1, 10)] copy number.

FGFR aberrations predict poor PFS
Kaplan—Meier curve with lifetest showed that
FGEFR aberrations were also significantly related to
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Table 4. FGFR1 aberration rate comparison in bone-, brain-, lung-, and liver-metastatic breast cancer

patients in Geneplus database.

Metastatic sites Level Number FGFR1 aberration p-value*
Yes No

Bone Yes 379 18 (4.75%) 361 (95.25%) 0.26
No 1122 39 (3.48%) 1083 (96.52%)

Lung Yes 309 18 (5.83%) 291 (94.17%) 0.04
No 1195 39 (3.26%) 1156 (96.74%)

Liver Yes 269 22 (8.18%) 247(91.82%)  <0.0001
No 1232 35 (2.84%) 1197 (97.16%)

Brain Yes 86 7 (8.14%) 79 (91.86%) 0.03
No 1415 50 (3.53%) 1365 (96.47%)

*p-values were calculated by using Chi-square tests or Fisher's exact tests (n <5) for categorical variables.

poor PFS (Logrank test p=0.029, Figure 2), sug-
gesting a strong correlation of FGFR aberration
with poor treatment response. The median PFS
for FGFR-wild type patients and FGFR-aberrant
patients was 7.5 (95% CI=5.3-9.3) months and
4.7 (95% CI=2.0-7.1) months, respectively.
As shown in Table 5, 13/18 (72%) FGFR aberrant
MBC patients progressed within 6 months. 60%
FGFRI-amplified patients progressed within
3months. Only one FGFRI1 amplified HR+/
HER2+ patient (ID53) with capecitabine + lapat-
inib + Herceptin treatment had a PFS longer than
6 months, and the ctDNA surveillance data also
suggested a decrease in tumor mutation burden.
The treatment response for FGFRI stop-gain and
missense mutant patients (ID52, 22, 104 and 177)
was better than FGFRI1-amplified patients, with a
longer PFS (patients with PFS> 6 months were
highlighted in red). Besides FGFR1 amplification,
FGFR2 and FGFR3 aberrant patients also had
short PFS, except one FGFR2-amplified patient
with Exemestane plus Chidamide treatment
(ID58). Consistent to the RECIST evaluation,
ctDNA surveillance showed FGFR aberration
sustained or increased in resistant patients
(PFS < 6 months) and FGFR aberration decreased
in sensitive patients (PFS > 6 months, Table 5).

Specifically, FGFRI missense mutant HR-positive
MBC patient had longer PFS than FGFR1 ampli-
fied HR-positive MBC patient. ID144 and ID177
were both HR-positive MBC patients with
CDK4/6 inhibitor plus Fulvestrant treatment.
ID144 had FGFRI amplification and progressed

within 2 months of treatment. ID177 had FGFR1
p-N546K missense mutation, and she kept partial
response for more than 1year (Table 4). Evero-
limus plus exemetane also showed potency in
FGFRI p.N546K missense mutant HR-positive
patient (ID104). Compared to epirubicin plus
cyclophosphamide plus taxel (ECT) regimen
(ID142), chidamide plus exemestane was more
effective in FGFR2-amplified HR-positive patient
(ID58). By using the ctDNA test, we could find
more specific drug-resistant mutations, such as
ESRI, PIK3CA p.E545K/E525K mutations,
FGFRI amplification, etc.

FGFR aberrations concentrated in HR-positive
BCBM patients

Compared to non-BM MBC patients, more
BCBM patients were HER2-positive (40% wversus
23.75%, p=0.06, Table S2). But compared with
FGFR-wild type patients, more FGFR-aberrant
patients were ER-positive or PR-positive (ER:
68.18% wversus 48.55%, p=0.08; PR: 68.18% wversus
43.93%, p=0.03; Table S4). Both FGFR aberra-
tion and HER2-positive were correlated with BM,
but their combination showed a more significant
correlation. As shown in Online Supplemental
Figure S3a, the combination of FGFR aberration
and HER2-positive was significantly correlated
with the increased risk of BM (AUC=0.7228), but
such a correlation of individual aberration was
not as significant as their combination (FGFR
aberration alone AUC=0.6790, HER2-positive
alone AUC=0.5431, Figure S3A).
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Discussion

In practice, we found that some other brain metas-
tases sequentially occurred after bone or other vis-
ceral metastases, especially in HR-positive BC
patients, suggesting brain metastases as the final
deadly stage for this group of patients; some brain
metastases appeared earlier than bone and other
visceral metastases, especially in HER2-positive
BC patients. In this study, we found that FGFR
aberrations concentrated in HR-positive patients
(Online Supplemental Table S4); the FGFR aber-
rant group also had significantly more liver, lung,
and brain metastases than the non-FGFR aber-
rant group (Table 3), implying a role of FGFR
aberration in the late stage (migration and metas-
tases) of HR-positive patients (especially in lumi-
nal B subtype Ki>14%). HER2 was another
important factor related to BM: the proportion of
HER2-positive tumors was higher in BCBM
patients, compared with non-BM MBC patients
(Online Supplemental Table S2). The combina-
tion of HER2-positive and FGFR aberration could
reach an AUC of 72.28% in the prediction of
brain metastases (Online Supplemental Figure
S3a), indicating that 72.28% BCBMs were either
HER2-positive and/or FGFR-aberrant.

Genetic risk factor FGFR aberration was identi-
fied to relate to BCBM in both our single-center
and Geneplus database. Similarly, in the brain
metastases of lung adenocarcinomas, FGFRI
amplification is also reported to be higher than
the expected rate.** FGFR1 amplification is iden-
tified in up to 10% of all BCs, 16-27% of luminal
B type BCs, and is correlated with endocrine
therapy resistance.?%:3® In HER2-positive BCs,
the co-amplification of FGFRI1, ERBBI1, and
ERBB?2 results in a worse prognosis compared
with patients with individual amplification or
without amplification.?> In this study, among 22
detected FGFR-aberrant patients, 16 were
HR-positive MBC patients (14 were HR+/
HER2- and 2 were HR+/HER2+), 5 were
TNBC and 1 was HR-/HER2+ (Table 5).
Moreover, ctDNA FGFR aberrations were more
frequently detected in ER-positive [15/99
(15.15%) wversus 7/96 (7.29%), p=0.08] or
PR-positive [15/91 (16.48%) wersus 7/104
(6.73%), p=0.03, Online Supplemental Table
S2] MBC patients than ER-negative or
PR-negative MBC patients. FGFR aberrant
HR+/HER2- patients had short PFS and poor
drug response (Table 5), suggesting FGFR aber-
rations might result in therapy resistance and
tumor progression in HR-positive MBC patients.

Among 22 detected FGFR-aberrant patients, 5
mutations were not ones that were known to
be pathogenic (no record in Catalogue Of
Somatic Mutations In Cancer), including FGFR1
p-G459R missense mutation, FGFR2 p.V463D
missense mutation, FGFR3 p.116_A18dup
frameshift mutation, FGFR3 p.R571W missense
mutation, and FGFR4 p.R3128 missense muta-
tion (Table 5). Some patients with these non-
pathogenic mutations had poor response to
anti-cancer treatment, so in future we need to
focus on the function of these mutations.

Recently, due to the application of new targeting
agents, such as pertuzumab, ado-trastuzumab
emtansine, and lapatinib, the survival outcome has
been improved for HER2-positive BC patients
with brain metastases. Anti-HER?2 therapies could
extend the median OS from a few months up to
16-20months.4%47 Lapatinib plus capecitabine
regimen is, at present, the most effective option for
HER2-postive BCBM patients, with favorable
tumor response, disease control, and survival
rates.10-48:49 T apatinib is a lipophilic, small-molec-
ular inhibitor of EGFR and HER2.5° For patient
ID53 in this study, we found that the brain meta-
static lesion shrank after capecitabine plus lapat-
inib and trastuzumab treatment. Besides lapatinib,
a recent study suggests neratinib plus capecitabine
is active against refractory HER2-positive
BCBM?!; Tucatinib in combination with capecit-
abine and trastuzumab also shows preliminary
anti-tumor activity in advanced HER2-positive
BCBMs* (HER2Climb trial to be presented at the
San Antonio Breast Cancer Symposium 2019). In
addition, pyrotinib plus capecitabine exhibits effi-
cacy in HER2-positive BCBM (Phoenix TRAIL,
2019 American Society of Clinical Oncology).

Besides FGFR, TP overexpression correlates
with the pro-angiogenic (VEGF) to promote
angiogenesis and metastasis in human tumor tis-
sues.>%53 Since capecitabine is a prodrug which is
activated to 5-fluorocytidine by carboxylesterase,
cytidine-deaminase and TP, capecitabine is sup-
posed to be more effective in TP-positive tumors,
including BC.52 In this study, capecitabine-based
treatment showed activity in FGFR-aberrant
BCBM patients (ID52 and 53), suggesting a
potential crosstalk of TP and FGFR in BCBM.
In HER2-positive BCBM patients, lapatinib
(small molecule tyrosine kinase inhibitor) is par-
ticularly active when combining with capecit-
abine.5* By using the clinical and genetic features,
we successfully constructed BM prediction
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models. Both FGFR aberration and HER2-
positive were important elements in the predic-
tion model.

Novelty and impact statement

A group of genetic events could forecast the
occurrence of brain metastases in BCs (BCBM),
including FGFR, TP53 and FLT1 genetic aberra-
tions, and HER2-positive. FGFR aberration
alone not only increased BCBM, but also was
associated with poor prognosis in metastatic BCs
(MBC). FGFR aberration, especially FGFRI
amplification, correlated with short progression-
free survival in MBC patients.
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