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Biomarker development for clinical checkpoint inhibition is still in its early stages. It is critical
to determine the cause of the lack of a long-term response in patients after immune
checkpoint blockade (ICB) treatment and to develop composite biomarkers or signatures
to improve personalized approaches. Three modules that were significantly correlated with
the immunotherapeutic response were identified. Stimulatory pathways of cellular
immunity, extracellular matrix formation-related pathways, and ATP metabolism-related
pathways were enriched. Two distinct transcriptional subtypes were determined. Tumor
microenvironment (TME) characteristics were highly correlated with “hot” and “cold”
tumors. The ICB score was significantly correlated with clinical characteristics including
age, Breslow depth, Clerk level, AJCC stage, and T stage. Meanwhile, a low ICB score is
characterized by increased activation of immunity, a higher level of immune infiltration, and
immune molecule expression. The ICB score showed a robust ability to predict melanoma
prognosis in the discovery, internal validation, and external validation cohorts. In addition, a
low ICB score was linked to a higher CR/PR rate in the immunotherapeutic cohort. The ICB
score could reflect the pre-existing immune features and the expression pattern of “Cold”
versus “Hot” tumors in melanoma patients. Thus, it has the potential to serve as a reliable
predictor of melanoma prognosis and response to ICB therapy.

Keywords: melanoma, TCGA, signature, immunotherapy, tumor microenvironment

INTRODUCTION

Despite having a lower prevalence than other cutaneous malignancies, skin melanoma is one of the
most aggressive cancers. Until recently, melanoma accounted for only 4% of all dermatological
cancers, yet it was responsible for 80% of skin cancer-related mortality (Miller and Mihm, 2006).
Non-invasive melanoma has a favorable surgical prognosis; nevertheless, metastatic melanoma has
long lacked curative therapy options (Barrios et al., 2020). Although immune checkpoint blockade
(ICB), represented by anti-PD-1/L1, has changed cancer therapy, only a small percentage of cancer
patients (10-30%) have a long-term clinical response (Topalian et al., 2012) (Khalil et al., 2016). As a
result, discovering the mechanisms of pre-existing and acquired immune resistance and developing
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new therapeutic techniques to prevent relapse are of great
interest. It is also critical to determine the cause of the lack of
long-term response in patients after ICB treatment and to develop
composite biomarkers or signatures to improve personalized
approaches.

Biomarker development for clinical checkpoint inhibition is
still in its early stages of development. The tumor mutation
burden and PD-L1 expression are the only biomarkers used in
some cases. Recent research has found that PD-L1 expression
measured by immunohistochemistry (IHC) and tumor mutation
burden (TMB) measured by whole exome sequencing (WES) are
not reliable predictors of ICB response in a variety of tumor types
(Merino et al.,, 2020) (McGrail, Pilié, Rashid, Voorwerk, Slagter,
Kok, et al.). Pre-therapy expression analyses on pre-existent
immune features in responders and expression patterns of
“Cold” versus “Hot” tumors based on prior immunotherapy
experience could predict immunotherapy response, according
to mounting evidence (Riaz et al., 2017). Recently, several gene
signatures have been established to predict prognosis and
immunotherapeutic responses. These signatures, which
included a variety of genes acquired from RT-PCR or RNA-
seq data, exhibited good predictive powers. Still, none of them
could be employed in clinical practice because of the insufficient
robustness or lack of further validation (Xiong et al., 2020). Yan
et al. developed a 9-gene signature correlated with effector T cell
infiltration to predict immune checkpoint therapy response (Yan
et al., 2021). However, the predictive ability of signature has not
been clarified. A signature-based on immune infiltrating related
genes has been constructed by Zhang et al. (Zhang et al., 2020). It
showed a satisfactory diagnostic performance with an AUC value
of 0.70-0.72 in the discovery cohort, while the AUC value in the
test cohort was 0.60-0.67. In addition to the immune infiltration,
other inherent characteristics of tumors have played a crucial role
in affecting the immune therapy response, such as the
immunogenicity of tumor cells, extracellular matrix
components, and metabolic imbalance reprogramming of
tumor cells. WGCNA is a classic data reduction and
unsupervised classification method, which has been employed
in thousands of transcriptional data analyses (Langfelder and
Horvath, 2008). There is a consensus that the expression pattern
of the patient’s transcriptome before treatment primarily affects
the efficacy of immune checkpoint therapy. However, as its
complex and dynamic nature, our understanding of the
expression feature relating to the efficiency of immunotherapy
remains incomplete (Chen and Mellman, 2017).

For the first time, we applied the WGCNA method to mRNA
sequencing data of patients receiving anti-PD-1 therapy to
discern the hub gene modules directly associated with
therapeutic response. We analyzed six melanoma datasets
from The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) database in the present study.
First, we identified three key modules and the corresponding
biological processes associated with the efficacy of PD-1
inhibition therapy based on the ICB cohort (GSE91061). Then
we revealed two distinct transcriptional subtypes based on key
modules and discovered that the tumor microenvironment
(TME) under them was highly consistent with the “hot” and
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“cold” tumor. Furthermore, we developed a robust signature (ICB
score) based on key modules that were significantly related to
immunotherapeutic efficiency. Predictive ability was verified
using an internal validation cohort and two independent GEO
cohorts. Our study demonstrated that the ICB score is a robust
biomarker of prognosis and immunotherapeutic response.

METHODS AND MATERIALS

Data Acquisition and Preprocessing

The gene expression profile and corresponding clinical
information of patients with melanoma were obtained from
the publicly available databases TCGA and GEO. Five eligible
cohorts (TCGA-SKCM, GSE65904, GSE22513, GSE91061, and
IMvigor210) were included in this study. Among them,
GSE91061 and IMvigor210 were the immunotherapeutic
cohorts. TCGA RNA sequencing data (TCGA-SKCM, FPKM
format) were obtained from the UCSC Xena database (https://
gdc.xenahubs.net/download/TCGA-SKCM.htseq_fpkm.tsv.gz).
For GSE91601, we downloaded the raw “CEL” files and used a
robust multiarray averaging method with “simpleafty” and “affy”
packages to perform background adjustment and quantile
normalization. For sequencing data of other GEO cohorts, we
directly obtained the normalized matrix files from the GEO
database. We analyzed each dataset separately in this study
rather than merging them into a larger cohort. The somatic
mutation and SCNV data of TCGA-SKCM were also downloaded
from the TCGA database. Data processing was performed using
the R (version 4.0.5) and R Bioconductor packages.

Co-Expression Modules Construction
Weighted Gene Co-expression Network Analysis (WGCNA) is a
method for dividing the whole RNA expression profile into co-
expression gene modules and investigating the link between
modules and phenotypic features (Zhang and Horvath, 2005).
The standard deviation of a single gene greater than 0.5 was set as
the inclusion criterion to perform WGCNA using the expression
data of the TCGA cohort in our investigation. The scale
independence and average connection degree of the network
with various power values were investigated (ranging from
1 to 20). When the scale independence was greater than
0.9 and connectedness was higher, a suitable power value was
found. Genes were then grouped into distinct gene modules based
on topological overlap matrix (TOM)-based dissimilarity. The
main module was determined to have the strongest association
with immunotherapy response.

Unsupervised Consensus Molecular
Clustering Based on Genes in the Key
Module

An unsupervised clustering algorithm was used to classify
patients for further research and uncover different expression
patterns based on genes in critical modules. The consensus
clustering algorithm determines the number of clusters and
their ~ stability (Yu et al, 2012). We used the
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ConsensuClusterPlus package to perform the above steps and
conducted 1,000 repetitions to guarantee the stability of the
classification (Wilkerson and Hayes, 2010).

Pathway Enrichment Analysis

The clusterProfiler R package was used to perform functional
annotation for genes in modules that were substantially (p < 0.05)
connected with the response to nivolumab (anti-PD-1 drug)
treatment to study the pathways enriched in important
modules. We used the “GSVA” R package to perform GSVA
enrichment analysis to determine differences in biological
processes across diverse transcriptional subtypes defined by
key module genes. In a non-parametric and unsupervised
technique, GSVA is often used to estimate the variance in
biological route and process activity in expression dataset
samples (Hianzelmann et al., 2013). For GSVA analysis, the
gene sets “c2. cp.kegg.v6.2. symbols” were retrieved from the
MSigDB database. Statistical significance was defined as an
adjusted P-value of less than 0.05. The TCGA-SKCM cohort
was subjected to gene set enrichment analysis (GSEA) using
GSEA software (version 4.1.0) to determine the biological
process differences between the high-risk and low-risk groups.
For GSEA analysis, statistical significance was defined as a False
Discovery Rate (FDR) of less than 0.05. We used biological
processes or signatures yielded by previous research\ and
ssGSEA methods to characterize the stromal activation and
immune program of melanoma patients (Mariathasan et al,
2018) (Senbabaogl u et al, 2016). The biological processes or
signatures which were characterized in our study included
angiogenesis  signature, antigen processing machinery
signature, CD8 T effector cell signature, EMT signature,
FGFR3-related signature, cell cycle signature, and repair of
DNA damage signature (BER, FA, HR, MMR, NHE], and NER).

Immune Infiltration and Immune Status

Estimation

We adopted the Timer (Li et al., 2016), CIBERSORT (Newman
et al., 2015), CIBERSORT-ABS, QUANTISEQ (Finotello et al.,
2019), MCPCOUNTER (22), Xcell (Aran et al, 2017), and
EPIC(24) algorithms to compare the cellular components
between the different transcriptional subtypes and the high
and low ICB score groups, respectively. In addition, we
quantified the relative abundance of each cell infiltrate in the
TME of SKCM using single-sample gene set enrichment analysis
(ssGSEA). The gene set for identifying each TME infiltrating
immune cell type was derived from Charoentong’s work, which
included activated CD8 T cells, activated dendritic cells,
macrophages, natural killer T cells, regulatory T cells, and
other human immune cell subtypes (Charoentong et al., 2017)
(Barbie et al., 2009).

Construction of the ICB Score

Least Absolute Shrinkage and Selection Operator regression
(LASSO) 1is a penalized regression that can generate risk
models by screening variables from high-dimensional data
(Gui and Li, 2005). Patients in the TCGA cohort were
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separated into two groups in a 7:3 ratio in our study:
discovery (n = 322) and internal validation (n = 136). LASSO
regression was used in the discovery cohort to identify the most
valuable genes with predictive potential for SKCM. Using the
minimal criterion, ten-time cross-validation was used to
determine the optimal value of the tuning parameter (A). A
gene signature was created using multivariate Cox regression
analysis. A risk score formula was created based on the signature
that we created.

ICB score = z Coe fficient o f the gene (i)

x Expreesionof gene (i)

The coefficient of the gene (i) is the regression coefficient of the gene
in the LASSO-Cox regression model, and the expression of the
gene (i) is the expression value of gene for each patient. The best
cutoff value was established using the surv-cutpoint function
from the ‘survival’ package, and patients were separated into
high- and low-risk groups.

Comparison of Genomic Alterations in

Different Melanoma Subtypes

GDC was used to obtain TCGA-SKCM mutation data
(VarScan2). The analysis eliminated genes with mutation rates
of less than 2.5 percent. GDC was used to acquire the TCGA-
SKCM SCNV data. GISTIC software (version 2.0) was used to
examine the GISTIC score and gene copy number amplification
and deletion data for each sample. Each melanoma sample’s
fraction of genome gained or lost (FGG, FGL) and genome altered
(FGA) value was calculated (Moore et al., 2012). We compared
the FGG, FGL, and FGA values between genders, ages, TNM
stages, and ICB scores. The R program RCircos was used to
visualize the location of the gene on the chromosome.

Quantify the Immune Response Predictor:
Immunophenoscore, TIDE, ESTIMATE

The immunophenotype score (IPS) is a better predictor of the
response to anti-CTLA-4 and anti-PD-1 therapies because it
quantifies  tumor  immunogenicity and  characterizes
intratumoral immune landscapes and cancer antigenomes
(Becht et al., 2016). A panel of immune-related genes from the
four groups of MHC-related molecules (MHC), checkpoints or
immunomodulators (CP), effector cells (EC), and suppressor cells
(SC) were used to establish the scoring methodology (SC). The
weighted averaged Z-score was determined by averaging the
sample-wise Z-scores of the four classes within each category.
The total averaged Z-score was calculated as the IPS. Jiang et al.
presented the Tumor Immune Dysfunction and Exclusion
(TIDE) algorithm, which was used to represent several tumor
immune evasion mechanisms (Jiang et al., 2018), including tumor
infiltrating cytotoxic T lymphocytes (CTLs) dysfunction and CTL
exclusion by immunosuppressive substances. A higher TIDE
score indicated that tumor cells were more likely to trigger
immunological escape, implying a lower ICI response rate.
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The Estimation of Stromal and Immune Cells in Malignant
Tumors using Expression Data (ESTIMATE) algorithm
(Yoshihara et al, 2013) uses the unique qualities of
transcriptional patterns to estimate tumor cellularity and
purity. We derived immune and stromal scores using the
ESTIMATE method to assess the levels of infiltrating immune
and stromal cells, which were used to infer tumor purity.

Statistical Methods

R-4.1.0) was used to perform statistical analyses in this study. The
correlation coefficients were calculated using Spearman’s sand
distant correlation analyses in this study. Student’s t-tests were
used to quantify statistical significance for normally distributed
variables, whereas the Wilcoxon rank-sum test was used to
examine abnormally distributed variables. Kruskal-Wallis tests
and one-way analysis of variance were used as non-parametric
and parametric procedures for comparisons of more than two
groups, respectively (Hazra and Gogtay, 2016). In this work, the
survival curve was plotted by Kaplan-Meier (KM) techniques and
evaluated by Log-rank methods using the R package “Survminer”
and “Survival”, respectively (0.4.6). The relationship between ICB
score and clinical variables and prognosis was investigated using
the Cox proportional hazards model. The surv-cutpoint function
from the ‘survival’ package was used to stratify samples into high
and low ICB score subgroups. The prognostic classification
performance of the ICB score model was evaluated using the
receiver operating characteristic (ROC) curve, and the area under
the curve (AUC) was determined using the ‘timeROC’ package
(0.3). The Benjamini-Hochberg technique and Bonferroni
method were used to control the false discovery rate (FDR)
for multiple hypothesis testing (Love et al, 2014). All
comparisons were two-sided, with an alpha level of 0.05.

Nomogram Construction

The nomogram was constructed using the R package “rms”.
Calibration curves were used to test the consistency between
the projected and actual survival outcomes. Time-dependent
ROC curves were used to assess the prediction accuracy of the
nomogram, gene risk model, and clinicopathologic variables.

RESULTS

Identification of Key Modules and Biological
Processes in the Immunotherapeutic
Cohort

The pre-therapy transcriptional profile can reflect prestored
immune patterns in responders and expression imprints of
“Cold” versus “Hot” tumors based on prior immunotherapy
discovery (McGrail, Pilié, Rashid, Voorwerk, Slagter, Kok,
et al; Cristescu et al., 2018). Many previous studies evaluated
the sensitivity and specificity of classic biomarkers, especially PD-
L1/THC and TMB. While high PD-L1 expression and TMB were
associated with increased ORR, as recently described by Cristescu
et al. (Racle et al., 2017), in the context of PD-1 inhibition, these
biomarkers exhibited low sensitivity, limited specificity, and
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therefore limited accuracy in identifying responders to
immune checkpoint blockade. According to a systematic
evaluation conducted by Lu et al. (Lu et al, 2019), the
sensitivity of PD-L1/IHC and TMB are 0.50 (0.48-0.53) and
0.57 (0.51-0.62), respectively. The specificity of PD-L1/IHC and
TMB are 0.63 (0.62-0.65) and 0.70 (0.66-0.73). However, some
authors have suggested that diagnostic tests used for patient
selection should have AUCs of 0.80 or higher (Frati et al,
2012) (English et al, 2016). In addition, when combining
these biomarkers, 10% of responders were both PD-L1
expression and TMB low, suggesting the existence of
independent mechanisms of response to PD-L1 blockade.
Considering the low sensitivity and limited specificity of
classic biomarkers, including TMB and PD-L1, to identify
responders to pembrolizumab caused by the multifactorial
tumor-specific mechanisms of response (Banchereau et al.,
2021; Litchf ield et al., 2021), we conducted WGCNA in an
anti-PD-1 cohort (GSE91061) to identify the key modules
significantly related to the response to immune checkpoint
blockade therapy. After setting the soft-cut height as 0.25 and
thresholding value as 4 (scale-free R2 = 0.9) (Figures 1A-D), we
extracted 22 co-expression modules (Figure 1E). According to
module significance analysis, the yellow module was most
significantly ~ correlated ~ with  response to  anti-PD-
1 immunotherapy, followed by the light green and
grey60 modules (yellow R2 = 0.35, p = 0.02, light green R2 =
0.3, p = 0.04, grey60 R2 = 0.29, and p = 0.05).

KEGG and GO enrichment analyses were conducted to
investigate the biological processes in the three key modules.
Immune activation-related pathways, including leukocyte cell-
cell adhesion, T cell activation, lymphocyte differentiation, and
immunological synapse, were significantly enriched in the yellow
module, which suggested that genes allocated into this module
play a crucial role in the immune activation process (Figure 1F).
Meanwhile, extracellular matrix formation-related pathways,
such as collagen-containing extracellular matrix, extracellular
matrix  structural  constituent,  extracellular  structure
organization, extracellular matrix organization, and TGF-beta
signaling pathway, showed an apparent association with the light
green module (Figure 1G). The pathways enriched in the
grey60 module were associated with ATP metabolism
(Figure 1H). The above results indicated that in addition to
the adaptive immune function, the extracellular environment and
metabolic imbalance between tumor and immune cells
significantly influence the response to immunotherapy, which
is similar to previous studies (Jiang et al., 2019).

Transcriptional Subtypes Identified by Hub
Gene Modules Showed Distinct Immune

Landscapes

We selected the yellow, grey60, and light-green modules as the
hub modules for further analysis. Based on the expression of
genes in hub modules, the R package ConsensusClusterPlus was
used to classify patients with qualitatively different
transcriptional subtypes. Two distinct modification subtypes
were eventually identified using unsupervised clustering, with
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271 cases in subtype A and 187 cases in subtype B. These subtypes ~ enrichment analysis. Figures 2A,B showed

remarkably

were termed Immune Cluster A-B. The distinction in the
biological processes behind the two distinct immune-related
transcriptional ~ patterns was investigated using GSVA

different pathways activated in immune clusters A and B. An
FDR of less than 0.05 was considered statistically significant.
Immune cluster A was enriched in cancer-immunity cycle
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stimulatory pathways, such as antigen processing and
presentation, cytokine-cytokine receptor interaction, leukocyte
transendothelial migration, and T/B cell receptor signaling
pathway, and immune cluster B showed upregulated DNA
damage repair processes such as nucleotide excision repair,
mismatch repair, non-homologous end joining, and base

excision repair. TIMER, CIBERSORT, CIBERSORT-ABS,
QUANTISEQ, MCP counter, Xcell, and EPIC algorithms were
used to create a heatmap of tumor-infiltrating immune cells. In
immune cluster A, the majority of immunologically invading
cells, notably CD8+ T lymphocytes, were identified in higher
numbers (Figure 2C). We then evaluated the differences in the
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previously described biomarkers TMB (Figure 2D) and PD-L1
(Figure 2E) among these two clusters. Both showed a
pronounced elevation in immune cluster A expression. We
also used the ESTIMATE method to determine overall
immune cell infiltration (immune score), stromal cell
infiltration (stromal score), and tumor cell purity (tumor
purity) for the two distinct subtypes. The results revealed that
immune cluster A exhibited higher immune scores, stromal
scores, and estimate scores than immune cluster B, while
immune cluster B shared a higher tumor purity (Figures
2F,G). Consistent with previous studies, high levels of immune
infiltration could serve as an independent biomarker for a
favorable prognosis (Badalamenti et al., 2019) (Picard et al,
2020). Survival analysis showed that patients in immune
cluster A shared a markedly prolonged OS compared to those
in immune cluster B (Figure 2H). To study the characteristics of
these distinct transcriptional patterns, we evaluated the
differences and correlations between immune clusters and
TCGA subtypes. Immune cluster A, which showed a more
favorable survival, was enriched in the “immune” subtype but
not in the “keratin” subtype and MIFF-low subtype (Figure 2I).

Generation and Validation of ICB Score

The findings of the aforementioned clustering analysis revealed
that SKCM patients could be appropriately categorized into “hot”
and “cold” tumors, which were significantly related to the efficacy
of immunotherapy. However, these findings were limited to a
single patient group and could not reliably predict the pattern of
hub gene expression in individual patients. Given the unique
variability and complexity of hub gene expression patterns, we
developed a scoring system based on these hub genes to quantify
the expression patterns of individual patients with SKCM, which
we call the ICB score. Based on the minimal partial likelihood
deviation, LASSO regression was performed on 102 hub genes
with prognostic significance in the discovery set, and ten
biomarkers were preserved: STAT1, TNESF10, CD40,
CD40LG, TRIM22, PDCD1, GBP2, SEMA4D, ILR2B, and
P2RY14. The ICB score was calculated as follows:

ICB score = (-0.3858 x expression of STAT1) + (0.7284 x
expression of TNFSF10) + (-0.2900 x expression of CD40) +
(0.2557 x expression of CD40LG) + (-0.4120 X expression of
TRIM22) + (-0.2456 x expression of PDCDI1) + (-0.4793 x
expression of GBP2) + (-0.3629 X expression of SEMA4D) +
(0.5350 x expression of IL2RB) + (-0.4539 x expression of
P2RY14).

We explored the relationship of the expression patterns of
signature genes with immune function and immune cell
infiltrating levels. As shown in Supplementary Figure S2A,
we can conclude that the expression levels of signature genes
are all positively associated with the infiltrating levels of immune
cells in CM tissues. The ICB signature established by LASSO
methods included STAT1, TNFSF10, CD40, CD40LG, TRIM22,
PDCD1, GBP2, SEMA4D, IL2RB, and P2RY14. Among them,
2 were classic immune co-stimulatory molecules (CD40 and
CD40LG), 2 were signal transduction molecules promoting
T cell activation (STAT1 and SEMA4D), 1 was immune
checkpoint (PDCD1), 1 was immune-inflammatory molecule

A Novel Signature for Melanoma

(TNFSF10), and 1 was immune-inflammatory molecular
receptor (IL2RB). P2RY14 has been suggested to be a
biomarker of tumor microenvironment immunomodulation
and favorable prognosis in patients with head and neck cancer
(Li et al., 2021). We focused on GBP2 and revealed its significant
role in shaping the tumor microenvironment. GBP2, a GTP
(guanylate-binding protein) superfamily member, plays a
significant role in carcinoma. It was reported that
GBP2 inhibits mitochondrial fission and cell invasion in
several types of tumors (Ren et al, 2022). However, the
function of GBP2 in melanoma has not been revealed. We
observed that patients with higher GBP2 expression showed
an obviously better outcome than patients with low
GBP2 expression (p = 0.005, Supplementary Figure S2B).
Besides, we further clarified the difference in the density of
immune infiltrating cells between the low and high
GBP2 groups. Significant differences in immune cell
infiltrating levels, antigen presenting molecule expression, and
checkpoint  expression have been observed
(Supplementary Figures S2C,D). From the above, we could
speculate that GBP2 may promote the activation of various
tumor killing immune cells and enhance the immune cells
infiltrating within tumor tissues, thus enhancing the
intratumoral antitumor immune response. CD8+ T cells are
the primary effector immune cells in anti-tumor immunology.
As shown in Supplementary Figure S3, significant positive
correlations have been observed between the expression level
of GBP2 and the infiltrating levels of CD8+ T cells. The result has
been validated using various algorithms, including CIBERSORT,
CIBERSORT-ABS, EPIC, MCPCOUNTER, QUANTISEQ,
TIMER, and XCELL. To reveal the underlying mechanism of
GBP2 in melanoma progression, we performed GSEA on
sequencing data of TCGA-SKCM. The top 5 pathways
enriched in high GBP2 expression were shown in
Supplementary Figures S2E,F. The results suggested that
GBP2 was significantly associated with chemokine, thereby
affecting T cell infiltration. In addition, GBP2 also seems to be
associated with the antigen processing pathway, which is vital to
the activation of adaptive immunity. The multivariate COX
regression analysis (Supplementary Figure S2G) suggested
that GBP2 is an independent prognostic factor in melanoma,
along with the AJCC T stage (p < 0.001) and N stage (p < 0.001).
The above results provided new insight into the antitumor
immunology of melanoma, although further validation using
traditional experimental methods was needed.

According to the optimal cutoff value calculated by the
“survminer” program, patients in the discovery, internal
validation cohort (TCGA cohort), and two external validation
datasets (GSE65904 and GSE22153) were divided into low and
high ICB score groups. We used distribution plots, KM survival
curves, and time-dependent ROC analyses in discovery (n = 322),
internal (n = 136), and two external validation sets (GSE65094,
n = 210; GSE22153, n = 54) to assess the signature’s predictive
capacity (Figures 3A-D). Patients with high ICB scores had
shorter survival times and higher mortality rates (Figure 3E) in
the discovery set. The KM survival curve showed a markedly
longer overall survival than patients with low scores (95%HR:
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FIGURE 3 | The predictability of ICB score in prognosis. (A-D) Ranked dot, scatter plots, and heatmap showing the ICB score distribution, patient survival status,

and expression of genes generating the ICB score in TCGA discovery cohort (A), TCGA internal validation cohort (B), GSE65904 (C), and GSE22153 (D). (E-H) Survival
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0.23-0.44, p < 0.001). Consistent with the outcome in the
discovery cohort, a lower survival rate and shorter survival
time were observed in patients with higher ICB scores in the
internal validation set (Figure 3F, 95%HR:0.22-0.69, p < 0.001),
GSE65904 (Figure 3G, 95%HR:0.25-0.55, p < 0.001), and

GSE22153 (Figure 3H, 95%HR:0.16-0.58, p < 0.001). At one,
two, and 3 years, the prediction accuracies of this signature were
0.778, 0.756, and 0.715 in the discovery cohort,respectively
(Figure 3I). In the internal validation dataset, the predictive
accuracies of the ICB score were 0.540, 0.653, and 0.685 at 1,
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2, and 3 years, respectively (Figure 3J). In addition, the area
under the ROC curve of the ICB score for OS was 0.710, 0.694,
and 0.698at 1, 2, and 3years, respectively, in GSE65904
(Figure 3K) and 0.717, 0.725, 0.683 at 1, 2, and 3 years,
respectively, in GSE22153 (Figure 3L). According to the
univariate findings, a lower ICB score was associated with
unsatisfactory OS (hazard ratio [HR],1.336; 95% confidence
interval [CI],1.217-1.466; p < 0.001). Higher Breslow depth,
advanced Clerk level, TNM stage, T stage, N stage, and M
stage are additional clinicopathological factors linked to poor
survival. In multivariate analysis, ICB score (hazard ratio [HR]:
1.319; 95% confidence interval [CI]:1.199-1.451; p < 0.001), along
with TNM stage and N stage, remained independently linked
with overall survival (Figure 3M).

Clinical Characteristics and Functional

Annotation

Immune cluster B had a considerably higher ICB score than
immune cluster A (Figure 4A). The difference in the composition
ratio of key clinical features between the low and high ICB score
groups was evaluated using chi-square analysis. The clinical
heatmap (Figure 4B) highlighted the clinical features of
patients in the TCGA cohort, and it was discovered that age,
Breslow depth, Clerk level, AJCC stage, and T stage differed
significantly between the low- and high-score groups. To reveal
the differences in ICB scores with previously identified immune
clusters, TCGA subtypes (Cancer Genome Atlas Network, 2015),
and immune subtypes (Thorsson et al., 2018), we illustrated the
distribution of patients in the TCGA-SKCM cohort with an
alluvial diagram (Figure 4C). It was found that patients with
immune-inflammatory subtypes were concentrated in the high
ICB score group and that patients with low ICB scores had a
higher survival rate. GSEA of melanoma samples was used to
further investigate the features of the low and high ICB groups.
The low ICB score was enriched in immune activation pathways
such as immune response activation, alpha-beta T cell activation,
and antigen receptor-mediated signaling, as shown in Figure 4D.
Surprisingly, the high ICB score group was enriched in
keratinocyte-related =~ pathways, such as  cornification,
keratinization, cornified envelope, and desmosome pathways
annotated by GO terms (Figure 4E). We then focused on the
core biological processes involved in the anti-tumor immune
response. We assessed a set of genes related to the specific
biological processes identified by Mariathasan et al.
(Mariathasan et al, 2018). In this study, the low IMS group
showed high expression of stromal activation pathways such as
EMTI1, EMT3, and FGFRG3 associated genes. In the high-ICB
group, CD8 effector and antigen presentation markers were
expressed at higher levels (Figure 4F). In addition, cell cycle
and DNA replication pathways were substantially expressed in
those with a high ICB score. Spearman correlation analysis
indicated that these signatures were significantly associated
with the ICB score (Figure 4G). DNA damage repair systems
are vital for maintaining genome integrity (O’Connor, 2015).
Rosenberg et al. found that the alteration of DDR pathway-related
genes was significantly associated with a higher tumor mutation

A Novel Signature for Melanoma

burden and predicted the optimized anti-PD-1/PD-
L1 immunotherapy efficiency (Arora et al,, 2019) (Teo et al,
2018). Therefore, we evaluated the relationship between the DNA
damage repair pathways and ICB scores. The ICB score showed a
positive correlation with the enrichment score of the DNA
damage repair pathway (Spearman’s R = 0.23, p < 0.001,
Figure 4H). In addition, five (BER, FA, NER, HR, and NHE])
of the six DNA damage repair signatures were significantly
differentially enriched between the low and high ICB scores
(Figures 4L]).

The Immune Landscape of the Low and
High ICB Score Group

We accessed the correlation between genes in ICB score and
tumor infiltrating immune cells (TIICs) evaluated by “Cibersort’
methods. They showed positive correlations with Macrophages
M1, NK cells, and CD8+ T cells, considered the primary effector
cells and Antigen presentation cells in the anti-tumor immune
response (Figure 5A). The ssGSEA results revealed that the low
ICB score groups shared a markedly higher immune infiltration
level in almost all types of TIICs. The enrichment scores of
immune function-related pathways calculated using ssGSEA
methods differed in the low and high ICB score groups
(Figure 5B). The correlation heatmap revealed that the ICB
score was positively correlated with the infiltration level of
TIICs and both immune stimulation and inhibition pathways
(Figures 5C,D). Moreover, the lower ICB score groups shared
higher immune and stromal scores in TCGA-SKCM (Figure 5E),
indicating more excellent immune cell and stromal cell

infiltration. Charoentong et  al developed  an
immunophenoscore (IPS) that includes MHC (Antigen
processing), CP (checkpoint), EC (effector cells), and

(suppressor cells) to predict the efficiency of anti- CTLA-4
and anti-PD-1 antibodies therapy. We evaluated the
differences in MHC, EC, CP, and average Z-score (AZ)
between the low and high ICB score groups. In the TCGA-
SKCM cohort, EC, CP, AZ score, and IPS were higher in the low
ICB score group than in the high score group, while the high score
groups shared a higher MHC score (Figure 5F). In the
GSE65904 cohort, higher immune and stromal score
(Figure 5G), higher EC and CP scores were represented in the
low ICB score groups, whereas MHC scores were lower in the low
ICB score groups, similar to the results in the TCGA cohort.
However, in GSE65904, there was no significant variation in IPS
scores between the low- and high-score groups (Figure 5H). The
expression of immunomodulatory molecules was also examined
in the high and low ICB groups. The results revealed that most
immunomodulatory molecules were expressed at higher levels in
the low-ICB score group than in the low-score group (Figure 5I).

ICB Score Related Genomic Alterations in
the TCGA-SKCM Cohort

We further investigated the link between the ICB score and
genomic changes (including CNV alternation and mutation).
First, we investigated copy number gain/loss frequencies and
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FIGURE 5 | Correlation between the ICB score and potential immune characteristics in melanoma. (A) Correlations heatmap shows the association of immune

infiltrating levels of TIICs estimated by CIBERSORT with ICB signature genes. #p < 0.05, ##p < 0.01. (B) Differences in the immune infiltrating level of 22 TlICs between the
low and high ICB score groups using the CIBERSORT method. (C) GSVA analyses revealing differences in immune function related pathways between the low and high
ICB scores. (D) Correlation heatmap showing the correlation between the ICB score and the enrichment score of immune cells infiltrating and immune function

related pathways. (E) Differences in the immune score, stromal score, and ESTIMATE score in TCGA-SKCM cohort. (F) Differences in IPS score, including MHC, EC, CP,
AZ, and IPS score, between the low and high ICB score groups in TCGA-SKCM cohort. (G) Differences in the immune score, stromal score, and ESTIMATE score in
GSEB5904 cohort. (H) Differences in IPS score, including MHC, EC, CP, AZ, and IPS score between the low and high ICB score groups in GSE65904 cohort. (1)
Heatmap showing the differences in the expression of immune molecules between the low and high ICB score groups in TGCA-SKCM cohort. Strips below the heatmap
represented the types of immune molecules. Red, MHC molecule; blue, immune inhibitors; green, immune stimulators. #p < 0.05, *#p < 0.01, *##p < 0.001, *##%p <
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FIGURE 6 | Correlation of genomic alterations with the ICB score in melanoma. (A) Comparison of the somatic copy number variations (SCNVs) between the high

ICB score group and the low ICB score group in the TCGA-SKCM cohort. (B) Differences in fraction genome altered (FGA), fraction genome gain (FGG), and fraction
genome loss (FGL) values in different ages, genders, TNM stage, and ICB score groups. #p < 0.05, ##p < 0.01, ###p < 0.001, **+*+xp < 0.0001. (C) Heatmap showing
mutations in the genes with the most significant correlation to ICB score in melanoma samples. Genes with P-values lower than 0.0001 were exhibited in the figure
(D-E) Top 20 most frequently mutated genes in the low and high ICB score groups. (F) The difference in ICB score between PKD1L1-wild and PKD1L1-mut samples.
(G) The difference in TMB between PKD1L1-wild and PKD1L1-mut samples. (H) Differences in classical immune checkpoints (PD-1, PD-L1, and CTLA-4) between
PKD1L1-wild and PKD1L1-mut samples. (I) Survival analyses for subgroup patients stratified by ICB score and PKD1L1 mutation status using Kaplan-Meier curves.
Adjusted P values of multiple hypothesis test results were calculated using the Bonferroni method. (J) Difference in ICB score between PKD1L1-wild and PKD1L1-mut
samples (K) Difference in TMB between PKD1L1-wild and PKD1L1-mut samples. (L) Differences in classicalimmune checkpoints (PD-1, PD-L1, and CTLA-4) between
PKD1L1-wild and PKD1L1-mut samples (M) Survival analyses for subgroup patients stratified by ICB score and PKD1L1 mutation status using Kaplan-Meier curves.
Adjusted P values of multiple hypothesis test results were calculated using the Bonferroni method.
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GISTIC scores in the low and high ICB score groups. The high
ICB score group had a higher GISTIC score and a more
significant CNV gain/loss frequency than the low ICB score
group (Figure 6A). Next, we explored how the various
subtypes differed in terms of fraction genome gain (FGG),
fraction genome loss (FGL), and fraction genome change
(FGA). Men had a significantly higher FGL than women,
despite no significant differences at different ages or AJCC
stages. Furthermore, the FGA and FGG levels in the high ICB
score group were significantly higher than those in the low ICB
score group. According to the data, CNV alteration had a minor
impact on SKCM’s low ICB score of SKCM (Figure 6B).

We then identified the ICB score-correlated gene mutations.
Spearman’s correlation analysis showed that the mutation status
of 13 genes was significantly correlated with the ICB score
(Figure 6C). The cut-off value was set at p < 0.05. Among
these 13 ICB-associated mutated genes, PCLO and
PKDIL1 were the 20 most frequently mutated genes. In
addition, we analyzed the differences in the distribution of
somatic mutations between low and high mé6Ascore in the
TCGA-SKCM cohort using the “maftools” package. MUCI16,
BRAF, and PCLO had a higher mutation frequency in the low
ICB score group, while the mutation frequency of DNAHS,
FAT4, HYDIN, and MGAM in the high ICB score group was
higher than that in the low score group (Figures 6D,E). We
further evaluated whether PKDI1L1 and PCLO mutations are
potential intrinsic immune escape mechanisms in the low- and
high-ICB groups. The results showed that the ICB score was
significantly higher in PKCIL1-wild type patients than in
PKDIL1-mut patients (p = 0.01, Figure 6F). TMB (p < 0.001,
Figure 6G) and checkpoint expression (Figure 6H), including
PD-L1(p = 0.004) and CTLA4 (p = 0.004), were significantly
overexpressed in PKDI1LI-mut patients. The survival curve
suggested that PKDIL1 mutation did not weaken the
prognostic ability of the ICB score (Figure 6I). In addition,
the ICB score was elevated in PCLO-wild-type patients
(Figure 6]J). The TMB of PCLO-mut patients was significantly
higher than that of PCLO-wild-type patients (Figure 6K). The
intermediate value of immune checkpoint molecules in PCLO-
mut was higher than that in PCLO-wild, although the results were
not statistically significant (Figure 6L). In both the PCLO-wild
and PCLO-mut groups, patients with lower ICB scores had
prolonged OS, consistent with the PKDIL1 mutation
(Figure 6M). Our results on genomic alterations shed light on
the crucial role of PCLO and PKDILI mutations in shaping the
SKCM immune microenvironment. However, the specific
mechanisms  of the  correlation  between  PCLO,
PKDIL]l mutation, and checkpoint expression need to be
explored in further studies.

ICB Score Predicts Response to Immune
Checkpoints Blockade Therapy

As checkpoint blockers are only effective in a small percentage of
patients, identifying predictive signs and mechanisms of
immunotherapy resistance is a hot topic of study. In addition
to well-known TIILs, TMB(49), clonal neoantigens (Robbins

A Novel Signature for Melanoma

et al, 2013), and PD-L1 expression, newly identified signatures
or algorithms, such as immunophenocscore (IPS) (Charoentong
et al, 2017) and tumor immune dysfunction and exclusion
(TIDE) (Roh et al., 2017; Fu et al., 2020) (Jiang et al., 2018),
are widely used to predict response to immunotherapy. For this
reason, we calculated the IPS of patients in the TCGA-SKCM
cohort and found that the IPS of anti-PD-1 immune checkpoint
therapy and anti-CTLA-4 immune checkpoint therapy (p < 0.001,
Figure 7A) was significantly higher in the low m6Ascore group,
which indicates that patients with low m6Ascore may get better
efficiency from these two types of immunotherapies. The TIDE
score and the IFNG genes and dysfunction signature scores were
significantly higher in the low ICB score group, while the score of
the immune exclusion signature was lower in the low ICB score
group (Figure 7B). The TIDE algorithm was used to predict the
efficiency of low and high ICB scores for immune checkpoint
blockade (anti-PD-1/anti-PD-L1 and anti-CTLA4) treatment.
The results suggested that patients with low ICB scores were
more likely to respond to anti-CTLA4 or anti-PD-1/anti-PD-
L1 treatment in SKCM, whereas those with high ICB scores were
not. In addition to the TIDE algorithm, we also employed
subclass mapping to compare the expression profiles of these
two groups, which we defined with another published dataset
encompassing 47 patients with melanoma who showed favorable
responses to immunotherapies. We found that patients with a low
ICB score were more likely to respond to anti-PD-1/CTLA-
4 treatment. Both treatments had Bonferroni-corrected P-values
of 0.008 (Figure 7C). We then evaluated whether the ICB score
had a good performance in predicting patients’ response to ICB
therapy in the immunotherapy cohort, given the close link
between the ICB score and TIICs, immune function pathways,
immune checkpoint expression, and immunotherapy predictors.
Patients with a low ICB score had more substantial therapeutic
improvements and longer life in both the anti-PD-L1
(IMvigor210) and anti-PD-1 (GSE91061) cohorts (IMvigor210,
HR:0.54 (0.40-0.73), Figures 7D,E; GSE91061, HR:0.54
(0.27-1.06), Figures 7F,G). A previous study verified the
considerable therapeutic benefits and clinical response to anti-
PD-1/L1 immunotherapy in patients with low ICB scores
compared with those with high ICB scores.

Construction of Nomogram

A nomogram, including the ICB score and primary clinical
parameters, was created to provide doctors with a quantitative
method to predict the prognosis of patients with melanoma
(Figure 8A). TNM stage, Breslow depth, Clerk level, tumor
size, and N stage were the clinical parameters included in the
nomogram. A point scale was used to specify the points for these
variables in the nomogram. A straight line was drawn upward to
calculate the points for the variables, and the total points allocated
to each parameter ranged from 0 to 100. The points of the
variables were accumulated and recorded as total points. To
measure the risk of melanoma patient survival at 1, 3, and
5years, a vertical line was drawn from the axis at the total
point, straight down to the outcome axis. In addition, we
found that the bias-corrected line of the calibration plot was
close to the ideal curve, a 45-degree line in the plot (Figures
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8B-D). The results indicated that the forecasts and observations
for 1, 3, and 5 years were in good agreement. We then measured
the predictive ability of this nomogram by comparing it with
Breslow depth, Clerk level, and TNM stage. The nomogram
performance (AUC:0.833, 0.805, and 0.792 at 1, 3, and 5 years,
respectively) was better than Breslow depth, Clerk level, TNM
stage, and ICB score (Figures 8E-G). Overall, our data implied
that the nomogram outperformed individual prognostic markers
in predicting short- and long-term survival in patients with
melanoma (Rizvi et al.,, 2015).

DISCUSSION

Biomarker development for clinical checkpoint inhibition is still
in its early stages of development. In certain cases, PD-L1
expression and TMB are the only biomarkers that can be
used. Recent research has found that PD-L1 expression
measured by immunohistochemistry (IHC) and TMB
measured by whole exome sequencing (WES) are not reliable

predictors of ICB response in a variety of tumor types (McGrail,
Pilié, Rashid, Voorwerk, Slagter, Kok, et al.) (Merino et al., 2020).
Tumor-infiltrating lymphocytes, molecular subtypes, and T-cell
receptor clonality are currently being investigated as predictive
biomarkers for ICB in various cancer types (Balar et al., 2017)
(Thorsson et al., 2018). Pre-therapy expression analyses on pre-
existent immune features in responders and expression patterns
of “Cold” versus “Hot” tumors based on prior immunotherapy
experience could predict immunotherapy response, according to
mounting evidence (Riaz et al., 2017) (Galon and Bruni, 2019)
(Ochoa de Olza et al, 2020). Therefore, identifying genes
significantly related to the efficacy of immunotherapy from the
perspective of the whole transcriptome will provide new insights
into the intrinsic heterogeneity of immunotherapeutic response
or non-response tumors. WGCNA is a classic data reduction and
unsupervised classification method, which has been employed in
thousands of transcriptional data analyses (Langfelder and
Horvath, 2008). There is a consensus that the expression
pattern of the patient’s transcriptome before treatment
predominantly affects the efficacy of immune checkpoint
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therapy. However, as its complex and dynamic nature, our
understanding of the expression feature relating to the
efficiency of immunotherapy remains incomplete (Chen and
Mellman, 2017). For the first time, we applied the WGCNA
method to mRNA sequencing data of patients receiving anti-PD-
1 therapy to discern the hub gene modules directly associated
with therapeutic response.

In this study, we identified three modules (yellow, grey60, and
light-green) that were significantly correlated  with
immunotherapeutic response. Pathway enrichment analysis
revealed that the three key modules were enriched in immune
function-, ECM formation-, and ATP metabolism-related
pathways. Extracellular matrix components secreted by cancer-
associated fibroblasts (CAFs) and metabolic reprogramming
mediated by the hypermetabolism of tumor cells have been
demonstrated to be involved in tumor immune evasion (Hilmi
et al., 2020) (Hanahan and Weinberg, 2011). The activation of
stroma was shown in cancers with an immune-excluded
phenotype, which had an abundance of immune cells, but the

effector cells remained in the extracellular component and failed
to infiltrate the tumor, reducing the efficacy of immunotherapy
(Chen and Mellman, 2017). The unique glycolysis metabolism of
tumor cells provides energy for their proliferation and growth,
and consumes a large amount of nutrients in the tumor
microenvironment. The activation and effector functions of
immune cells require a large amount of energy. Therefore,
there is intense metabolic competition and close metabolic
regulation between immune and tumor cells, which is another
crucial mechanism of tumor immune evasion (Monteran and
Erez, 2019) (Chang et al., 2015) (Pavlova and Thompson, 2016).
By adjusting the balance between tumor and immune metabolism
and targeting the ECM formation signals in the TME, they may
point to new ways to increase the response rate of tumor
immunotherapy (Pico de Coana et al., 2015) (Lv et al., 2021)
(Topalian et al., 2016). The above results demonstrated that the
key modules identified by WGCNA described the three pivotal
biological processes involved in tumor immune escape. Thus, we
selected these three modules as the key modules for conducting
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subsequent analyses. Based on these key modules, we identified
2 transcriptional subtypes. We termed these immune clusters A
and B. These two subtypes exhibit distinct immune infiltration
characteristics. Immune cluster A was distinguished by the
abundance of infiltrating immune cells and enrichment of
immune activation pathways. The immunological landscape in
immune cluster B was in contrast to that in cluster A. A recent
study found that the tumor microenvironment influences tumor
growth and immunotherapeutic effectiveness (Galon and Bruni,
2019). The probability of an immune response and a good
prognosis have been linked to the baseline numbers of tumor-
infiltrating cells, such as CD4+/CD8+ T cells, NK cells, and
macrophage M1 (63) (Zeng et al, 2020). Immune cluster A
was also shown to be related to increased CD8+ T cell
infiltration, mutation load, and PD-L1 expression, indicating
that it may have predictive relevance for immunotherapy.
Immune cluster A, unsurprisingly, had a significantly longer
overall survival than immune cluster B.

In recent years, several gene signatures have been established to
assess melanoma prognosis. These signatures encompassing
numerous genes derived from RNA-seq or RT-PCR data had
acceptable predictive capacities, but none could be used in clinical
practice owing to the high-condition analysis setting or the absence of
additional validations (The ICGC/TCGA Pan-Cancer Analysis of
Whole Genomes Consortium, 2020) (Yu et al,, 2020). Considering
the individual heterogeneity of molecular features and the crucial role
of the key modules we identified in characterizing the immune
landscape, we constructed a signature to predict prognosis and
immunotherapeutic efficiency. RNA-seq data from both
TCGA and GEO cohorts indicated that the ICB score had a
strong predictive ability. Our signature was an independent
risk factor for melanoma prognosis, and the nomogram
incorporating clinicopathologic features and the ICB score
had an excellent performance in predicting melanoma
survival outcomes.

A subsequent study investigated the association between the
ICB score and biological processes, tumor microenvironment
characteristics, and genomic alterations. Increasing data suggest
that solid tumors can be classified as either immunological
inflammation (hot tumors) or immune exclusion (cold tumors),
based on the presence of tumor-infiltrating immune cells or
stromal activation (Binnewies et al., 2018). Consistent with the
theory that higher infiltration levels confer a more favorable
prognosis, patients with low risk showed upregulated immune
activation pathways and higher infiltration of classical antitumor
immune cells, while stromal activation-related pathways were
significantly upregulated in high-risk tumors. Tumor immune
escape mechanisms are critical for the development and
progression of malignancies. Extrinsic immune escape pathways
are represented by MHCs, ILs, and interferons, whereas intrinsic
immune escape mechanisms are characterized by immunological
checkpoints (Schreiber et al, 2011). Thus, we explored the
difference in the expression of MHC, co-stimulators, and co-
inhibitors between the low and high ICB score groups and
discovered that these immune-related molecules were all
upregulated in the low ICB score groups, which suggested that
patients with a low ICB score experienced more intrinsic immune
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escape. At the same time, they had a higher level of immune
infiltration. The essential variables affecting intrinsic escape are
tumor immunogenicity and checkpoint molecule expression.
Blocking the PD-1/PD-L1 pathway has been found to provide a
long-lasting response in several malignancies by targeting intrinsic
escape, thereby inducing immune cells to attack tumors. The
results suggest that patients with a low ICB score may benefit
more from immune checkpoint therapy. Genomic alterations
represented by TMB are strongly correlated with immune
phenotypes (Hegde and Chen, 2020). We investigated the whole
exome sequencing data of TCGA-SKCM samples grouped
according to the ICB score to explore the difference in the
genomic landscape between high and low ICB scores.
According to our findings, patients with a low ICB score had a
considerably more significant proportion of CNV increase than
those with a higher ICB score. In addition, there were differences in
the gene mutation status between the high and low ICB score
groups. The ICB score we developed was linked to TME features
and genomic alterations, suggesting that it might reflect the
inherent heterogeneity of patients with melanoma.

To investigate the association between ICB score and
immunotherapy, we employed the IPS and TIDE algorithms
to predict the response to immune checkpoint inhibitor (anti-
CTLA4 and anti-PD-1/anti-PD-L1) treatment in patients with
high and low ICB scores. The TIDE findings revealed that, in
melanoma, high ICB scores reacted to anti-PD-1/anti-PD-
L1 therapy, but low ICB scores did not (Figure 6B). In
addition, we used anti-PD-L1 (IMvigor210) and anti-PD-1
(GSE91061) cohorts to assess various immune effectiveness
markers. According to our findings, patients with low ICB
scores had a significantly higher CR/PR rate. In summary, the
ICB score demonstrated a high degree of precision in predicting
the efficacy of immune checkpoint inhibitor treatment.

In short, the ICB score could be used in clinical practice to
evaluate intrinsic and extrinsic immune escape processes and their
corresponding TME cell infiltration characterization within
individual patients and determine tumor immune phenotypes
and guide more effective clinical practice. We also found that
the ICB score was associated with the clinicopathological
characteristics of patients. Similarly, the ICB score may be used
to predict patient survival as an independent prognostic biomarker.
The ICB score may potentially be used to predict the success of the
clinical response of patients to anti-PD-1/PD-L1 immunotherapy.
Our findings reveal a unique biomarker that may be used to
distinguish between distinct tumor immune phenotypes, predict
patients’ clinical response to immunotherapy, and improve
customized cancer immunotherapy in the future.

However, our study had certain limitations. First, the ICB
score was calculated using only a few genes chosen using
LASSO algorithms, which did not adequately reflect the
heterogeneity of the whole genome despite increasing
clinical availability. Second, categorizing the melanoma
samples based on the ideal ICB score was not an optimal
technique for all samples; however, this problem was
mitigated because correlation analysis was utilized in our
study. However, more effective approaches to determine
the appropriate cutoff value may be required. Furthermore,
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the transcriptional subgroups and ICB scores were discovered
using retrospective records; therefore, a prospective cohort of
melanoma patients undergoing immunotherapy is needed to
confirm our findings.
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