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Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by major

social, communication and behavioural challenges. The cause of ASD is still unclear and it

is assumed that environmental, genetic and epigenetic factors influence the risk of ASD

occurrence. MicroRNAs (miRNAs) are short 21–25 nucleotide long RNA molecules which

post-transcriptionally regulate gene expression. MiRNAs play an important role in central

nervous system development; therefore, dysregulation of miRNAs is connected to changes

in behaviour and cognition observed in many disorders including ASD. Based on previously

published work, on diagnosing ASD using miRNAs, we hypothesized that miRNAs can be

used as biomarkers in children with suspected developmental disorders (DD) including ASD

within Bosnian-Herzegovinian (B&H) population. 14 selected miRNAs were tested on saliva

of children with suspected developmental disorders including ASD. The method of choice

was qRT-PCR as a relatively cheap method available in most diagnostic laboratories in low

to mid-income countries (LMIC). Out of 14 analysed miRNAs, 6 were differentially

expressed between typically developing children and children with some type of develop-

mental disorder including autism spectrum disorder. Using the most optimal logistic regres-

sion, we were able to distinguish between ASD and typically developing (TD) children. We

have found 5 miRNAs as potential biomarkers. From those, 3 were differentially expressed

within the ASD cohort. All 5 miRNAs had shown good chi-square statistics within the logistic

regression performed on all 14 analysed miRNAs. The accuracy of 5-miRNAs model train-

ing set was 90.2%, while the validation set had a 90% accuracy. This study has shown that

miRNAs may be considered as biomarkers for ASD detection and may be used to identify

children with ASD along with standard developmental screening tests. By combining these

methods we may be able to reach a reliable and accessible diagnostic model for children

with ASD in LMIC such as B&H.
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Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by major

social, communication and behavioural challenges. More specifically, individuals with ASD

emit repetitive and restricted behavioural patterns as well as atypical social tendencies, which

greatly impacts their daily functioning abilities [1].

The cause of ASD is still unclear and it is assumed that both the environmental and genetic

factors together influence the risk of ASD occurrence. ASD as a part of a genetic syndrome is

identified in about 10% of all ASD cases and such cases are usually associated with malforma-

tions and/or dysmorphic characteristics [2–4]. The genetic contribution to ASD is undoubt-

edly significant as the concordance rates for monozygotic twins is 58% for male and 60% for

female, while for di-zygotic twins it is 21% for male pairs and 27% for female pairs [5]. The

concordance rates also show that other factors influence the occurrence of ASD such as epige-

netic regulation and environment. Epigenetic gene regulation is an essential mechanism for

normal brain development [6] and anomalies in the molecules responsible for this mechanism

are known to cause various neurodevelopmental disorders including autism [7–12]. Moreover,

prenatal exposure to some of the substances which have been shown to increase the risk of

ASD are, among others, thalidomide, misoprostol, valproic acid and chlorpyrifos [13]. Today

we know that the effects of prenatal exposure to alcohol, pollution, infections and inflamma-

tions, as well as assisted deliveries, have a negative impact on later health and development of a

child [14, 15].

The prevalence of ASD, all over the world, has had an increasing trend [16, 17]. The latest

report on prevalence in the USA shows 1 in 59 children with ASD [18]. The worldwide preva-

lence of ASD is estimated to be 1–2% of the population, however, prevalence varies from coun-

try to country, mainly depending on how advanced the diagnostic system is and the

availability of screening and diagnostic tools [18–22]. In order to detect and diagnose ASD, the

American Academy of Paediatrics and the US Preventative Service Task Force suggest the

usage of valid and reliable screening and diagnostic tools [23, 24]. Unfortunately, most of these

tools are not translated, validated or financially accessible for most low and middle income

countries (LMIC) where it has been estimated that 250 million children younger than 5 years

are at risk of not achieving full developmental potential [1,25]. Early intervention shows signif-

icant outcomes for children with ASD which mostly depends on the early detection and diag-

nosis of the disorder [26]. Trends of late diagnosis have to be replaced by early diagnosis due

to the short window of human brain development, because of which the best results of early

intervention are achieved by the age of 5 [27,28].

Bosnia and Herzegovina (B&H) is classified as a mid-income country where parents of chil-

dren with developmental disorders often encounter difficulties in getting an early diagnosis

for their child. Diagnosis in B&H is usually made by a process of exclusion (usually by com-

pleting various unnecessary medical tests such as MRI, EEG etc.) and based, in most cases, on

clinical evaluation. Experts from various countries point out the need for all countries to

develop population-based detection, screening and evidence-based intervention for children

in order to increase a chance for social inclusion of all [29]. Recently, a cheap and efficient

model for diagnosing ASD emerged in the field of genetics where microRNA analysis showed

promising results in distinguishing children with ASD from their typically and atypically

developing peers [30]. This combined with validated screening tools could offer an affordable

solution for LMIC where access to expensive diagnostic tools hinders the process of diagnosis

and therefore intervention itself. Genetic analyses can be performed on samples of various ori-

gins, but for the sake of diagnosis, these sources are mostly blood, saliva or buccal swabs. Cho-

sen source for this particular application would be saliva due to the specificity of the target
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population. ASD individuals are restless and taking their blood sample or buccal swab is highly

demanding even for experienced individuals. On the other hand, saliva can be collected by

simple means of saliva collection which is easy to accomplish even with extreme cases of ASD

and DD [31–34].

MicroRNAs (miRNAs) are a group of relatively small (around 21 nucleotides) noncoding

transcripts that can modify cellular messenger RNAs (mRNAs) and protein levels by interact-

ing with specific mRNAs. The interaction of miRNAs with mRNAs usually occurs at the 3’

untranslated region (UTR) which results in mRNA degradation or repression of translation

[35, 36] through partial sequence complementation [37]. It is thought that around 10–30% of

all human genes could be miRNA targets [38, 39].

MiRNAs have an important role in central nervous system development and function

[40, 41]. Therefore, it is not surprising that the dysregulation of miRNAs is connected to

changes in behaviour and cognition observed in many neuropsychiatric disorders [42]. More

specifically, miRNAs have important functions in neurogenesis, synaptogenesis and neuronal

migration [43]. Usually the main function of miRNAs in these processes affect the spatial local-

ization or compartmentalization of protein translation in different neuronal subregions, such

as axons, dendrites, and synapses [44,45]. MiRNAs have been found to be dysregulated in chil-

dren with ASD in various analysed biomaterials such as post-mortem cerebellar cortex [46],

several post-mortem’s Brodmann’s areas [47,48], serum [49], peripheral blood [50,51], whole

blood [52], saliva [53], olfactory mucosal stem cells [54], lymphoblast cell lines [55–57].

Successful models for diagnosing ASD utilizing various RNA molecules (miRNA, piRNA,

snoRNA etc) obtained from the saliva have been created. The study whose model focused

entirely on miRNAs obtained an accuracy higher than 95% [53], while the study which gener-

ated a model on various types of RNA molecules obtained a positive predictive value of 91%

[58].

In order to explore affordable and quick screening models and detection of developmental

disorders including ASD in B&H, we have performed a pilot study on molecular biomarkers

as potential detection of atypical development. The aim of this study was to evaluate expression

levels of 14 selected miRNAs from saliva of children with suspected developmental disorder

and to test their ability to detect developmental disorders (DD) including ASD. The proposed

panel was previously tested by Hicks et al., 2016 [53] using Next Generation Sequencing, while

our method of choice was qRT-PCR, as a relatively cheap method found in most diagnostics

labs in low to mid-income countries such as B&H.

Materials and methods

Participants and assessment

This study was approved by the EDUS Institutional Review Board for the Protection of

Human Subjects (IRB) for all project activities. All participants were recruited through the

Non-governmental organization EDUS-Education for All from Sarajevo, the capital of B&H.

Informed written parental consent was obtained for a total of 81participants out of 126 that

were enrolled in the EDUS preschool program during the school year 2018/2019. The EDUS

preschool program is based on the CABAS1 system (Comprehensive Application of Behavior

Analysis), an evidence-based approach to assessment and treatment of Developmental Disor-

ders and Autism Spectrum Disorder [59–63]. Children from all over B&H are enrolled in the

program receiving services in developmental screening, assessment and/or treatment. One

participant was excluded from the study because of the inability to collect saliva resulting in

the final sample size of 80 participants consisted of children with detected developmental

delays/disorders (DD) (n = 55) and typically developing (TD) pre-school children with no
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previously detected developmental problems were classified as the control group (n = 25)

(Table 1). The control sample was recruited from several public kindergartens for typically

developing children. All data in this study were collected during the period from March to

May 2018.

In order to classify participants into DD and TD groups all 80 children went through a

developmental screening with the EDUS Developmental Behavioural Scales (EDUS-DBS)

[64]. EDUS-DBS covers all five developmental areas: speech and communication, motor devel-

opment (gross and fine), cognitive development, social-emotional development, and self-help/

adaptive skills. The EDUS-DBS screening outcome indicates, for each developmental area sep-

arately, whether the child is developing typically or atypically for their chronological age. Chil-

dren who showed a developmental delay in at least one area mentioned above were selected

into the group of children with DD, and children that did not show developmental delays were

selected into the group of TD children. The second step was to screen the group of children

detected with DD for Autism symptoms with the Childhood Autism Rating Scale, Second edi-

tion (CARS-II) [65]. The final raw score of CARS-II classifies each child into one of the three

different autism symptoms severity groups: Minimal-to-No Symptoms of ASD, Mild-to-Mod-

erate Symptoms of ASD, and Severe Symptoms of ASD. The third step consisted of clinical

observations conducted by an experienced child psychiatrist in the field of ASD. By taking into

account the direct observation of the child and information collected from parents about their

child’s developmental history, the child psychiatrist concluded two possible outcomes: ASD or

DD different from ASD. The child psychiatrist had no access to the CARS-II scores of the DD

sample when making conclusions.

After considering the outcomes of the CARS-II and clinical observations of the child psy-

chiatrist, the group of children with DD was divided into two groups: children identified with

ASD (n = 39) and children with other DD different from ASD (n = 16). Children identified

with ASD showed CARS-II scores that fall into the Mild-to-Moderate and Severe ASD Symp-

toms category, and children identified with other DD (different from ASD) showed scores that

fall into the Minimal-to-No Symptoms of ASD CARS-II category (Table 2). Clinical observa-

tions were conducted for 26 children (47.3%) and showed 100% concordance between Child

Psychiatrists observations and CARS-II results with the CARS-II classifications (i.e. CARS-II

scores indicated Mild-To-Moderate or Severe Symptoms of ASD and clinical opinion con-

cluded ASD, CARS-II scores indicated Minimal-to-No Symptoms of ASD and Clinical opin-

ion concluded that it is another DD different from ASD) (Table 2). Children for clinical

observations from a Child Psychiatrist were selected randomly out of the whole DD sample

(n = 55). No predetermined criteria for selection of participants was used.

Molecular analysis

A total of 80 saliva samples were collected in a non-fasting state after rinsing with tap water

with at least 30 minutes timespan from the last meal. Approximately 2 mLs of saliva were

obtained, per manufacturer’s instructions, using Samplifybio saliva collection kit (Samplfybio,

Beverly, MA) and stored at room temperature until processing.

Table 1. Characteristics of the control sample.

Characteristics n (%) Mean Age expressed in months

Male 11 (44.0%) 74.9 (SD = 14.4, Min = 54, Max = 95)

Female 14 (56.0%) 64.8 (SD = 12.5, Min = 42, Max = 79)

Total 25 (100.0%) 69.3 (SD = 14, Min = 42, Max = 95)

https://doi.org/10.1371/journal.pone.0232351.t001
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For the purpose of analysing 14 miRNAs of interest (miR-628-5p, miR-127-3p, miR-27a-

3p, miR-335-3p, miR-2467-5p, miR-30e-5p, miR-28-5p, miR-191-5p, miR-23-3p, miR-3529-

5p, miR-218-5p, miR-7-5p, miR-32-5p and miR-140-3p), total RNA was isolated from saliva

samples using the mirVANA isolation kit (Invitrogen™), according to the manufacturer’s

instructions. The purity of isolated RNA was determined by OD260/280 using a Nanodrop

(Thermo Scientific, Worcester, MA).

The miRNAs of interest were reversely transcribed using TaqMan MicroRNA Reverse

Transcription Kit (Applied Biosystems™ Foster City, CA) and specific miRNA reverse tran-

scription (RT) primers, on GS1 Thermal Cycler System (G-Strom) and SimpliAmp Thermal

Cycler (Applied Biosystems™ Foster City, CA) according to the manufacturer’s instructions.

After reverse transcription, due to smaller amounts of RNA within the samples, pre-ampli-

fication was performed. For pre-amplification, a custom primer pool was prepared with 14

miRNAs of interest. The total volume of the primer pool contained 70 μL of TaqMan Micro-

RNA Assay + 430 ddH20 for a total of 500 μL. In the mastermix for the pre-amplification reac-

tion, for each sample, we used 1.9 μL of pre-amplification primer pool, 0.13 μL of AmpliTaq

Gold, 0.75 μL of MgCl, 1.25 μL of 10x PCR Buffer Gold, 1.0 μL of dNTPs and 6.22 μL of

ddH20.

The quantification of targeted miRNAs was performed using TaqMan MicroRNA Assay

(Applied Biosystems™ Foster City, CA) on Agilent (Stratagene, La Jolla, CA) MX3005P Multi-

plex QPCR Real-time Thermal Cycler. For the purpose of quantification of targeted miRNAs,

Table 2. Characteristics of the DD participants.

Characteristics Developmental disorder Autism Spectrum disorder

Gender

Male 14 (87.5%) 25 (64.1%)

Female 2 (12.5%) 14 (35.9%)

Total 16 (100.0%) 39 (100.0%)

Mean age of Participants

Male 60.4 months (SD = 12.6, Min = 38, Max = 80) 63.2 months (SD = 15.1, Min = 39, Max = 92)

Female 61 months (SD = 5.6, Min = 57, Max = 65) 56.5 months (SD = 14.7, Min = 37, Max = 85)

Total 60.4 months (SD = 11.8, Min = 38, Max = 80) 60.8 months (SD = 15.1, Min = 37, Max = 92)

Detected developmental delay

1 Developmental Area 1 (6.2%) 1 (2.6%)

3 Developmental Areas 2 (12.5%) 1 (2.6%)

4 Developmental Areas 3 (18.8%) 5 (12.8%)

5 Developmental Areas 10 (62.5%) 32 (82.0%)

Total 16 (100.0%) 39 (100.0%)

CARS-II screening outcomes

Minimal-to-No Symptoms of ASD 16 (100.0%) 0 (0.0%)

Mild-to-Moderate Symptoms of ASD 0 (0.0%) 12 (30.8%)

Severe Symptoms of ASD 0 (0.0%) 27 (69.2%)

Total 16 (100.0%) 39 (100.0%)

Clinical opinion from Child Psychiatrist

Male observed 5 14

Female observed 1 6

Mean age 66.5 (SD = 3,0 Min = 62, Max = 70) 61.9 (SD = 14.3, Min = 37, Max = 91)

Concluded ASD 0 20

Concluded other DD 6 0

Sample covered 6 (37.5%) 20 (51.3%)

https://doi.org/10.1371/journal.pone.0232351.t002
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a mastermix was made with 5 μL of TM Universal mastermix, 0.5 μL of 20x TM Micro RNA

Array assay for a particular miRNA and 4.30 μL of ddH20. The total mastermix volume was

9.80 μL. The qPCR reaction was performed on all miRNAs individually. For each miRNA the

appropriate 20x TM Micro RNA Array assay was used. The dye used for miRNA comparative

quantitation was FAM. Within each plate a calibrator well was selected for the purpose of nor-

malization of data. Data was organized for each miRNA and necessary replicates were

performed.

Statistical analysis

Normalization of expression data was performed using Delta Delta Ct, as suggested by [66],

which is calculated according to formula: (original Ct value of a sample-calibrator value of the

miRNA)—(calibrator of the miRNA from the sample–calibrator of the normalizing miRNA).

The normalizing miRNA used in this study was miR-191-5p [67].

Outliers were determined using the Grubbs test via Xlstat add-on with Microsoft Office

Excel program. Since obtained results have normalized Ct values, criteria for the classification

of an outlier was used. Hence, all normalized expression data values with a z-score over 1.5, for

both tails, were classified as outliers. The 1.5 z-score threshold was chosen because the Ct val-

ues above that threshold are too high or too low in order to be considered valid [68]. The data

was tested for normal distribution using Shapiro Wilk, Anderson-Darling and Jarque-Bera

test. The normal distribution tests were performed in the Past 3 program [69] (https://folk.uio.

no/ohammer/past/).

Normally distributed data from qRT-PCR were analysed using Student’s T-test while the

not-normally distributed data was analysed using Mann-Whitney U test. Logistic regression

analysis was used to describe the dependency of the dependent outcome, the diagnosis in this

case, and was performed on each miRNA separately. In addition, a logistic regression was per-

formed on multiple sets of variables (miRNAs) in order to predict the diagnosis (ASD or DD).

The logistic regression was calculated with Xlstat add-on within the Microsoft Office Excel

program.

A Receiver Operating Characteristic (ROC) curve of the created prediction models was also

calculated as it can provide an unbiased assessment of the overall model performance. There-

fore, the ROC can be used for evaluating the diagnostic power of miRNAs. In order to further

support the results found using the logistic regression a multivariate linear regression of Partial

Least Squares-Discriminant analysis (PLS-DA) was calculated. The PLS-DA calculates the

multivariate linear combinations from the 14 miRNAs of interest that are best predictors of

the class of interest. PLS-DA was also calculated with the Xlstat add-on. For all models, a cross

validation was performed by randomly dividing the dataset into a training and validation set.

The size of training and validation sets were determined based on the sample size being ana-

lysed (approximately 10%). Multiple iterations of the models were performed to ensure ran-

domness within the models. Furthermore, parameters chosen were the default parameters (0.5

prediction threshold) and the sporadic missing data was predicted using the nearest neighbour

method approach.

Results

Out of 14 analysed miRNAs, 6 were differentially expressed between typically developing chil-

dren and children with some type of developmental disorder (which includes ASD). These

were miR-7-5p, miR-23a-3p, miR-32-5p, miR-140-3p, miR-628-5p and miR-2467-5p. Two

miRNAs were up-regulated (miR-7-5p and miR-2467-5p), while 4 were down-regulated (miR-

23a-3p, miR-32-5p, miR-140-3p and miR-628-5p) (Table 3). MiRNA with largest difference in
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average expression was miR-32-5p, followed by miR-23a-3p. Normalized Ct value data for

each individual miRNA within the three cohorts was presented in a Box Plot and Jitter graph

(Fig 1). Details on the percentage of obtained Ct values for every cohort and for each individ-

ual miRNA can be seen in S1 Table.

Out of 14 miRNAs, analysed in ASD samples, 5 were differentially expressed according to

Mann Whitney U test. Four miRNAs were down-regulated while one was up-regulated

(Table 3). Down-regulated miRNAs within ASD group were miR-23a-3p, miR-32-5p, miR-

628-5p and miR-140-3p, while significantly up-regulated was miR-7-5p. MiRNA with the larg-

est difference in average expression was miR-32-5p, followed by miR-23a-3p. Differentially

expressed miRNAs within non-ASD group, when compared to the control group, were miR-

23a-3p, miR-32-5p, mir-628-5p and miR-2467-5p. MiR-2467-5p was upregulated while the

other 3 miRNAs were all down-regulated (Table 3).

Logistic regression performed on individual miRNAs between TD and children with ASD,

as a subgroup of DD, has shown that the best performing miRNAs in differentiating between

these groups were miR-32-5p (-2Log(Likelihood): 7.363; p-value: 0.007) and miR-23a-3p

(-2Log(Likelihood): 5.406; p-value: 0.020). Following these two miRNAs, the best performing

were miR-7-5p, miR-218-5p, miR-27a-3p and miR-628-5p, although their GoF statistics were

not significant. When the values of ROC AUC were taken into consideration the best perform-

ing miRNAs were miR-23-3p, miR-32-5p and miR-7-5p.

Logistic regression was also performed on individual miRNAs between typically developing

children and children with some type of developmental disorder (this cohort included ASD

and non-ASD DD groups) and the best performing individual miRNA in classifying between

these groups were miR-32-5p (-2Log (Likelihood): 11.208; p-value: 0.001) followed by miR-

23a-3p (-2Log(Likelihood): 9.507; p-value: 0.002). MiR-628-5p, miR-7-5p and miR-27a-3p

have also shown a very good performance in classifying between TD and DD children. Out of

the latter 3 miRNAs, only miR-628-5p had significant -2Log(Likelihood) statistic (-2Log

Table 3. Differentially expressed miRNAs within the analysed cohorts and their directional expression changes

relative to the control group.

Cohorts Expression pattern (p-value)

DD

miR-7-5p Up-regulated (0.0361)

miR-23a-3p Down-regulated (0.0001)

miR-32-5p Down-regulated (0.0001)

miR-140-3p Down-regulated (0.0067)

miR-628-5p Down-regulated (0.0001)

miR-2467-5p Up-regulated (0.0499)

ASD

miR-7-5p Up-regulated (0.0172)

miR-23a-3p Down-regulated (0.0001)

miR-32-5p Down-regulated (0.0001)

miR-140-3p Down-regulated (0.0053)

miR-628-5p Down-regulated (0.0005)

Non-ASD DD

miR-23a-3p Down-regulated (0.0033)

miR-32-5p Down-regulated (0.0102)

miR-628-5p Down-regulated (0.0135)

miR-2467-5p Up-regulated (0.0057)

https://doi.org/10.1371/journal.pone.0232351.t003
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(Likelihood): 6.247; p-value: 0.012). When the values of ROC AUC were taken into consider-

ation, miR-32-5p and miR-23a-3p again had the best performance. MiR-628-5p also had a rel-

atively high ROC AUC (0.696).

In the logistic regression on individual miRNAs between non-ASD DD group and typically

developing children only one, miR-32-5p, had significant -2Log(Likelihood) statistic of 9.301

with a p-value of 0.002. MiRNAs close to having a statistically significant GoF statistics were

miR-23a-3p (-2Log(Likelihood): 3.127; p-value: 0.067) and miR-3529-3p (-2Log(Likelihood):

2.915; p-value: 0.088). For further details please refer to S8–S11 Tables.

PLS-DA performed on TD children and children with ASD had shown that the most con-

tributing miRNAs in creating the PLS-DA were miR-23a-3p, miR-32-5p, miR-7-5p, miR-27a-

3p, miR-628-5p and miR-140-3p, in order. The sensitivity and specificity for this PLS-DA

model were 64% and 88.57% respectively. The total accuracy was 78.33%. The AUC for the

ROC of the PLS-DA model was 0.920. For the PLS-DA performed on TD and DD cohorts,

miRNAs with the most significant contribution to PLS-DA model were (from most to least sig-

nificant): miR-23a-3p, miR-7-5p, miR-32-5p, miR-27a-3p, miR-628-5p, miR-140-3p and miR-

2467-5p. The overall prediction model for the PLS-DA had a 36% specificity, 86.27% sensitiv-

ity and a total accuracy of 69.74%. For the calculated ROC Curve the AUC was 0.793. MiRNAs

with the highest VIP scores were miR-23a-3p, miR-7-5p and miR-32-5p. The PLS-DA on

non-ASD DD group and typically developing children had shown that the most contributing

miRNAs in creating this PLS-DA prediction model were miR-32-5p, miR-23a-3p, miR-628-

5p, miR-7-5p. This PLS-DA model had 88% specificity and 64.29% specificity. The total accu-

racy and ROC AUC were 79.49% and 0.749, respectively (S6 and S7 Tables).

Fig 1. Box and jitter graph of the normalized Ct values for each miRNA within the three analysed cohorts (TD, ASD and non-

ASD DD).

https://doi.org/10.1371/journal.pone.0232351.g001
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Overfitting was suspected on the logistic regression model of 14 miRNAs which predicted

ASD children from TD. That model had maximum specificity and sensitivity for the training

set and 66.67% specificity and 100% sensitivity for the validation set. Hence, a more reliable

model was created which included 5 miRNAs (best performing in the previously mentioned

model) (miR-7-5p, miR-23a-3p, miR-27a-3p, miR-140-3p and miR-2467-5p). The -2Log(Like-

lihood) value of the model was 40.237 with a p-value of<0.0001. Specificity was 90.00%, sensi-

tivity was 90.32% (Table 4) and the ROC AUC of the model was 0.952. The validation set had

an accuracy of 90%.

The logistic regression on the full set of variables performed on typically developing chil-

dren and children with any type of developmental disorder had a maximum specificity and

sensitivity for the training set and 50% specificity and 100% sensitivity for the validation set.

Since overfitting was suspected, a model with 7 miRNAs (best performing in the previously

mentioned model) (miR-7-5p, miR-23a-3p, miR-27a-3p, miR-32-5p, miR-140-3p, miR-628-

5p and miR-2467-5p) was created. The -2Log(Likelihood) for this model was 62.805 with a p-

value of<0,0001. The specificity and sensitivity values were 86.36% and 93.18%, respectively

(Table 4). The ROC AUC of the model was 0.983. The validation set had an accuracy of 90%.

As the logistic regression model on non-ASD DD and TD children also had maximum accu-

racy, overfitting had to be taken into consideration. Hence, the best performing model on

reduced number of miRNAs was based on 5 miRNAs (best performing in the previously men-

tioned model) (miR-7-5p, miR-23a-3p, miR-32-5p, miR-140-3p, miR-3529-3p). The -2Log

(Likelihood) value of the model was 30.013 with a p-value of<0.0001. Specificity was 92.00%,

sensitivity was 75.00% (Table 4) and the ROC AUC of the model was 0.940. The validation set

was too small (5 samples) for meaningful conclusions. However, within randomly chosen 5

validation samples 100% accuracy in their classification was observed. Details on the men-

tioned models can be seen in Fig 2. Furthermore, we have performed a power analysis (where

the number of final sample sizes for each miRNA or test can be seen) on all models and indi-

vidual miRNAs which have shown statistically significant ability in differentiating between

cohorts (S2–S5 Tables).

Discussion

We have analysed expression of 14 miRNAs in saliva samples of children with DD including

ASD and TD. Six miRNAs were found to be differentially expressed in children with DD. Fur-

thermore, when samples of children with ASD were analysed, 5 miRNAs were found to be dif-

ferentially expressed. All 5 miRNAs from ASD analysis were found within the group of 6

miRNAs differentially expressed in children with DD. Only miR-2467-5p was not differen-

tially expressed among children with ASD. We have found that this particular miRNA had sig-

nificant difference in abundance in ASD when compared to other DD samples. Out of

differentially expressed miRNAs among children with ASD, with the exception of miR-140-3p

and miR-628-5p, all had concordant expression patterns to a previously reported study [53].

Table 4. Performance of the logistic regression prediction models (includes sensitivity, specificity and accuracy along with their confidence intervals) which have

shown statistically significant ability of differentiating between the analysed groups.

Model Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI)

TD-DD 86.36% (65.09%–97.09%) 93.18% (81.34%–98.57%) 90.91% (81.26%–96.59%)

TD-ASD 90.32% (63.66%–96.95%) 90% (77.93%–99.18%) 90.2% (78.59%–96.74%)

TD—non-ASD DD 75% (66.27%–95.81%) 92% (57.19%–98.22%) 85.37% (70.83%–94.43%)

�CI—Confidence Interval.

https://doi.org/10.1371/journal.pone.0232351.t004
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In our study miR-140-3p and miR-628-5p were down-regulated, while they were up-regulated

in the mentioned study.

Using the most optimal logistic regression model, we were able to distinguish between ASD

and TD children. We have found 5 miRNAs as potential biomarkers. Out of these 5 miRNAs,

3 were differentially expressed within the ASD cohort. All 5 miRNAs have shown good chi-

square statistics within the logistic regression model which utilized all 14 miRNAs analysed in

this study. The accuracy of 5-miRNA logistic regression model training set was 90.20%, while

the validation set had a 90% accuracy. The logistic regression performed only on differentially

expressed miRNAs between ASD and TD has shown poorer results than the previously dis-

cussed model. Moreover, the best logistic regression model which attempted to distinguish

between DD and TD children included 7 miRNAs as variables (miRNAs). Six of these were

differentially expressed among children with DD while one, which was not differentially

expressed (miR-27-3p), has shown a relatively large VIP value within the PLS-DA. This model

had a total accuracy of 90.91% in the training set and 90% accuracy within the validation set.

The best performing logistic regression model, attempted to differentiate between non-ASD

DD and TD cohorts, included 5 variables. Two of the five miRNAs were differentially

expressed, while 3 have performed very well in the model which included the complete set of

14 miRNAs. In this study cross validation was used for validating the trained models. In order

to obtain more reliable validation results an independent sample cohort for validation would

be suitable.

Fig 2. Comparison of the 4 logistic regression models. Models A, B and C have shown statistically significant

differentiation between groups. Presented are ROC AUC, sensitivity, specificity and accuracy values of the models.

https://doi.org/10.1371/journal.pone.0232351.g002
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The three main prediction models (distinguishing children with ASD, any type of DD or

non-ASD developmental disorder from TD) have all shown results with significant GoF statis-

tics and satisfactory accuracy. The model used to differentiate between children with DD and

TD had the best performance followed by the model on ASD and TD children. Finally, the

model which attempted to differentiate between non-ASD DD and TD children had the poor-

est performance out of the 3 models. The results obtained from the discussed logistic regres-

sions models were fully supported by the PLS-DA performed on the same groups.

In this study we have found that, individually, the best miRNAs for differentiating between

children with ASD or even DD from TD were miR-23-3p and miR-32-5p. The same was true

when differentiating non-ASD cohort from TD. It has been found that miR-23a-3p functions

cooperatively with miR-27a-3p to regulate cell proliferation and differentiation [70]. Further-

more, miR-23a-3p and miR-27a-3p were also dysregulated in a number of human diseases and

disorders, including ASD [49, 53, 71]. Levels of miR-23a-3p also fluctuated in response to CNS

injuries such as cerebral ischemia [72] or temporal epilepsy [73], both of which are associated

with ASD [74]. MiR-23a-3p was also found to be dysregulated in 3 other studies [42, 45, 49].

MiR-32-5p is believed to be involved in certain processes which promote cell proliferation,

migration and suppresses apoptosis in breast cancer while inhibiting proliferation and inva-

sion in gastric cancer cell lines [75, 76].

Studies on biomarkers, as potential diagnostic tools for ASD, have also developed successful

prediction models. There have been numerous studies on differentially expressed miRNAs

within ASD children including analysis of their suitability as biomarkers [51]. MiR-23a-3p

analysed by Hicks et al., 2016 [53], Sarachana et al., 2010 [55] has been shown to be signifi-

cantly down-regulated. Moreover, when it comes to individual performance of miRNAs, dif-

ferentially expressed miRNAs in this study had a lower prediction power than in Hicks et al.,

2016 [53] or Vasu et al., in 2014 [49]. Prediction models utilizing multiple miRNAs or other

types of RNAs as biomarkers for ASD have also been studied and overall show better predic-

tion capabilities. One such example is the study which utilized 14 miRNAs and obtained 95.6%

specificity, 100% sensitivity and an area under the ROC curve of 0.974 [53]. In this study, the

best individually performing miRNAs were miR-335-3p and miR-30-5p, whereas in our study

the best performing miRNAs were miR-23a-3p and miR-32-5p.

In addition, another study [58] used a combination of RNA molecules (1 snoRNA, 8 piR-

NAs, 4 precursor miRNAs, 7 mature miRNAs and 12 microbial taxa) and reported 78.3% spec-

ificity, 79.9% sensitivity and an area under the ROC curve of 0.868.

When analysing miRNAs in ASD individuals relatively small percentage of differentially

expressed miRNAs overlap between studies. A total of 3 miRNAs showed consistent dysregulation

in 3 or more studies [77]. These differences in obtained differentially expressed miRNAs, also

applicable to our study, can be explained by the effect of different factors such as age, ethnicity,

ASD heterogeneity, different RNA collection devices, RNA quantification and analysis and

miRNA role in development. It has been shown that the overall ASD prevalence is higher in

males then in females, [78, 79] as was observed in our study. One potential explanation [80] is the

female genome resistance and the fact that more severe symptoms are usually required in order

for females to be detected [78–81]. As such biases are present across biomarker ASD studies [43,

58], more research would have to be performed in order to determine the effect gender has, if at

all, on miRNA expression. The referenced study [53] involved children 5 to 14 years of age. In our

study, on the other hand, we involved children (Table 2) 3 to 8 years of age in an attempt to test

children as early as possible or as close as possible to ASD diagnosis in order to evaluate the com-

bination of performed tests (clinical and biomarker) and their accuracy in diagnosing ASD. Fur-

thermore, a recent review reported no differences in prevalence across geographic regions or

variability based on ethnicity or socioeconomic factors; however, they did add that the lack of
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comprehensive datasets from low-income countries impacts the ability to detect these effects [16].

Therefore, testing miRNAs as biomarkers of ASD in different ethnic groups including those from

LMIC’s is absolutely needed. We have found correlation with compared studies as well; however,

further model improvement has to be performed on much larger population. In addition, Hicks’

study targeted children with “high functioning” ASD (average ADOS-II score = 10.6 ± 4.1),

whereas our study included ASD and DD children classified by CARS-II as Mild-to-Moderate

and Severe ASD Symptoms category for ASD and Minimal-to-No Symptoms of ASD CARS-II

category for non-ASD DD children. Because salivary miRNA expression is associated with levels

of ASD symptoms, it is likely that this also contributes to observed differences in miRNA expres-

sion. In order to validate used scale (CARS II) we have randomly selected 26/55 (47%) children

for clinical evaluation by child psychiatrist. This validation showed 100% concordance between

CARS II and child psychiatrists’ evaluation and confirmed the reliability of the used scale. How-

ever, the fact that we performed clinical evaluation on approximately 50% of children may repre-

sent a limiting factor on such a validation. In our study we used collection devices (Samplifybio

saliva collection kit) different from the referred study [53]. The RNA preservation liquid between

the two devices may have, additionally, contributed to miRNA expression differences. Our

method of choice was RT-PCR as a relatively cheap and available method in most medical labs in

LMIC. Therefore, we expected differences in expression and detection obtained by RT-PCR when

compared to a more robust sequencing method used by Hicks et al. 2016. Nonetheless, models

utilizing salivary miRNA and detection with RT-PCR can be used to differentiate children with

ASD from typically developing or non-ASD DD children [30]. However, in order to improve

their specificity and make them applicable in clinical setting, the proposed models have to be

tested on a larger population and potentially, as suggested by Hicks et al. 2018, by employing a

multi-“omic” approach using additional RNA families.

Furthermore, as miRNA expression is a dynamic process which changes throughout devel-

opment we have to consider its effect on miRNA expression differentiation [43] However, it

has been shown that miRNAs are essential for survival and differentiation of newborn neurons

but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic

neocortex [43]. Although there is a chance that some of the found differences are affected by

the miRNA involvement in neural development, majority of our findings are on children of

average age of 5 and same ethnicity. Looking at the younger children such as infants and tod-

dlers may shed more light in the future on the potential differences in miRNA expression due

to developmental processes better.

Finally, in an earlier in silico study [82] target mRNAs of the same 14 miRNAs were ana-

lysed. Genes reported to be targeted by all 14 miRNAs and have more than 7 predicted target

sites were: MAPK10, KCNMA1 and DST. The number of predicted sites was used as an indi-

rect measure of how correlated an mRNA was with the miRNA in question. In the same study,

genes reported to be targeted by 13 miRNAs and have more than 7 predicted target sites were

reported. Those genes were ZBTB20, GAS7, NTRK2 and SCN2A. It is thought that most of

these genes are related to neural processes and are directly or indirectly related to ASD.

According to Hicks et al., 2016 [49] the notable ASD-associated mRNA targets of these 14

miRNAs are Fragile X Mental Retardation (FMR1) and Forkhead Box Protein P2 (FOXP2).

Those mRNAs predicted to have a function most relevant to ASD were mapped to the Neuron

Projection and Axon Projection subnodes.

Conclusion

This study has shown that miRNAs can be considered as biomarkers for ASD diagnosis and

could be used to identify children with ASD at a very early stage of life. We performed a
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transdisciplinary cooperation in order to define the most optimal and accurate approach in

identifying children with developmental disorders, including ASD, in low to mid income

countries such as Bosnia and Herzegovina. We have done this by utilizing a combination of

molecular analysis, based on miRNAs as biomarkers, and screening methods such as

EDUS-DBS, CARS II and clinical analysis. Our molecular analysis was based on a panel of 14

miRNAs previously shown as good biomarkers for ASD. We have found that even subsets of

this panel of miRNAs have the potential to be used as diagnostic biomarkers for ASD and/or

DD. Out of 14 miRNAs analysed in this study, miR-32-5p, miR-23a-3p and miR-7-5p, have

been found as good candidates for biomarkers in differentiating children with ASD from typi-

cally developing children. The best miRNAs for differentiating between children with any type

of developmental disorder and typically developing children were miR-23a-3p, miR-32-5p and

miR-628-5p. As previously suggested, a good step towards implementing miRNAs as ASD or

DD biomarkers would be large scale validation study with multi-“omics” approach along with

currently employed screening tests. This would lead to an optimized biomarker diagnostic

tool that complements current screening tests.
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