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ABSTRACT: Important reactivity measures such as the local softness, the Fukui function, and the
global hardness have been calculated directly from first principles with the use of the electron density
function, beyond the finite difference approximation. Our recently derived density gradient theorem
and the principle of nearsightedness of the electronic matter have been instrumental in obtaining the
original, albeit approximate, result on the local softness of an atom. By integration of the local softness
s(r), we obtain the global softness S and the Fukui function f(r) = s(r)/S. Local and global softness
values have also been calculated analytically for the basic hydrogenic orbitals; the general relation to
the atomic number S = σZ−2 has been demonstrated, with constants σ characteristic for each orbital type. Global hardness η = 1/S
calculated for atoms and ions has been favorably tested against its conventional measure given by the finite difference approximation:
(I − A). Calculated test results for atoms and ions in rows 1−4 of the periodic table have been presented.

1. INTRODUCTION
The essence of a chemical reaction is the variation of a
molecular structure accompanied with the flow of electrons
from initial positions to those in the final state. Two
approaches have been in use for describing the reactivity.
The physical one deals with the transformation of a
supermoleculea system created from two or more molecules
(reactants) that approach each other to form the final state, the
molecule being the product. Quantum mechanical calculations
allow for revealing the structure of the product, the transition
state, and the path through the potential energy surface.
Recently, we have developed a new theoretical procedure that
contributes to this physical approach. We have introduced the
reaction fragility method for monitoring the alternation of
bonds and to reveal the mechanism of the chemical
reaction.1−4

The chemical approach deals with a molecule being attacked
by another object; reactivity indexes are in use to predict the
direction of the transformation. The chemical way is based on
the concept of regional (site) reactivity, and density functional
theory (DFT) has strengthened this approach, since electron
density, according to Hohenberg and Kohn theorems, contains
all information on the properties of the electron gas including
various types of responses to the external perturbation. Here,
in this paper, we focus mainly on this chemical perspective.
The lasting step toward the quantitative measure of site

reactivity in terms of the electronic configuration of interacting
objects has been done by Fukui in his MO theory of reactivity,
by indicating the role of frontier orbitals.5 DFT provided
theoretical support for this concept: the Fukui function index
has been proposed by Parr and Yang6 as the response function
of the electron density function under the perturbation of the
number of electrons, linking early DFT to theory by Fukui.
Another important idea of reactivity encompassed by

conceptual DFT was the chemical hardness first proposed by
Pearson who introduced the hard and soft acid and base
(HSAB) principle.7 Parr and Pearson8 have identified
molecular hardness in cDFT as the second derivative of

energy with respect to the number of electrons, ( )E
N v r

1
2 ( )

2

2η = ∂
∂

and softness as the inverse of hardness. Nalewajski has
analyzed the creation of a chemical bond with the HSAB
principle by substituting electrostatic energy to the formula of
Parr and Pearson.9 This was the origin of the charge sensitivity
analysis later developed by Nalewajski and coworkers.10,11

These ideas have attracted attention for the following decades,
both from computational and chemical perspectives, as
testified by the reviews of the subject.12−15 However, despite
many efforts for attribution of numerical values to the Fukui
function and hardness, the results have been discouragingly far
from expectations of practical chemistry; the necessity for
differentiating versus the integer number of electrons
presented an insurmountable obstacle inherent in chemical
applications of the cDFT formalism.16,17

Further development proved that the average of the
directional derivatives f− and f+ represents exact values of the
Fukui function at zero temperature.18 Describing the site
reactivity in these terms requires building an ensemble (grand
canonical) containing the states of N, N − 1, and N + 1
electrons. Methodological consequences are significant: one
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cannot describe the site reactivity relying only on just ground-
state density. In this present work, an alternative approximate
method has been proposed. A working formula for the Fukui
function which uses only the ground-state density (gradient)
has been proposed and confronted with the directional
derivatives f− and f+ at the same computational level of
accuracy.
The only approximation for the Fukui function appreciated

by chemists is that based on the densities of the frontier
orbitals ρHOMO and ρLUMO as proposed by the original
authors,8 and the sole practical way to characterize the
hardness scale for atoms remained the oversimplified model of
the parabolic E(N) function that leads to absolute hardness
proportional to (I−A).8 Chemical applications of the
derivatives of the energy/density have also been hampered
by the increasing complexity in their calculation.19 Yang et al.
have proposed a scheme based on the response function for
the construction of the fractional number of electrons to
perform differentiation with respect to N.20,21 Parr and Yang6

realized that a chemical reaction involves either an increase or
decrease in the number of electrons in a reactant as a result of
electrophilic or nucleophilic attack, respectively; this fact has
motivated the use of right- and left-hand derivatives for the
Fukui function.
The potential hidden in the electron density concept has

been reviewed by Bader in his late paper,22 presenting an
intriguing legacy: quantum chemistry has not yet accomplished
the basic expectation of practical chemistry to quantify
properties of its fundamental objects, atoms, and bonds that
hold them together in molecules, except the widely accepted
view that their nature must be determined by the electron
density around the nuclei. Another paper by the same author
brought a report from his much interesting dispute with the
personality on the scene of chemical theory.23 An experienced
author had declared his belief: “chemical observations and
hence the conceptual framework of chemistry are fully
described, predicted, and accounted for by quantum
mechanics−the physics governing the behavior of electrons
and nuclei” as opposed to the cited declaration by Hoffmann
who believed that “the most interesting ideas of chemistry are
not reducible to physics”. Both arguments can be translated to
the DFT language: by the Hohenberg Kohn theorem,24 the
electron density function is sufficient to quantify local reactivity
properties in molecules, however, in some indirect and
complicated manner.
The review on bond and bonding published few years later

by Politzer and Murray added a significant point to this
debate.25 They noted its clear relevance to the concept of the
bonded atom: “if we cannot unambiguously define atoms in
molecules, we cannot rigorously define bonds between
them”.26 The authors share the view of Ruedenberg et al.:
“the theoretical identification of atoms in molecules and a
corresponding analysis of their interactions have however
proved to be challenging. This is because the resolution of
molecules in terms of atoms is not fundamental to rigorous
physical theory”.27

Remarkably, these skeptical views were voiced in the period
when conceptual DFT was reaching its maturity. The focus of
theory has been recapitulated in a synthetic way by Liu, largely
in tune with the optimism of Bader’s remarks:28 “according to
the basic theorems of DFT, the electron density of a system
should contain adequate information to determine everything
in the ground state, including all properties related to stability,

bonding, and chemical reactivity”. Perspectives and drawbacks
of the theory have been collected in the latest joint review by a
group of authors active in the field.29 The long-desired
applications of the cDFT concepts in chemistry are also the
subject of their analysis: the authors admit that the current role
of theory remains predominantly interpretative, not predictive.
Specifically, their discussion of the chemical hardness has
unveiled the lasting weakness of the theory: the hard and soft
acid and base principle has been recognized as a practical guide
in chemistry for more than half a century,30,31 and yet the
theory has been unable to provide a coherent measure of
hardness based on the electron density for atoms or molecules
even for this apparently well-defined quantity.
An original approach has been published by Rahm and

Hoffmann who introduced some special ways of partitioning
molecular energy and defined a reactivity index as an average
binding energy of electrons.32 The index was called electro-
negativity, and the whole scheme has been introduced under
the name of experimental quantum chemistry. The authors
developed this scheme even further as to produce electro-
negativity of atoms under pressure.33 The drawback of this
approach is the rather arbitrary use of the term electro-
negativity and the lack of any relationship to other reactivity
measures, for example, the Fukui function within cDFT that
gives precise definitions of the reactivity descriptors derived by
phenomenological procedures with a single obstacle: the
inevitable differentiating with respect to N.
This has motivated the goal of this present work: presenting

the unambiguous measure of the recognized potential
reactivity indexthe local softness, global softness (inverse
hardness), and consequently the Fukui function. The necessary
theoretical analysis has been based on the results of monitoring
atoms in reacting molecular systems by the reaction fragility
method,4 the practical tool for describing both the reactivity
and mechanism of the chemical reaction.1−3 It is successfully
applicable to various types of chemical processes;34 however,
for obtaining the mechanism of the chemical reaction with the
reaction fragility method, one needs to actually perform the
IRC calculation of a reaction path. Results of the method are
parallel to those by Kraka who studied normal mode evolution
along the reaction path.35

In this present work, we have extended the method toward
predicting the reactivity instead of describing the evolution of
atoms and bonds involved in the process. The basic elements
for this prediction have been provided in the form of the
precise maps of the local softness and Fukui function, the local
reactivity indices. Our aim was to fulfill the lack of rules
derived from cDFT to be used by chemists (both theoreticians
and experimentalists) as a reliable and appropriate interpreta-
tional and predictive tool.29 Our present work delivers direct
and accurate, although not exact, link between the electron
density function and local softness, without a need for
differentiating over N. Taking the results and remarks from
Chattaraj, Cedillo, and Parr36 on obtaining the Fukui function
from the softness kernel, we come up with a solution to the
problem left open by these authors. We applied our gradient
theorem (eq 6) and with the local approximation suggested by
Vela and Gazquez,37 we come up with a novel working formula
for the local softness. Once local softness is achieved, we gain
access to most (if not all) reactivity indices of cDFT.
Presenting the global hardness and the Fukui function
obtained from the local softness, the first step is made to
bring cDFT of chemical reactivity closer to chemical practice:
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the basic tools for indexing chemical reactivity are ready for
experimental tests.

2. FUKUI FUNCTION
The Fukui function index f(r) = [∂ρ(r)/∂N]v is linearly related
to the local softness: s(r) ≡ −[δN/δv(r)]μ, and the inverse of
global softness is the linear coefficient: f(r) = s(r)/S. The
Fukui function has been considered to be the cornerstone for
the reactivity descriptors in cDFT in a similar manner as the
chemical potential μ = [∂E/∂N]v provided a ground for
theoretical interpretation of the electronegativity concept.38

Both quantities need differentiation versus the integer variable,
that is, the number of electrons. This is usually done with finite
difference approximation, which results in the analysis of the
derivatives having serious limitation since the three states
needed for this procedure are far away from each other
(ΔN = ±1). Efforts to overcome this by calculating the Fukui
function solely from the electron density function of a system
were undertaken by many authors: by local density
approximation,39 gradient expansion,40 analytic methods,41,42

ab initio calculations,43,44 and polarizability analysis.37,45−48

These theoretical studies have not found their way into
chemical practice due to weak theoretical and conceptual basis
and lack of any link to the well-established orbital-based
picture of chemical interactions between atoms.
Unlike that Bader’s QTAIM theory focused on atoms,49

cDFT as founded by Parr has been dealing predominantly with
the local analysis:50 the electron density function ρ(r), the
external potential ν(r), and the derivatives of energy E[N,ν(r)]
and electron density (the tentative measures of reactivity) are
determined at each point in space around atoms.51 Contracting
them to atomic quantities has been an unresolved problem,
despite a number of occasional ingenious inventions by many
authors.19,52−55

The alternative, atomic perspective in DFT, first proposed
by Cohen et al., has been based on the analysis of the
Hellmann−Feynman (H−F) force:56,57

F r r r F( ) ( )di i i
nn∫ ερ= +

The idea was further developed by present authors.58−65 This
approach has been recently appreciated as the valuable source
of information on bonded atoms changing their roles in
reacting systems.4 The atomic positions {Ri} have been used as
basic parameters for the energy function E[N,{Ri}], and
consequently, the electric field of atomic nuclei {εi(r)} has
replaced the external potential ν(r) as the key local quantity.
Bonded atoms are most naturally identified by the H−F forces
acting on their nuclei. The divergences of the H−F force
vector over the nuclear displacements ∇j·Fi ≡ ∂Fi/∂Rj have
been proved to contain the integrated information on the
electron density around nuclei, equivalent to the local
derivatives of energy and density, thus opening the access to
monitoring individual atoms along a reaction path,2,4 with no
need of artificial separation of atoms in molecules.
The abovementioned approach has been fundamental for

the method of this present work. The basic property of the H−
F force divergence, vanishing the nuclear term F 0j i

nn∇· = ,2,66

was essential for proving the link between the density gradient
∇ρ(r) and the corresponding density gradients upon the shift
of atoms: ∇iρ(r)≡∂ρ(r)/∂Ri.

4 Together with the existing
cDFT relation between ∇iρ(r) and the linear response
function ω(r,r′), this allowed for developing the new density

gradient theorem and opened the way to overcome the
obstacle of differentiating over the integer function of the
number of electrons N.

3. METHOD: FROM THE ELECTRON DENSITY
GRADIENT TO LOCAL AND GLOBAL SOFTNESS

When a molecule is considered with no other external fields
other than those generated by its nuclei εA(r), the divergences
of H−F forces on atoms fulfill two significant conditions
proved in our recent work2

F r r r( ) ( ) dB A A A B A N∫ ε ρ∇ · = ·[∇ ]≠ ≠ (1)

F r r r r( ) ( ) ( ) dA A A A N∫ ε ρ ρ∇ · = ·[∇ + ∇ ]
(2)

The relation of ∇Aρ(r) and the electronic response function
ω(r,r′) has been well-founded:2

r r r r r( ) ( , ) ( )dA N A∫ ερ ω[∇ ] = − ′ · ′ ′

Since the sum of all atomic forces vanishes, the sum of their
divergences vanishes as well: ∑B∇A·FB = 0. By combining this
sum rule with eqs 1 and 2, the novel condition for the
stationary electron density is

r r r r( ) ( ) ( ) d 0A B B
N

atomsÄ
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ∫ ∑ε ρ ρ· ∇ + ∇ =

(3)

The solution for ρ(r) in the electronic stationary state must
be unique by the Hohenberg and Kohn theorem. Since eq 3
holds separately for every atom (A) in a system, electron
density in the external field from all nuclei must comply to the
condition

r r r r r r( ) ( ) ( , ) ( )d
B

B N
B

A

atoms atoms

∫∑ ∑ρ ρ ω ε∇ = − [∇ ] = ′ ′ ′

(4)

Equation 4 represents the important relation between the
density gradient and the external electric field generated by the
nuclei, with the linear response function playing a key role.
Using the Berkowitz and Parr relation,67 it is straightforward to
show the identity4

sr r r r r r r r r( ) ( , ) ( )d ( , ) ( )d∫ ∫ ερ ω ε∇ = ′ ′ ′ = − ′ ′ ′
(5)

Here, ε(r) = ∑BεB(r) stands for the total electric field and
s(r,r′) is known as the softness kernel. This exact density
gradient theorem holds for any system of atoms in the absence
of external fields other than from atoms within. Equation 5
allows for exploration of the specific properties of ω(r,r′) and
s(r,r′) kernels that have recently been a target for theoretical
analyses, and valuable difference between both has been
disclosed. By Kohn’s principle of nearsightedness of electronic
matter,68 discussed by Bader69 and recently reminded by Ayers
et al.,70 the softness kernel has been pointed out as nearsighted,
while ω(r,r′) is not. The difference is demonstrated already in
their integrals: ∫ω(r,r′)dr′ = 0, and s(r,r′) is intergrated to
local softness ∫ s(r,r′)dr′ = s(r). This substantiates using local
approximation s(r,r′) = s(r)δ(r − r′) for the softness kernel; it
has been well-established and explored in many computational
procedures aiming at obtaining the Fukui function
index.37,45,46,71 Using this second equality in eq 5, the
straightforward route was opened, leading to the local softness
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s(r) = [∂ρ(r)/∂μ]ν and hence also to the much desired Fukui
Function f(r): the density gradient is approximately expressed
by a simple vector equation

sr r r( ) ( ) ( )ερ∇ = − (6)

Equation 6 represents an approximation to the exact second
equality in eq 5. The new working formula for local softness
reads

s r
r r

r
( )

( ) ( )
( ) 2

ε
ε

ρ= − ∇ ·
| | (7)

Both the electric field from all nuclei ε(r) and the density
gradient ∇ρ(r) are readily computable; thus, we suggest eq 7
to be the operating formula for the local softness index s(r).
The solution for global softness is also within reach

S s r r( )d∫=
(8a)

Once S is found, the solution for the Fukui function is

f s Sr r( ) ( )/= (8b)

The gradient theorem allowed the efficient solution to the
problem of finding the Fukui function outlined by Chattaraj et
al.36

Application of the abovementioned scheme to orbital types
for a hydrogen atom and the hydrogenic ions has been
presented first analytically in order to assess the value of the
results obtained at the level of the local approximation.
Numerical computations for atoms and ions follow. The results
will be confronted with existing experimental data of global
hardness for atoms and the results for the Fukui function
calculated by other methods, before the method is adapted to
monitoring reactivity in molecules, the real challenge in
chemistry.
Equation 6 reads that the electron density gradient is

approximately proportional to the total electric field. It reflects
direct nearsightedness68 and results from Vela Gazquez local
approximation.37 The site, within the molecular space, where
the density gradient is not parallel to the electric field
constitutes the region where the Vela Gazquez approximation
breaks down, and the deviation of the direction of the density
gradient from the direction of the electric field seems to be a
measure for the correlation neglected by this approximation.
The practical solution to the application of eq 6 to molecules is
to introduce a softness tensor, and the local softness function
will be obtained as a trace of this tensor. Additionally,
performing the integral in eq 8a for molecules requires
regularization of the points where the electric field tends to be
zero.
The novel theoretical approach to the Fukui function

outlined above must undergo the test of its coherence with the
established properties of chemical objects; atoms have typically
been explored as the first testing ground for computational
methods proposed for these indices in the past.40−46 The
unique advantage of this present method is in the a priori
reproduction of the global softness (inverse global hardness).
The rich literature focusing on reproducing the hardness of
atoms30 provides an opportunity to anchor the results of this
work on the basic properties of atoms, before the method
could be reasonably applied to describing the site selectivity in
molecules.47

4. FUKUI FUNCTION AND SOFTNESS INDICES FOR
THE HYDROGENIC ORBITALS

This procedure of obtaining the Fukui function from the local
softness function (eqs 7, 8a, and 8b) can be applied to any
molecular system. However, the simplest application is the
spherically symmetric systemthe atom. In fact, the much
appealing simplicity of eq 7 for local softness prompts us to test
the result for orbitals in a hydrogen atom and hydrogenic ions.
Should the local softness s(r) be a local function, eq 6 implies
that the gradient vector is parallel to the electric field vector in
every point. This is the case for isolated atoms and ions; ∇ρ(r)
and ε(r) vectors are parallel according to the spherical
symmetry of the entities. The radial distribution of local
softness for the 1s orbital is simply

s r r s
Z

r r Z r Zrr( ) 4 ( )
4

(d /d ) 8 exp( 2 )2 4 3 4π π ρ= = − = −

(9)

The global softness by integration is S s r r Z( )d 6/
0

2∫= =
∞

.

Radial distribution for the Fukui function for the 1s orbital in
any hydrogenic species (eq 10) is properly integrated to unity
for any Z value

f r
s r

S
Z r Zr( )

( ) 4
3

exp( 2 )5 4= = −
(10)

Results for the 1s orbital in eq 10 are quantitatively close to
those demonstrated by other methods of electron density
analysis in a more sophisticated manner.37,39,45,46 Analytical
results for the local softness of other orbitals have also been
calculated and are presented in the Appendix.
Radial distributions of local softness s(r) for canonical

hydrogenic orbitals are demonstrated in Figure 1 for a
hydrogen atom (Z = 1). The global softness index, obtained
by integration of the s(r) functions for orbitals, varies
proportionally with the inverse of the square of the atomic
number, as demonstrated in Table 1. These results allowed for

calculation of the radial distribution for the Fukui function
themselves for each hydrogenic type of orbitals, Figure 2. The
abovementioned analysis proves that our procedure for local
softness proposed in eq 7 reflects the properties properly
correlated to the electron density for orbitals in hydrogenic
ions.

5. RESULTS FOR ATOMS AND IONS
The local softness index (eq 7) has been calculated for 119
atoms and ions of 36 elements from the first to the fourth
periods of the periodic table. The global softness has been
obtained by the numerical integration according to eq 8a. The
radial distribution of the Fukui functions for atoms has been
confronted with the commonly used density-based approx-
imations of the finite-difference type: f+(r), f−(r), and f 0(r).

Table 1. Collection of the Analytical Results from
Integration of the Radial Distribution of Local Softness (cf.
Appendix) in the Hydrogen-Like Cations: The Global
Orbital Softness S [in a.u.] for the Hydrogenic Orbitalsa

orbital 1s 2s 2p 3s 3p 3d

S [a.u.]
Z
6

2 Z
24

2 Z
20

2 Z
54

2 Z
50

2 Z
42

2

aZ is the atomic number.
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The entire body of the results has been presented graphically
in the Supporting Information.
5.1. Computational Methods. Numerical analysis was

executed with the Gaussian 16 code.72 The B3LYP method has
been chosen, following its former successful tests in the
electron density calculations in atoms.73−75 The aug-cc-pvqz
basis set has been routinely applied, except for the Ca atom
(cc-pvqz). Using the pVTZ basis set recommended by Sadlej76

was necessary for the potassium atom. The ground states of
atoms have been identified by the specification of atomic
electronic terms.77

Two calculation procedures have been applied for the local
softness values: pseudoanalytical and numerical methods. The
first one has been applied for a group of small atoms and
univalent ions with 1−4 electrons and orbitals 1s and 2s only
(H ÷ B+). The analytical function of the electron density has
been formed with the use of the wave function coefficients
together with basis set functions constructed from primitive
Gaussians. Numerical results are obtained with analytical
operations on the analytical form of the electron density
function. The analytical density function has been integrated
analytically to reproduce the expected number of electrons.
The obtained accuracy was about 10−8 a.u. Analytical
derivation of this density led to the electron density gradient
and then to local softness by eq 7. The global softness values

resulting from analytical integration of local softness for a
hydrogen atom and He+ ions were 6.1209 and 1.5156 a.u,
respectively, thus exceeding the values expected from the
analysis of orbital softness. This is due to the fact that
Gaussian-type orbitals do not reproduce correctly the electron
density of the H atom.
For practical reasons, the numerical DFT method has been

used in order to form the electron density and electron density
gradient to overview the local softness of atoms and ions in
rows 1−4 of the periodic table. The effect of degeneracy of
frontier orbitals has been avoided using the integral electron
density for every atom and ion. As it has been proved by Kohn,
the ground-state density is unique even for systems where
frontier orbitals are degenerate.78,79

A simple practical method has been applied to circumvent
another well-known difficulty in reproducing spherical
symmetry of the electron density in atoms. Two steps have
been involved in this procedure.

(i) Integration of the electron density has been routinely
made by the spherical algorithm, 4πr2ρ(r), for a density
ρ(r) variable in one direction only. The result of
integration to the proper number of electrons served as
evidence of a spherical symmetry of the density. The
accuracy of this test has been reported below, separately
for atoms grouped by periods.

Figure 1. Radial distribution function of the local softness s(r) [in a.u] for orbitals in a hydrogen atom. (A): Orbitals 1s, 2s, and 3s; (B): orbitals 2p,
3p, and 3d.

Figure 2. Radial distribution of the Fukui function f(r) in [a.u.] for orbitals in a hydrogen atom (Z = 1, S = 6). (A): Orbitals 1s, 2s, and 3s; (B):
orbitals 2p, 3p, and 3d.
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(ii) For atoms whose basic electronic terms were other than
the S type, the numerical averaging procedure over the
principal coordinate axis and all diagonal directions has
been applied to the raw computational results. The
subsequent integration (i) provided proof for the
sufficient quality (symmetry) of the averaged density
for the purpose of this study.

The density gradient has only been calculated in one
direction from the spatially averaged numerical density data.
The integral electron density has been obtained with the

grid produced within the Gaussian package. The grid was fine,
and the accuracy was controlled by the integration of the
resulting radial distribution of the density to the proper
number of electrons. The distance between the calculated
density points for atoms/ions in the first and second periods
was 0.05a0, and the radius of the grid was 15a0. For the third
and fourth period, the grid was fine by 0.02a0 within the 20a0
of the grid radius. Standard deviations between the nominal
number of electrons and the result of integration of the density
function determined for the main group elements in the first
rows of the periodic table (1 + 2), 3, and 4 were 0.009, 0.055,
and 0.024, respectively. Standard deviation was considerably

higher for the group of 3d elements in period 4 (0.42);
however, given the large number of electrons in these atoms,
the relative accuracy of the procedure was at the same level for
all groups of atoms (ca. 0.1−0.5%). The global hardness for a
hydrogen atom served as a test for the efficiency of the method
and the basis set, leading to SH = 5.83 a.u., reasonably close to
the analytic result of 6.0 a.u. (Table 1).

5.2. Local Softness of Atoms. Results for the local
softness of atoms have been presented as the spherical radial
distribution s(r) = 4πr2s(r). Collections of the local softness for
atoms in the second and third row of the periodic table are
shown in Figure 3 together with the results of integration of
s(r) curves (the global softness).
An example of meaningful, alternative presentation of the

results is provided in Figure 4 as the Fukui functions for a
group of ions isoelectronic with neon atom (N = 10) and
argon atom (N = 18) electronic configurations. Since the
Fukui function integrates to unity, the separate roles of global
hardness and the Fukui function itself in describing properties
of ions may be appreciated.

5.3. Global Softness of Atoms and Ions. The global
softness S resulting from the integration of the radial

Figure 3. Calculated radial distribution function of local softness s(r) in [a.u.] for atoms in the second row (A) and the third row (B) of the
periodic table. Calculated global softness for atoms has been inserted: S [a.u.].

Figure 4. Calculated radial distribution of Fukui function f(r) in [a.u.]: (A) for the neon atom and the isoelectronic ions and (B) for the argon
atom and the isoelectronic ions. Calculated global softness has been inserted: S [a.u.].
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distribution of the local softness s(r) for 36 atoms is presented
in Figure 5 as a function of the atomic number Z. The diagram
is clearly divided into sections, corresponding to the valence
electron type of atoms: 1s, 2s, 2p, 3s, 3p, 4s, 3d, and 4p. These
results are parallel to the analytic results for the hydrogenic
orbitals presented in Section 4. Analogous diagrams for
univalent cations and anions are presented in Figure 6; several
bivalent anions and cations have also been marked in these
diagrams.
Calculation of the global softness index has opened access to

numerical data for global hardness of all atoms and ions
selected for this study, η=1/S. This result has been confronted
with the measure of absolute hardness originally proposed by
Parr and Pearson,7 I A( )1

2
η = − , and subsequently adjusted

by dropping out the arbitrary coefficient,13 η = I − A. This
formula has been recognized as the working definition of
hardness. From our present point of view, this is only an
approximation which originates from finite difference approx-

imation. Therefore, we tested correlation between the inverse
of softness computed with our procedure with I − A to

establish the appropriate coefficient: S I A1/ ( )1

a
= −

α
. Follow-

ing the finding of nonidentical global softness for various types
of orbitals (Table 1), the correlation has been tested separately
for atoms in rows of the periodic table. Analogous correlation
has been investigated for univalent cations, as the higher
ionization potentials are known with sufficient accuracy (I2);
the corre la t ion has been assumed according ly :

S I I1/ ( )1
2

c
= −

α
The low accuracy of electron affinity data

would not allow for an analogous test for anions. The resulting
correlation parameters are presented in Table 2.
Another test for the global softness values resulting from our

new approach was provided by the analysis of atomic/ionic
radii. The linear relation between the atomic hardness and
inverse atomic radii has first been suggested by Gazquez and
Ortiz.82 The concept has been developed by Komorowski

Figure 5. Global softness of atoms S [a.u.] calculated by integration of the radial distribution of softness density s(r) in atoms.

Figure 6. Global softness S [a.u.] calculated for univalent cations and for univalent anions of elements in rows 1−4 of the periodic table. Selected
(2+) cations and (2−) anions have also been marked. The scale of the ordinate axis has been expanded by 2:1 (for cations) and contracted by 1:2
(for anions) as compared to Figure 5 (for atoms).
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within the chemical approximation;83,84 the van der Waals radii
have been found to correlate with the inverse global hardness
(I − A)−1. Consequently, the correlations between the
calculated global softness for atoms and cations and the
selected measures of their radii have been sought. The
correlations have been limited to atoms grouped by periods,
and three reliable sources for atomic radii have been explored
(Table 3).

5.4. Fukui Function Index. Results for the Fukui function
indices have been calculated from the local and global softness
f(r) = s(r)/S and have been presented separately for each atom
as the corresponding radial distribution function
f(r) = 4πr2f(r). For the sake of clarity in comparing the
results, f(r) has been presented jointly with that for the
corresponding cations and anions. An inspection of the Fukui
function in isoelectronic atoms and ions has also been
provided in a separate diagram for each atom. Finally, the
comparative diagrams for the Fukui function with the
normalized radial density ρ(r)/N and with the widely used
approximation (eq 11a−11c) have been demonstrated87

f r r r( ) ( ) ( ) nucleophilic attackN 1ρ ρ= −+
+ (11a)

f r r r( ) ( ) ( ) electrophilic attackN 1ρ ρ= −−
− (11b)

f r f r f r( )
1
2

( ) ( ) radical attack0 = [ + ]+ −
(11c)

The combination of the abovementioned data in the joint
compact picture for the carbon atom is shown in Figure 7.
Analogous diagrams for all atoms under study have been
shown in the collection given as the pdf presentation attached
in the Supporting Information. Using the spherical integral
density for atoms (eq 11a−11c) allows for avoiding the

degeneracy of (frontier) orbitals, which must be taken into
account for molecules, when only ρLUMO(r) and ρHOMO(r) are
considered in an approximate version of eq 11a−11c.88,89

6. DISCUSSION

Three reactivity indicators quantified by the present method
are closely related: the local softness s(r), the global softness S,
and the Fukui function f(r). The Fukui function is designed to
characterize how much the electron density changes locally
with the global change of the number of electrons. On the
other hand, global softness gives the change of the total
number of electrons with the change of the external potential.
The global softness is the integral of the local softness over the
whole space (eq 8a), and the local softness is a product of the
global softness and the Fukui function (eq 8b). The predictive
roles of the Fukui function and local softness are remarkably
different. Although f(r) and s(r) provide basically the same
information on the relative site reactivity within a molecular
system, s(r), due to the incorporated information on the value
of the global softness,12 is more suited for intermolecular
reactivity since the electron flow is inversely proportional to
the sum of the total hardness of the reacting objects9 (and
global softness is the inverse of hardness). The second remark
is crucial: the ultimate goal for indexing atoms is in describing
their reactions and hence their interaction with other atoms (in
molecules). Thus, the local softness function provides
complete information on molecular reactivity that can be
decoded from the electron density function.
The arguments indicating the role of local softness as the

leading parameter in indexing atomic reactivity follow directly
from the definitions of the Fukui function
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The first equality in eq 12 describes a response of the density
to ionization in the rigid molecule (constant external
potentialrigid geometry constraint), while the second one
refers to the polarization of a closed system (constant number
of electrons). Both effects are internal in their character; they
describe the response of a system to a change introduced by
ΔN or Δν(r). Here, some important distinction follows from
the grand canonical ensemble approach.18 (Valuable consid-
erations on this topic have also been presented by Malek and
Balawender.90) Chemical potential in eq 12 is the electronic
chemical potential often denoted as μe. On the other hand, the
variational derivative in the first equality of eq 13 is over the
chemical potential of the surrounding reservoir, denoted as
μbath. In the zero-temperature limit when the entropic term
vanishes, μbath = μe. Our discussion within this paper is
constrained to this zero-temperature limit.
Equation 13 provides deep insights into the description of

chemical reactivity. The first equality is the response of the
density to a change that may not be as evident as ionization:
changing the chemical potential by Δμ at constant external
potential (hence the position of all nuclei). By Hohenberg
Kohn theorem24

Table 2. Numerical Correlation Parameters in the
Relationship between the Conventional Measure of
Hardness and the Inverse Softness Resulting from This
Work for Atoms and Cations in Rows 1−4a

row no in the periodic table valence orbitals αa αc

1 + 2 s,p 2.10 2.10
2 s,p 1.70 1.63
3 s,p 1.02 1.08
4 s,p 0.71 0.94
4 s,p,d 0.86 0.85

aThe entries have been separated into valence electron sections. The
noble gas atoms (He, Ne, Ar, and Kr) and the group IA cations have
been omitted (see text). The most recent values for first and second
ionization energies (I, I2) and the electron affinity data (A) data are
from refs 80 and 81, respectively, αa: atoms, αc: cations.

Table 3. Correlation Parameters for the Relation between
the Atomic Radii and Calculated Atomic Softness S
Assumed as rat = β S (rat and S in a.u.)a

row no β1 β2 β3

2 0.340 0.369 0.424
3 0.620 0.621 0.554
4 0.828 0.734 0.658

aCovalent radii are from the Cambridge database (β1).
85 Two types

of van der Waals radii are from the recent analysis by Batsanov (β2:
crystal, β3: equilibrium).86
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E
v
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r( )μ δ ρ

δρ
δ ρ

δρ
= [ ] = + [ ]

(14)

where F[ρ] denotes the universal Hohenberg−Kohn functional
that includes kinetic energy functional plus electron−electron
repulsion. Thus, the change of μ with the constant v(r) is
equivalent to the change of the functional derivative of the
universal functional often denoted by u(r) = δF/δρ. This
means that local softness describes the change of electron
density with the variation of the derivative of the universal
functional and on this way, due to the change of the slope, of
the universal interactions. The second equality of eq 13 proves
that this is the essence of reactivity. It describes an effect of the
in/out flow of electrons between a system (e.g., an atom) and
an external reservoir (e.g., other parts of a molecule), as to
keep the chemical potential constant, when compensating the
externally induced change Δν(r). The local softness is

considerably richer as a potential source of information on
reacting molecules.
The maxima of the local softness for hydrogenic orbitals

(Figure 1) indicate an interesting sequence: their heights and
their distances from origin increase with the principal quantum
number (n: 1, 2, and 3) and decrease with an increase in the
orbital quantum number (l: s, p, d); this effect is reflected by
the global softness of orbitals, as given in Table 1. Remarkably,
the uniform relation S ∝ σ/Z2 between the atomic number and
the global softness of hydrogenic orbitals has been proved,
with σ constants characteristic for the orbital type. This
property is of great importance for understanding the sequence
in global softness of atoms in the periodic table.
Radial distributions of the Fukui function indices show

another effect (Figure 2): the heights of their maxima decrease
with the main quantum number of an orbital. This supports

Figure 7. Radial distribution for the Fukui functions f(r) calculated for the carbon atom and its ions (A) and for the corresponding isoelectronic
ions (B). The global softness values S in [a.u.] for atoms and ions have been inserted accordingly (A,B). Comparison to the typically used
approximations for the Fukui function (eq 11a−11c) and the normalized electron density function ρ(r)/N are shown in figures (C,D). Analogous
diagrams for all 36 atoms are available in the presentation enclosed as the Supporting Information.

Table 4. Global Softness S Calculated for Isoelectronic Atoms and Ions by Three Methods: (i) S by Integration of the Radial
Distribution of Local Softness s(r) by the Pseudoanalytical Method (Section 5.1); (ii) Sum of Contributions from Each
Electron and Orbital to the Global Softness (Table 1); and (iii) I − A Values (refs 82 and 83) Adjusted by the Correlation
Parameter α = 2.10 (Table 2)

atom/ion
atomic
number

number of
electrons

orbitals
(occupied)

S [a.u.]
(pseudo-analytical)

S [a.u.]
(numerical)

sum of orbital softness’
[a.u.]

S = α(I − A)−1
[a.u.]

H 1 1 1s 6.1209 5.83 6.00 4.45
He+ 2 1 1s 1.5156 1.38 1.50 1.92
H− 1 2 1s2 20.5648 19.91 12.00 75.6
He 2 2 1s2 3.7635 3.48 3.00 2.28
Li+ 3 2 1s2 1.5402 1.35 1.34 0.81
Be2+ 4 2 1s2 0.8338 0.70 0.76 0.42
He− 2 3 1s22s 13.7064 12.45 9.00
Li 3 3 1s22s 6.5732 6.29 4.02 11.97
Be+ 4 3 1s22s 3.0830 2.88 2.26 6.42
Li− 3 4 1s22s2 16.2529 14.09 6.67 92.4
Be 4 4 1s22s2 6.0468 5.77 3.75 5.82
B+ 5 4 1s22s2 3.3763 3.16 2.40 3.39
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the conclusion on the more informative character of the local
softness over the Fukui function: large and distant maxima of
s(r) indicate the regions where electron exchange might occur
(Figure 1), while the strongest maximum for the 1s orbital
Fukui function (Figure 2) does not seem to provide any
relevant chemical information, given the internal character of
this orbital. Small regions of the negative Fukui function (and
local softness) for orbitals are not unexpected; the phenom-
enon has been discussed and theoretically explained in early
DFT studies.55,91−93 Actual values for the Fukui function
calculated for atoms and ions by the presented method are all
positive (eq 11a−11c).
The global softness in ionized species and/or isoelectronic

atoms/ions allows for observation of the effect of electronic
interaction on softness; some instructive examples are
presented in Table 4. Examples of atoms and ions in Table
4 contain the 1s and 2s orbitals only. Softness S calculated by
the pseudoanalytical method (cf. Section 5.1) is systematically
higher than the results from the practical numerical method by
ca. 8% on average. Reasonable consistency between the global
softness and a sum of orbital softness for electrons is found for
one electron species (H and He+) and for some two-electron
systems: He, Li+, and Be2+. Softness S for all anions H−, He−,
and Li− significantly exceeds the expectation from summation
of the orbital softness. Possible chemical explanation of this
regularity is the role of electron repulsion; the sum of orbital
softness values is calculated as if the contributions from each
electron were simply additive. The same effect might be
responsible for the regular tendency observed in 1s 2s atoms:
softness S (numerical) is systematically larger than the sum of
orbital contributions to global softness, and the effect is strong
for Z = 1 and vanishes for Z = 4. The role of electron
interactions is supported theoretically: for a set of isoelectronic
atoms, the application of the virial theorem allows for
estimation of the global hardness (inverse global softness) as
η = 1/S ≅ Δ(J[ρ] + Exc[ρ])/ΔN. The global hardness provides
a measure for a sensitivity of the electron−electron interactions
to ΔN. This would explain the data in Table 4 for anions with
the highest softness (lowest hardness): their sensitivity to
changing an electron number is indeed extra-low; the
exceedingly high results of softness for anions by this method
reflect the well-known weakness of this measure of softness for
anions (last column in Table 4), as compared to the method
present hereby, equally applicable to atoms and any ions.
Direct confrontation of the calculated softness data with the
absolute hardness8 adjusted by the improved correlation
coefficient (Table 2) for neutral atoms and cations proves
how these experimental measures of softness match the
sequence of softness S calculated by integration of s(r) within
each group.
Results for local and global softness for atoms in various

periods of the periodic table of elements are much instructive
(Figure 3); clear systematic changes have been demonstrated.
Minimum softness values for noble gas elements are in
accordance with the maximum hardness principle.94 As the
elements in the second row are concerned, the calculated
global softness is highest for Li and then falls to the lowest
value for Ne, spanning the range of 6−3 a.u. Global softness in
the third period is less diverse, 3.3−3.92 a.u., with the
maximum at Al (Figure 3B). Following the analysis of orbital
softness values presented above, this is reasonable for an atom
with the sole 3p electron. An analogous effect is not observed

in boron (Figure 3A), possibly due to the large difference of
softness between neighbors: Be5.77, B5.15, and C4.50.
The wide tail in the long distance from the nucleus

(reaching as far as 10 a.u.) is responsible for the generally soft
character of alkali metals (Figure 3). When the electronic shell
is filled with more electrons, this immediately affects softness:
it rises systematically, becoming the dominant one; the internal
shell peak is washed out when reaching the next noble gas
configuration. This suggests that the valence shell is the one
responsible for the observed effect of softness.
The calculated local softness of atoms allows some

statements due to its behavior in isoelectronic entitiesthe
noble gas configuration has been selected for this purpose
(Figure 4). With the number of electrons being constant,
variation of local softness with the atomic number is exposed.
Since only the stable species have been shown in Figure 4,
building the wide tail of local softness in bivalent anions is an
interesting observation. This effect is responsible for the
sequence of global softness: S (O2−) > S (S2−). The
dependence on Z and N for hardness has been first discussed
by March;95 the problem deserves to be revisited once the
local and global softness had been endowed with numerical
measures rooted in the electron density.
The overview of global softness for atoms presented in

Figure 5 has been supplemented with the marking of valence
orbitals of each atom. The irregularities in S(Z) dependence
are readily explained by the subsequent filling of the subshells
in atoms; the general trend of decreasing softness with
increasing atomic number illustrates the regular S ∝ Z−2

function for orbitals. Analogous data for cations and anions
are presented in Figure 6; global softness for anions is on
average twice as large as that for atoms, while for cations, it is
half as small; the ordinate scales on Figure 6 have been
adjusted accordingly.
The picture in Figure 5 is coherent with the result for orbital

softness and provides a valuable hint to the search for
meaningful correlations between the new measure of global
softness and the traditional measure of hardness introduced by
Pearson and Parr,8 I A( )1η = −

α with α = 2, leading to a

barely satisfactory correlation. By limiting the correlation to
periods (Table 2), according to the finding for the variable
global orbital softness (Section 4), excellent linear correlations
between (I − A) and hardness (inverse softness,η = 1/S) have
been found with specific coefficients for each row. α = 2.10
holds roughly for atoms and cations in periods 1 and 2; better
correlation is obtained for elements in period 2 only with
average α = 1.66; in periods 3 and 4, the average coefficients
for all atoms and cations are 1.05 and 0.86, respectively, with
somewhat lower accuracy. Chemical intuition behind the
concept of absolute hardness has been corroborated.8 The
reason why a general correlation should not be insisted on has
now been unveiled in the discussion of orbital softness
(Section 4).
The proportional relation between the new measure of

softness’ for atoms/ions and their diameters documented in
Table 3 confirms the early results in this matter. Various
measures for the diameters have been tested in the past,
including the atomic refractions understood as volumes of
bonded atoms.83,84,96 The linear correlations between atomic
radii from three various sources strongly support calculated
atomic softness S as the proper measures of this atomic
property.
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The quantified order of softness for ions has been originally
pursued by Pearson.30 The author introduced an arbitrary
empirical hardness parameter Δ for this purpose; Δ is the
difference of the dissociation energies of bonds to the chosen
standards: F− and I− for the group of cationic acids

D DA A AF
o

I
oΔ = − and H+ and CH3

+ for anionic bases
D DB HB

o
CH B
o

3
Δ = − . Results of this present work can be
compared to those proposed by Pearson for a handful of ions
as a sequence of increasing softness for the corresponding ions.
The sequence of increasing softness for alkali metal cations

by the two measures coincides quite precisely: Li+ < Na+ < K+.
Among the few atomic anions listed in Pearson’s book,30 H− is
the softest one as it is in this work. However, the sequence of
increasing softness for halogen anions by the two methods is
contradictory: F− < Cl− < Br− by Pearson and Br− < Cl− < F−

by this work. By cross-checking this with electron affinity data
(η ∝ A), the absolute hardness values are found to be rather
close for all three anions, pointing out the chloride anion being
only slightly harder than fluoride and bromide.81 When the
absolute hardness data (A) are combined with the correlation
coefficients determined separately for rows 2, 3, and 4 in the
periodic table (Table 2), the order of global softness by this
work has been confirmed.
A possible source of the discrepancy may be the factors

determining the dissociation energy of bonds that served as
chosen standards for anions in Pearson’s concept. The energy
change due to the charge transfer is dependent both on
electronegativity difference (Δχ) and the sum of hardness
(η).8,9

E
( )

( )AB
A B

A B

2χ χ
η η

Δ ∝
−
+ (15)

Electronegativity and hardness of both reference cations H+

and CH3
+ chosen as standards for anionic bases are

considerably higher than electronegativity and hardness of
anions; thus, by the conventional measure (eq 15), the
dissociation energies DHB

o and DCH B
o

3
for anionic bases will be

dominated by the properties of the standards, masking the
effect of very low hardness (and electronegativity) of changing
partners in ΔB. The ΔA measure for cationic acids will not be
affected since the chosen standards for this group (F− and Br−)
are of much lower electronegativity (and hardness) than for
the cations; hence, variable properties of cationic acids can be
exposed.
Due to the high interest in the Fukui function index over the

years, the complete overview of Fukui functions for atoms (and
many of their ions) in 1−4 periods has been composed and
attached to this paper as the presentation in the pdf format
(Supporting Information). An example of the data available in
this collection is shown in Figure 7 for carbon. Section A gives
the Fukui function together with global softness for an atom
and its ions. By the general observation, the Fukui function
(normalized to unity) shows a maximum for the cation, atom,
and anion in the same place (distance to origin), with the
height of the peak decreasing in the sequence of increasing
global softness. The same is true for the Fukui functions of
isoelectronic ions of an atom shown in Section B. Section C
contains the new Fukui function together with the traditional
ones (eqs 11a and 11b); similarly, in Section D, the new Fukui
function is confronted with the one given by eq 11c and also
with the normalized electron density function ρ(r)/N.

This comparison clearly shows the specialized and
approximate character of the traditional Fukui functions (eq
11a−11c), divided into characteristic measures for nucleo-
philic, electrophilic, and radical attacks separately. Typically,
the new Fukui function for an atom is close to the one
dominating among the traditional ones (period 2), hence
providing the characteristics of an atom as such, with no need
for a preliminary specification of the type of its reactivity. For
atoms in periods 3 and 4, the new Fukui functions expose the
role of internal shells that is typically washed out by the
calculation method of the traditional FF (eq 11a−11c). By the
opinion of the authors, the future in chemical applications
belongs more likely to the now available local softness, rather
than to Fukui functions.

7. CONCLUSIONS
The key finding of this present work is eq 6 and its
consequences. The electron density gradient is related to the
total electric field from nuclei of the molecule. For atoms, local
softness is the coefficient in this linear dependence. For
systems of lower symmetry, the local approximation for the
softness kernel may not be held at the points of vanishing
electric field. In such cases, one may need to introduce the
softness tensor,4 and the solution of eq 7 will only provide its
trace.
The interchange between the derivative over μ (local

softness) and the derivative over r (gradient) in the analysis
of electron density opens the route to evaluate the reactivity
indices at the cDFT level. This could not have been achieved
without the previous analysis leading to the electron density
gradient theorem (eq 5) and the nearsightedness property of
the electronic matter as demonstrated by others.68−70

The working formula that leads to local softness (eq 7)
represents the rational approximation that allows for tractable
computations of local softness. By application of the
abovementioned finding to atoms, the authors demonstrated
its usefulness in opening facile access to otherwise unavailable
quantitative data of softness (local and global) for orbitals and
atoms alike. The results properly reproduce the spherical
symmetry of free atoms and ions, also providing unique
quantitative information on the softness of individual orbitals,
the key viewpoint in contemporary discussions on reactivity.
The choice of atoms as the preliminary test group for the
method of obtaining the Fukui function has been a standard
approach.37,39,40,45,46

For atoms, ∇ρ(r) and ε(r)vectors are parallel according to
the spherical symmetry of the entities. For molecules, there is
no such topological constraint, and application of our method
to molecules will require some modifications: the trace of the
softness tensor provides the local softness function and the
analytical integration will have to be replaced with numerical
integration techniques. However, the idea remains the same
and the numerical calculations for both global and local
softness are feasible and will provide the Fukui function. The
method also opens a new perspective: the electric field is
clearly attributed to atoms in molecules and so may be the
local softness and the Fukui function.
Results for the local and global softness and the Fukui

functions demonstrated for orbitals and atoms indicate the
potential for further use of the rational approximation in eqs 6
and 7. By generalization of the method, higher derivatives of
the electron density may be calculated, for example, the dual
descriptor f(2)(r) = df(r)/dN,97 the third derivative of energy
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over N (γ, hyperhardness62,98,99), and also the derivatives over
Z.95 The method is also applicable for molecules, thus opening
a field for exploration of the potential measures of properties
for atoms in molecules by the DFT indices that identify atoms,
with no need for spatial divisions of the density into atoms: the
indices rooted in the Hellmann−Feynman force. Their
properties have already been described, but no appropriate
computational tools have yet been elaborated for practical
purposes: the nuclear reactivity A A NμΦ ≡ −[∇ ] ,56 the nuclear
stiffness GA A Nη= [∇ ] ,61 and the softening index for atoms
and/or bonds AB A B Nλ μ≡ [∇ ·∇ ] .2 The access to these
potentially attractive tools for characterization of reactivity of
atoms in molecules has been opened with the working
procedure to the d/dN derivative of electron density as
presented in this work.

■ APPENDIX
Radial distribution functions for the local softness s(r) for the
hydrogen-like orbitals are evaluated. The radial distribution for
the Fukui function is available by applying the S data for the
corresponding orbitals (Table 1) as f(r) = s(r)/S.
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