

Received 17 October 2018 Accepted 21 October 2018

Edited by M. Zeller, Purdue University, USA

Keywords: amidinate ligand; amidine; manganese; iron; cobalt; crystal structure; hydrogen bonding.

CCDC references: 1848876; 1848879; 1848878; 1848877

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\widehat{\bigcirc}$ ACCESS

Synthesis and structural characterization of four dichloridobis(cyclopropylalkynylamidine)metal complexes

Sida Wang, Phil Liebing, Felix Engelhardt, Liane Hilfert, Sabine Busse and Frank T. Edelmann*

Chemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany. *Correspondence e-mail: frank.edelmann@ovgu.de

Deliberate hydrolysis of lithium cyclopropylalkynylamidinates, Li[c-C₃H₅- $C = C(NR')_2 [R' = {}^{i}Pr, Cy = cyclohexyl)], afforded the hitherto unknown$ neutral cyclopropylalkynylamidine derivatives $c-C_3H_5-C \equiv C-C(NR')(NHR')$ $[R' = {}^{i}Pr(1), Cy(2)]$. Subsequent reactions of 1 or 2 with metal(II) chlorides, MCl_2 (M = Mn, Fe, Co), provided the title complexes dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)manganese(II), [MnCl₂(C₁₂H₂₀N₂)₂], dichloridobis(3-cyclopropyl-*N*,*N*'-diisopropylprop-2-ynamidine)iron(II), (3), $[FeCl_2(C_{12}H_{20}N_2)_2],$ (4), dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2ynamidine)iron(II), $[FeCl_2(C_{18}H_{28}N_2)_2]$, (5), and dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)cobalt(II), [CoCl₂(C₁₈H₂₈N₂)₂], (6), or more generally $MCl_2[c-C_3H_5-C=C-C(NR')(NHR')]_2$ [R' = ^{*i*}Pr, M = Mn (3), Fe (4); R' = Cy, M = Fe (5), Co (6)] in moderate yields (30–39%). Besides their spectroscopic data (IR and MS) and elemental analyses, all complexes 3-6 were structurally characterized. The two isopropyl-substituted complexes 3 and 4 are isotypic, and so are the cyclohexyl-substituted complexes 5 and 6. In all cases, the central metal atom is coordinated by two Cl atoms and two N atoms in a distorted-tetrahedral fashion, and the structure is supported by intramolecular N-H···Cl hydrogen bonds.

1. Chemical context

Over the past three decades, chelating anionic 1,3-diazaallyltype ligands such as amidinates, $[RC(NR')_2]^-$, and guanidinates, $[R_2NC(NR')_2]^-$, have gained tremendous importance in various fields of organometallic and coordination chemistry. These highly versatile N-chelating ligands are generally regarded as steric equivalents of the ubiquitous cyclopentadienyl ligands (Collins, 2011; Edelmann, 2009, 2012, 2013). Unlike the closely related carboxylate anions, $[RCO_2]^-$, the steric properties of amidinate anions can be tuned in a wide range by introducing different substituents at all three atoms of the NCN 1,3-diazaallyl unit. A rather interesting and potentially useful variation of the amidinate group is the use of alkinyl groups at the central C atom. Alkinylamidines of the composition RC = C - C(=NR')(NR') are of interest because of their applications in organic synthesis (Ong et al., 2006; Xu et al., 2008; Weingärtner & Maas, 2012) and in biological and pharmacological systems (Rowley et al., 2005; Sienkiewicz et al., 2005). Moreover, alkinylamidinate complexes of transition metals and lanthanides effectively catalyze the addition of C-H, N-H and P-H bonds to carbodiimides as well as the polymerization of polar monomers such as ε -caprolactone.

Figure 1

Bottom-up synthesis of the title compounds **3–6** starting from cyclopropylacetylene.

Previously used alkynylamidinate anions have mainly included the *C*-phenyl and *C*-trimethylsilyl derivatives $[R - C = C - C(NR')_2]^-$ (R = Ph, SiMe₃; $R' = {}^iPr$, Cy; Dröse *et al.*, 2010*a,b*; Seidel *et al.*, 2012; Xu *et al.*, 2013).

We recently began with an investigation of alkinylamidinate ligands and complexes derived from cyclopropylacetylene. The cyclopropyl group was selected because of its wellestablished electron-donating ability to an adjacent electrondeficient center. This way it is possible to electronically modify the amidinate ligand system rather than just changing its steric demand. In a first study, we described the synthesis and characterization of a series of lithium cyclopropylethinylamidinates, $\text{Li}[c-C_3H_5-C=C-C(NR')_2]$ [R' = ⁱPr, Cy (= cyclohexyl)], which are readily accessible on a large scale using commercially available starting materials (cyclopropylacetylene, N,N'-diorganocarbodiimides; Sroor et al., 2013). Subsequently, these ligands have been employed for the preparation of new di- and trivalent lanthanide complexes (Sroor et al., 2015a,b,c,d, 2016; Wang et al., 2016). More recently, we became interested in the chemistry of 3d metal complexes containing cyclopropylethinylamidinate ligands. In the course of this work, we occasionally observed and structurally characterized hydrolysis products of the composition $MCl_2[c-C_3H_5-C = C-C(NR')(NHR')]$ (M = Mn, Fe, Co; R' = ^{*i*}Pr, Cy), which contain the neutral amidines c-C₃H₅-C=C-C(NR')(NHR') as new ligands. Neutral amidines are highly versatile ligands in coordination chemistry in their own right (Barker & Kilner, 1994; Coles, 2006). We report here the deliberate synthesis of two new cylopropylalkynylamidines, $c-C_3H_5-C \equiv C-C(NR')(NHR')$ ($R' = {}^{i}Pr$, Cy) as well as the preparation and structural characterization of four first-row transition metal complexes of the type $MCl_2[c-C_3H_5-C=C-$ C(NR')(NHR')] (M = Mn, Fe, Co; R' = ⁱPr, Cy).

The title compounds were first discovered serendipitously when studying reactions of anhydrous metal(II) chlorides MCl_2 (M = Mn, Fe, Co) with 2 equiv. of the lithium cyclopropylethinylamidinates, Li[c-C₃H₅-C=C-C(NR')₂] ($R' = i^P$ r, Cy) in THF solution. Occasionally, small amounts of wellformed crystals were obtained, which turned out (by X-ray diffraction studies) to be the aforementioned hydrolysis products $MCl_2[c-C_3H_5-C \equiv C-C(NR')(NHR')]$ (M = Mn, Fe, Co; $R' = {}^{i}$ Pr, Cy). We then decided to prepare these complexes in a deliberate manner. As illustrated in Fig. 1, the bottom-up synthesis starts with the readily available lithium cyclopropylethinylamidinates, $\text{Li}[c-C_3H_5-C = C-C(NR')_2]$ (R' = ⁱPr, Cy; Sroor et al., 2013), which were made by addition of $c-C_{3}H_{5}-C \equiv C-Li$ (prepared *in situ* from cyclopropylacetylene and "BuLi) to the carbodiimides R' - N = C = N - R' (R = ^{*i*}Pr, Cy). The lithium amidinate intermediates were then carefully hydrolyzed under controlled conditions to afford the neutral amidines $c-C_3H_5-C \equiv C-C(NR')(NHR')$ $[R' = {}^{i}Pr$ (1), Cy (2)] in >70% isolated yields. Both compounds form vellow oils, which were characterized by the usual set of spectroscopic data (MS, ¹H NMR, ¹³C NMR, IR) and elemental analysis. With the free amidine ligands in hand, the metal complexes with first-row transition metals could easily be prepared by treatment of metal(II) chlorides MCl_2 (M =Mn, Fe, Co) with 2 equiv. of either 1 or 2 in THF solution. The manganese(II) complex 3 as well as the two iron(II) complexes 4 and 5 form colourless crystals, while the cobalt(II) complex 6 is blue. The compositions of all four products as 1:2 complexes were confirmed by elemental analyses. The title compounds 3-6 were also characterized by their IR and mass spectra. The mass spectra showed a number of readily interpretable peaks resulting e.g. from loss of one amidine ligand or one or both chlorine atoms. IR bands in the region above *ca* 3100 cm⁻¹ could be assigned to the ν (N-H) vibrations, while strong bands around 1570 cm⁻¹ were characteristic for the C=N double bond in the amidine ligands. In the far-infrared region, the M-Cl bands could be clearly assigned by comparison with literature values (Clark & Williams, 1965; Takemoto et al., 1974) and IR spectra of the respective anhydrous metal(II) chlorides, MCl_2 (M = Mn, Fe, Co; for details see the Synthesis and crystallization section).

2. Structural commentary

 $MnCl_2[c-C_3H_5-C = C-C(N^iPr)(NH^iPr)]_2$ (3; Fig. 2) and $FeCl_2 [c-C_3H_5-C = C-C(N^iPr)(NH^iPr)]_2$ (4; Fig. 3) crystallize isotypically in the orthorhombic space group *Fdd2*. The metal atom is situated on a crystallographic twofold axis and is

research communications

Figure 2

Molecular structure of **3** in the crystal. Displacement ellipsoids are drawn at the 50% level, C-bound H atoms omitted for clarity. Symmetry code: (') 1 - x, 1 - y, z.

surrounded by two symmetry-equivalent chlorido ligands and two symmetry-equivalent amidine ligands. The latter are attached to the metal atom in a monodentate κN mode *via* the non-protonated nitrogen atom (N1). The N-H moiety is involved in an intramolecular N-H····Cl bond (Tables 1 and 2). The crystal structures of FeCl₂[c-C₃H₅-C=C-C(NCy)-(NHCy)]₂ (**5**; Fig. 4) and CoCl₂[c-C₃H₅-C=C-C(NCy)-(NHCy)]₂ (**6**; Fig. 5) are isotypic in the monoclinic space group $P2_1/c$. In this case, the two amidine ligands are not symmetryequivalent, but nonetheless the molecular structures resemble those of **3** and **4**.

Compound **3** represents a rare example of a complex of tetra-coordinated manganese with nitrogen ligands, while a larger number of the corresponding iron and cobalt complexes are known. The Mn-N bond length in **3** is 2.160 (2) Å and therefore comparable with literature data (Handley *et al.*, 2001; Wang, 2009). In the iron complexes, the Fe-N distances are very similar at 2.088 (3) Å (**4**), and 2.073 (2)–2.079 (2) Å (**5**). These values are in the range of Fe-N distances usually observed in MCl_2L_2 -type complexes, where L is a ligand with an sp^2 -hybridized nitrogen donor (Benson *et al.*, 2010; Xiao *et al.*, 2011; Batcup *et al.*, 2014). The same is true for the cobalt complex **6**, having Co-N bond lengths of 2.041 (2) and 2.043 (2) Å (Riggio *et al.*; 2001; Jian *et al.*, 2003; Xiao *et al.*, 2011). The set of C-N bond lengths within the NCN group of the amidine ligands is virtually equal in **3-6**, including one

Figure 3

Molecular structure of **4** in the crystal. Displacement ellipsoids are drawn at the 50% level, C-bound H atoms omitted for clarity. Symmetry code: (') 1 - x, 1 - y, z.

Figure 4

Molecular structure of **5** in the crystal. Displacement ellipsoids are drawn at the 50% level, C-bound H atoms omitted for clarity.

formal C=N double bond at 1.309 (2)–1.315 (4) Å, and one formal C–N single bond at 1.337 (4)–1.340 (2) Å. The small difference between single- and double-bond length may indicate some degree of delocalization of the π -electron density. The observed values are consistent with other metal complexes having metal-coordinated amidine moieties (Dröse *et al.*, 2010*a,b*; Harmgarth *et al.*, 2014, 2017*a,b*; Hillebrand *et al.*, 2014). The hydrogen-bonded N···Cl separations are similar in **3–6**, being in the narrow range of 3.175 (3)– 3.251 (2) Å (Tables 1–4).

3. Supramolecular features

All four title compounds **3–6** display weak intra- and intermolecular C—H···Cl contacts (Tables 1–4) involving the *cyclo*-propyl and *iso*-propyl or *cyclo*-hexyl groups, respectively.

Figure 5 Molecular structu

Molecular structure of 6 in the crystal. Displacement ellipsoids are drawn at the 50% level, C-bound H atoms omitted for clarity.

Table 1Hydrogen-bond geometry (Å, $^{\circ}$) for 3.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
N2-H1···Cl	0.85 (2)	2.36 (2)	3.197 (3)	170 (3)
$C8-H9\cdots Cl^i$	0.98	2.88	3.776 (4)	152
$C5-H4\cdots Cl^{ii}$	0.99	2.95	3.931 (4)	172
$C10-H14\cdots Cl^{ii}$	1.00	2.93	3.643 (3)	129
$C4-H2\cdots Cl^{iii}$	1.00	2.67	3.516 (3)	143

Symmetry codes: (i) -x + 1, -y + 1, z; (ii) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}$; (iii) $-x + \frac{3}{4}, y + \frac{1}{4}, z + \frac{3}{4}$.

Table 2Hydrogen-bond geometry (Å, $^{\circ}$) for 4.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N2-H1···Cl	0.87 (2)	2.32 (3)	3.175 (3)	169 (4)
$C8-H9\cdots Cl^{i}$	0.98	2.84	3.728 (5)	151
$C5-H4\cdots Cl^{ii}$	0.99	2.98	3.963 (5)	172
$C10-H14\cdots Cl^{ii}$	1.00	2.98	3.679 (4)	128
$C4-H2\cdots Cl^{iii}$	1.00	2.68	3.510 (4)	140

Symmetry codes: (i) -x + 1, -y + 1, z; (ii) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}$; (iii) $-x + \frac{3}{4}, y + \frac{1}{4}, z + \frac{3}{4}$.

4. Chemistry of related structures

For reviews on the coordination chemistry of neutral amidines, see Barker & Kilner (1994) and Coles (2006).

5. Synthesis and crystallization

General Procedures: All reactions were carried out in ovendried or flame-dried glassware in an inert atmosphere of dry argon employing standard Schlenk and glovebox techniques. The solvent THF was distilled from sodium/benzophenone in a nitrogen atmosphere prior to use. n-Butyllithium (1.6 M in hexanes) was purchased from Sigma-Aldrich. ¹H NMR (400 MHz) and ¹³C NMR (100.6 MHz) spectra were recorded in THF- d_8 solutions using a Bruker DPX 400 spectrometer at 298 K. Chemical shifts are referenced to tetramethylsilane. IR spectra were measured with a Bruker Vertex 70V spectrometer equipped with a diamond ATR unit between 4000 and 50 cm^{-1} . The relative intensities of the absorption bands are given as very strong (vs), strong (s), medium (m), weak (w)and shoulder (sh). Electron impact mass spectra were measured on a MAT95 spectrometer with an ionization energy of 70 eV. Microanalyses of the compounds were performed using a vario EL cube apparatus from Elementar Analysensysteme GmbH.

Synthesis of 3-cyclopropyl-N,N'-diisopropylpropynamidine, $c-C_3H_5-C\equiv C-C(N'Pr)(NH'Pr)$ (1): A THF (80 ml) solution of cyclopropylacetylene (4.2 ml, 50 mmol) in a Schlenk flask (250 ml) was cooled to 253 K and treated slowly with *n*-butyllithium (50 mmol, 1.6 *M* solution in hexanes). After 30 min, neat N,N'-diisopropylcarbodiimide (7.8 ml, 50 mmol) was added and the mixture was stirred for 15 min at 253 K. The solution was warmed to room temperature and stirred for 1 h. During this time, the solution colour turned yellow. 20 ml of distilled water were added and stirring was continued for

Table 3Hydrogen-bond geometry (Å, °) for 5.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N2-H1\cdots Cl2$	0.84 (2)	2.42 (2)	3.2511 (19)	169 (2)
N4-H29···Cl1	0.85(2)	2.41 (2)	3.2459 (18)	170 (2)
$C22-H30\cdots Cl1^{i}$	1.00	2.90	3.744 (3)	143
$C35-H53\cdots Cl1^i$	0.99	3.05	3.613 (2)	118
$C28-H40\cdots Cl2^{ii}$	0.99	2.91	3.699 (2)	138

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{3}{2}$; (ii) -x, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Table 4Hydrogen-bond geometry (Å, $^{\circ}$) for 6.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N2-H1\cdots Cl2$	0.85 (2)	2.37 (2)	3.1979 (16)	166 (2)
N4-H29···Cl1	0.86(2)	2.35 (2)	3.1917 (15)	168 (2)
C22−H30···Cl1 ⁱ	1.00	2.95	3.800 (2)	144
C33−H49···Cl1 ⁱ	0.99	3.09	3.628 (2)	115
C28−H40···Cl2 ⁱⁱ	0.99	2.96	3.758 (2)	139

Symmetry codes: (i) -x + 2, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

30 min. The solution was separated using a separatory funnel and allowed to stand overnight after adding 3.0 g of anhydrous magnesium sulfate to remove the remaining water. The solvents were removed under vacuum to obtain 1 as a vellow oil. Yield: 6.9 g, 72%. Elemental analysis for $C_{12}H_{20}N_2$ (192.30 g mol⁻¹): C, 74.95; H, 10.48; N, 14.57; found C, 74.74; H, 10.46; N, 14.58. MS (EI, M = 192.30): m/z (%) 107.04 (10) $[M - 2^{i}Pr]^{+}$, 149.11 (68) $[M - {}^{i}Pr]^{+}$, 164.12 (47) $[M - 2CH_{3}]^{+}$, 177.13 (100) $[M - CH_3]^+$, 191.14 (43) $[M]^{+.-1}H$ NMR (400.1 MHz, THF-d₈, 298 K): δ (ppm) 4.71-4.78 (br, 1H, NH, NHCN), 3.72–3.88 (s, 2H, CH, ⁱPr), 1.31–1.38 (m, 1H, CH, $c-C_{3}H_{5}$), 0.97–1.04 (d, 12H, CH₃, ⁱPr), 0.79–0.84 (m, 4H, CH₂) $c-C_3H_5$), 0.66–0.69 (*m*, 4H, CH₂, $c-C_3H_5$). ¹³C NMR (100.6 MHz, THF-d₈, 298 K): δ (ppm) 140.5 (NHCN), 96.6 $(CH-C \equiv C), 69.2 \ (C \equiv C-C), 67.8 \ (CH, {}^{i}Pr), 26.8 \ (CH_{3}, {}^{i}Pr),$ 9.83 (CH₂, c-C₃H₅), 0.37 (CH, c-C₃H₅). IR (ATR): ν (cm⁻¹) 3440 (w, N-H), 3415 (w, N-H), 3096 (w), 3014 (w), 2963 (s, С-Н), 2931 (*m*), 2867 (*m*, С-Н), 2614 (*w*), 2226 (*m*), 1606 (vs, N=C), 1487 (m), 1466 (m), 1453 (m), 1375 (m), 1360 (m), 1344 (m), 1317 (m), 1263 (m), 1178 (m), 1132 (m), 1088 (w),1055 (w), 1031 (w), 970 (w), 943 (m), 880 (w), 849 (w), 812 (w), 685 (m), 616 (w), 472 (w), 424 (w), 254 (w), 105 (w), 71 (w), 60 (w).

Synthesis of 3-cyclopropyl-N,N'-dicyclohexylpropynamidine, $c-C_3H_5-C \equiv C-C(NCy)(NHCy)$ (2): A THF (100 ml) solution of cyclopropylacetylene (4.2 ml, 50 mmol) in a Schlenk flask (250 ml) was cooled to 253 K and treated slowly with *n*-butyllithium (50 mmol, 1.6 M solution in hexanes). After 30 min. *N*,*N*'-dicyclohexylcarbodiimide (10.3 g, 50 mmol) was added and the rest of the reaction mixture was worked up as described for 1. The solvent was removed under vacuum to obtain 2 as a yellow oil. Yield: 10.1 g, 74%. Elemental analysis for $C_{18}H_{28}N_2$ (272.43 g mol⁻¹): C, 79.36; H, 10.36; N, 10.28; found C, 79.36; H, 10.30; N, 10.38. MS (EI, M = 272.40): m/z (%) 109.06 (19) $[M - 2Cy]^+$, 189.13 (75) $[M - Cy]^+$, 272.23 (79) $[M]^{+.1}$ H NMR (400.1 MHz, THF- d_8 , 293 K): δ (ppm) 4.87–4.95 (*s*, 1H, NHCN), 1.69–1.06 (*m*, 20H, CH₂, Cy), 1.40–1.34 (*m*, 1H, CH, *c*-C₃H₅), 0.79–0.86 (*m*, 2H, CH₂, *c*-C₃H₅), 0.61–0.69 (*m*, 2H, CH₂, *c*-C₃H₅). ¹³C NMR (100.6 MHz, THF-*d*₈, 298 K): δ (ppm) 141.5 (NHCN), 95.6 (CH–*C*=C), 69.2 (C=*C*–C), 64.5 (CH, Cy), 25.1–26.8 (CH₂, Cy), 8.83 (CH₂, *c*-C₃H₅), 0.37 (CH, *c*-C₃H₅). IR (ATR): ν (cm⁻¹) 3351 (*w*, N–H), 3062 (*w*), 2960 (*vs*, C–H), 2925 (*s*), 2866 (*m*, C–H), 2225 (*w*), 2116 (*w*), 1917 (*w*), 1855 (*w*), 1796 (*w*), 1661 (*w*), 1626 (*m*, N=C), 1601 (*m*), 1591 (*m*), 1530 (*w*), 1382 (*m*), 1361 (*m*), 1330 (*m*), 1314 (*m*), 1255 (*s*), 1177 (*m*), 1162 (*m*), 1146 (*m*), 1078 (*m*), 601 (*w*), 577 (*w*), 527 (*w*), 519 (*w*), 465 (*w*), 441 (*m*), 416 (*m*), 326 (*s*), 275 (*s*), 169 (*m*), 152 (*m*), 114 (*m*), 88 (*m*), 57 (*w*).

Synthesis of dichloridobis(3-cyclopropyl-*N*,*N*'-diisopropylprop-2-ynamidine)manganese(II), $MnCl_2[c-C_3H_5-C=C C(N^{i}Pr)(NH^{i}Pr)]_{2}$ (3): A solution of anhydrous MnCl₂ (0.33 g, 2.6 mmol) in 30 ml of THF was added to a solution of 1 (1.0 g, 5.2 mmol) in 50 ml of THF. The reaction mixture was heated to 333 K by water bath and stirred at room temperature for 12 h, resulting in a brown suspension. The filtrate was concentrated to ca 10 ml. Crystallization at r.t. afforded 3 as colourless crystals. Yield: 0.52 g, 39%. M.p. = 395 K. Elemental analysis for $C_{24}H_{40}Cl_2MnN_4$ (510.45 g mol⁻¹): C, 56.47; H, 7.90; N, 10.98; found C, 56.49; H, 7.93; N, 10.98. MS (EI, M = 510.45): m/z (%) 425.2 (50) $[M - 2Cl - CH_3]^+$, 433.2 (2) $[M - Cl - {}^{i}Pr]^{+}$, 498.2 (100) $[M - CH_{2} + 2H]^{+}$. IR (ATR): ν (cm⁻¹) 3411 (w, N-H), 3239 (m, N-H), 3129 (w, N-H), 2967 (m), 2930 (w), 2872 (w), 2217 (s), 1628 (w), 1571 (vs, N=C), 1464 (s), 1432 (vs), 1382 (w), 1363 (m), 1330 (m), 1313 (m), 1243 (m), 1172 (m), 1132 (vs), 1061 (w), 1032 (w), 963 (s),940 (w), 879 (w), 843 (m), 831 (m), 705 (s), 658 (m), 603 (w), 520 (w), 489 (w), 460 (w), 387 (w), 333 (m), 279 (vs, Mn-Cl), 207 (m), 173 (m), 128 (vs).

Synthesis of dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)iron(II), $FeCl_2[c-C_3H_5-C \equiv C-C(N^iPr) (\mathbf{NH}^{i}\mathbf{Pr})_{2}$ (4): A solution of anhydrous FeCl₂ (0.33 g, 2.6 mmol) in 30 ml of THF was added to a solution of 1 (1.0 g, 5.2 mmol) in 50 ml of THF following the procedure given for 3. Crystallization at room temperature afforded 4 as colourless crystals. Yield: 0.40 g, 30%. M.p. = 400 K. Elemental analysis for $C_{24}H_{40}Cl_2FeN_4$ (511.35 g mol⁻¹): C, 56.37; H, 7.88; N, 10.96; found C, 56.34; H, 7.75; N, 10.98%. MS (EI, *M* = 511.35): m/z (%) 432.4 (100) $[M - Cl - {}^{i}Pr]^{+}$, 439.1 (40) $[M - 2Cl]^{+}$, 475.4 (63) $[M - Cl]^+$, 501.0 (100) $[M - CH_2 + 2H]^+$. IR (ATR): ν (cm⁻¹) 3290 (w, N-H), 3222 (w, N-H), 3119 (w, N-H), 2976 (*m*, C–H), 2933 (*w*), 2874 (*w*, C–H), 2225 (*m*), 1619 (*s*), 1568 (m, N=C), 1485 (w), 1463 (w), 1429 (w), 1392 (w), 1372 (w), 1309 (w), 1244 (w), 1169 (m), 1129 (m), 1062 (w), 1033(w), 963 (m), 939 (m), 879 (m), 846 (m), 818 (w), 793 (w), 709 (s), 691 (s), 649 (s), 599 (s), 520 (s), 460 (s), 353 (vs), 313 (vs), 280 (vs), 211 (vs, Fe-Cl), 134 (s), 68 (s).

Synthesis of dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)iron(II), FeCl₂[c-C₃H₅-C \equiv C-C(NCy)-(NHCy)]₂ (5): A solution of anhydrous FeCl₂ (0.23 g, 1.8 mmol) in 30 ml of THF was added to a solution of 2 (1.0 g, 3.6 mmol) in 50 ml of THF. The reaction mixture was heated to 333 K by water bath and stirred at room temperature for 12 h, resulting in a brown suspension. The filtrate was concentrated to *ca* 10 ml. Crystallization at 278 K afforded **5** in the form of colorless crystals. Yield: 0.45 g, 37%. M.p. = 405 K. Elemental analysis for C₃₆H₅₆Cl₂FeN₄ (671.61 g mol⁻¹): C, 65.66; H, 8.21; N, 8.57; found C, 64.38; H, 8.40; N, 8.34%. MS (EI, M = 671.61): m/z (%) 363.17 (24) $[M - c-C_3H_5 - C \equiv C -$ C(NCy)(NHCy) - Cl]⁺, 457.08 (74) $[M - 3C_3H_7 - C_6H_{11}]^+$, 540.13 (100) $[M - 3C_3H_7]^+$. IR (ATR): v (cm⁻¹) 3214 (w, N– H), 2928 (s, C–H), 2852 (s, C–H), 2227 (s), 1573 (vs, N=C), 1448 (s), 1365 (m), 1347 (w), 1308 (w), 1245 (m), 1188 (w), 1154 (w), 1062 (w), 1031 (w), 974 (m), 891 (w), 858 (w), 842 (w), 814 (w), 702 (m), 603 (w), 549 (w), 474 (w), 443 (w), 279 (s), 198 (vs, Fe–Cl), 140 (s), 121 (s), 107 (s), 89 (m).

Synthesis of dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)cobalt(II), $CoCl_2[c-C_3H_5-C==C-$ C(NCy)(NHCy)]₂CoCl₂ (6): A solution of anhydrous CoCl₂ (0.23 g, 1.8 mmol) in 30 ml of THF was added to a solution of 2 (1.0 g, 3.6 mmol) in 50 ml of THF following the procedure given for 5. Crystallization at 278 K afforded 6 in the form of blue crystals. Yield: 0.45 g, 37%. M.p. = 399 K. Elemental analysis for C₃₆H₅₆Cl₂CoN₄ (674.69 g mol⁻¹): C, 64.09; H, 8.37; N, 8.30; found C, 63.69; H, 8.31; N, 9.26%. MS (EI, *M* = 674.69): $(NHCy)^{+}$, 461.32 (89) $[M - 3C_{3}H_{7} - C_{6}H_{11}]^{+}$, 544.39 (15) $[M - 3C_3H_7]^+$. IR (ATR): ν (cm⁻¹) 3440 (w, N-H), 3212 (w, N-H), 3128 (w, N-H), 3090 (w), 3008 (w), 2925 (vs, C-H), 2850 (s, C-H), 2662 (w), 2228 (m), 1690 (w), 1635 (w), 1605 (*m*), 1575 (N=C), 1486 (*m*), 1447 (*vs*), 1433 (*s*), 1363 (*s*), 1346 (m), 1300 (w), 1257 (m), 1221 (w), 1188 (w), 1157 (w), 1090 (w), 1064 (m), 1031 (m), 973 (m), 889 (w), 858 (m), 841 (w), 815 (w), 788 (w), 701 (s), 656 (m), 549 (w), 475 (w), 444 (w), 430 (w), 392 (w), 349 (w), 292 (vs, Co-Cl), 228 (m), 204 (w),166 (w), 127 (vs), 74 (w).

For comparison, the far infrared spectra of the anhydrous metal dichlorides MCl_2 (M = Mn, Fe, Co) were also measured: IR (KBr): ν MnCl₂ (cm⁻¹) 1064 (w), 1230 (w), 492 (w), 434

(w), 318 (w), 163 (vs, Mn-Cl), 83 (s), 64 (s). $(W, S) = \frac{1}{2} 24(1 + 1) + 22(1 + 1) +$

IR (KBr): $v \operatorname{FeCl}_2(\operatorname{cm}^{-1}) 3461(w), 2977(w), 2113(w), 1993(w), 1599(w), 1389(w), 1096(w), 931(w), 812(w), 330(w), 144(vs, \operatorname{Fe}-\operatorname{Cl}), 54(s).$

IR (KBr): ν CoCl₂ (cm⁻¹) 1599 (*w*), 615 (*w*), 348 (*w*), 189 (*vs*, Co-Cl).

X-ray quality single crystals of complexes 3-6 were obtained at r.t. from concentrated solutions in THF.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 5. H atoms attached to C atoms were fixed geometrically and refined using a riding model. The CH₃ groups in **3** and **4** were allowed to rotate freely around the C– C vector, the corresponding C–H distances were constrained to 0.98 Å. C–H distances within CH₂ groups were constrained to 0.99 Å, C–H distances within CH groups to 1.00 Å. H atoms attached to N atoms were located in the

research communications

Table 5Experimental details.

	3	4	5	6
Crystal data				
Chemical formula	$[MnCl_2(C_{12}H_{20}N_2)_2]$	$[FeCl_2(C_{12}H_{20}N_2)_2]$	$[FeCl_2(C_{18}H_{28}N_2)_2]$	$[CoCl_2(C_{18}H_{28}N_2)_2]$
M_r	510.44	511.35	671.59	674.67
Crystal system, space group	Orthorhombic, Fdd2	Orthorhombic, Fdd2	Monoclinic, $P2_1/c$	Monoclinic, $P2_1/c$
Temperature (K)	153	153	100	153
<i>a</i> , <i>b</i> , <i>c</i> (Å)	17.6701 (10), 30.9809 (19), 10.1452 (5)	17.5703 (9), 30.9167 (12), 10.1110 (6)	13.905 (7), 12.500 (6), 20.742 (11)	13.8898 (3), 12.5574 (3), 20.8394 (5)
α, β, γ (°)	90, 90, 90	90, 90, 90	90, 92.24 (4), 90	90, 91.717 (2), 90
$V(\dot{A}^3)$	5553.8 (5)	5492.5 (5)	3603 (3)	3633.17 (15)
Z	8	8	4	4
Radiation type	Μο Κα	Μο Κα	Μο Κα	Μο Κα
$\mu (\mathrm{mm}^{-1})$	0.69	0.76	0.60	0.65
Crystal size (mm)	$0.33 \times 0.24 \times 0.10$	$0.27 \times 0.25 \times 0.25$	$0.26\times0.19\times0.12$	$0.39\times0.19\times0.10$
Data collection				
Diffractometer	Stoe IPDS 2T	Stoe IPDS 2T	Stoe IPDS 2T	Stoe IPDS 2T
Absorption correction	Numerical X-AREA and X-RED (Stoe & Cie, 2002)	Numerical X-AREA and X-RED (Stoe & Cie, 2002)	Numerical X-AREA and X-RED (Stoe & Cie, 2002)	Numerical X-AREA and X-RED (Stoe & Cie, 2002)
T_{\min}, T_{\max}	0.851, 0.932	0.837, 0.888	0.838, 0.908	0.807, 0.938
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	5371, 2432, 2203	5377, 2495, 2239	18866, 7036, 6355	22018, 7124, 5922
Rint	0.030	0.037	0.029	0.042
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.617	0.616	0.617	0.617
Refinement				
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.026, 0.054, 0.98	0.033, 0.074, 1.01	0.033, 0.075, 1.14	0.035, 0.083, 1.03
No. of reflections	2432	2495	7036	7124
No. of parameters	148	148	395	394
No. of restraints	2	2	2	2
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.17, -0.16	0.21, -0.42	0.40, -0.33	0.65, -0.36
Absolute structure	Flack x determined using 804 quotients $[(I^+)-(I^-)]/$ $[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013).	Flack x determined using 846 quotients $[(I^+)-(I^-)]/$ $[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013).	-	-
Absolute structure parameter	0.005 (17)	-0.03(3)	_	_

Computer programs: X-AREA X-AREA and X-RED (Stoe & Cie, 2002), SHELXT2014/5 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

difference-Fourier map and refined, the N—H distances were restrained to 0.88 (2) Å. The $U_{iso}(H)$ values were set at $1.5U_{eq}(C)$ for the methyl groups in **3** and **4**, and at $1.2U_{eq}(X)$ (X = C, N) in all other cases. For **6**, the reflections (011) and (002) disagreed strongly with the structural model and were therefore omitted from the refinement.

Funding information

SW gratefully acknowledges the award of a PhD scholarship from the China Scholarship Council (CSC) (File No. 201508080111). We also thank the Otto-von-Guericke-Universität Magdeburg for general financial support.

References

- Barker, J. & Kilner, M. (1994). Coord. Chem. Rev. 133, 219-300.
- Batcup, R., Annibale, V. T. & Song, D. (2014). *Dalton Trans.* **43**, 8951–8958.
- Benson, E. E., Rheingold, A. L. & Kubiak, C. P. (2010). *Inorg. Chem.* 49, 1458–1464.

- Brandenburg, K. (1999). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Clark, J. H. & Williams, C. S. (1965). Inorg. Chem. 4, 350-357.
- Coles, M. P. (2006). Dalton Trans. pp. 985-1001.
- Collins, S. (2011). Coord. Chem. Rev. 255, 118-138.
- Dröse, P., Hrib, C. G., Blaurock, S. & Edelmann, F. T. (2010a). Acta Cryst. E66, m1474.
- Dröse, P., Hrib, C. G. & Edelmann, F. T. (2010b). J. Organomet. Chem. 695, 1953–1956.
- Edelmann, F. T. (2009). Chem. Soc. Rev. 38, 2253-2268.
- Edelmann, F. T. (2012). Chem. Soc. Rev. 41, 7657-7672.
- Edelmann, F. T. (2013). Adv. Organomet. Chem. 61, 55-374.
- Handley, D. A., Hitchcock, P. B., Lee, T. H. & Leigh, G. J. (2001). *Inorg. Chim. Acta*, **314**, 14–21.
- Harmgarth, N., Gräsing, D., Dröse, P., Hrib, C. G., Jones, P. G., Lorenz, V., Hilfert, L., Busse, S. & Edelmann, F. T. (2014). *Dalton Trans.* 43, 5001–5013.
- Harmgarth, N., Liebing, P., Förster, A., Hilfert, L., Busse, S. & Edelmann, F. T. (2017a). *Eur. J. Inorg. Chem.* pp. 4473–4479.
- Harmgarth, N., Liebing, P., Hillebrand, P., Busse, S. & Edelmann, F. T. (2017b). Acta Cryst. E73, 1443–1448.
- Hillebrand, P., Hrib, C. G., Harmgarth, N., Jones, P. G., Lorenz, V., Kühling, M. & Edelmann, F. T. (2014). *Inorg. Chem. Commun.* 46, 127–129.

research communications

- Jian, F. F., Bei, F. L. & Wang, X. (2003). Pol. J. Chem. 77, 821-828.
- Ong, T.-G., O'Brien, J. S., Korobkov, I. & Richeson, D. S. (2006). Organometallics, 25, 4728–4730.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249– 259.
- Riggio, I., van Albada, G. A., Ellis, D. D., Mutikainen, I., Spek, A. L., Turpeinen, U. & Reedijk, J. (2001). *Polyhedron*, **20**, 2659–2666.
- Rowley, C. N., DiLabio, G. A. & Barry, S. T. (2005). *Inorg. Chem.* 44, 1983–1991.
- Seidel, W. W., Dachtler, W. & Pape, T. (2012). Z. Anorg. Allg. Chem. 638, 116–121.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Sienkiewicz, P., Bielawski, K., Bielawska, A. & Pałka, J. (2005). Environ. Toxicol. Pharmacol. 20, 118–124.
- Sroor, F. M., Hrib, C. G., Hilfert, L., Busse, S. & Edelmann, F. T. (2015a). New J. Chem. 39, 7595–7601.
- Sroor, F. M., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2013). Z. Anorg. Allg. Chem. 639, 2390–2394.
- Sroor, F. M., Hrib, C. G., Hilfert, L. & Edelmann, F. T. (2015b). Z. Anorg. Allg. Chem. 641, 2041–2046.

- Sroor, F. M., Hrib, C. G., Hilfert, K., Hartenstein, L., Roesky, P. W. & Edelmann, F. T. (2015c). J. Organomet. Chem. 799–800, 160–165.
- Sroor, F. M., Hrib, C. G., Hilfert, L., Jones, P. G. & Edelmann, F. T. (2015d). J. Organomet. Chem. 785, 1–10.
- Sroor, F. M., Hrib, C. G., Liebing, P., Hilfert, L., Busse, S. & Edelmann, F. T. (2016). *Dalton Trans.* 45, 13332–13346.
- Stoe & Cie (2002). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.
- Takemoto, J. H., Streusand, B. & Hutchinson, B. (1974). Spectrochim. Acta A, 30, 827–834.
- Wang, X. (2009). Acta Cryst. E65, m1659.
- Wang, S., Sroor, F. M., Liebing, P., Lorenz, V., Hilfert, L. & Edelmann, F. T. (2016). Acta Cryst. E72, 1229–1233.
- Weingärtner, W. & Maas, G. (2012). Eur. J. Org. Chem. pp. 6372–6382.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Xiao, T., Zhang, S., Kehr, G., Hao, X., Erker, G. & Sun, W.-H. (2011). Organometallics, **30**, 3658–3665.
- Xu, X., Gao, D., Cheng, D., Li, J., Qiang, G. & Guo, H. (2008). Adv. Synth. Catal. 350, 61–64.
- Xu, L., Wang, Y.-C., Zhang, W.-X. & Xi, Z. (2013). Dalton Trans. 42, 16466–16469.

Acta Cryst. (2018). E74, 1658-1664 [https://doi.org/10.1107/S2056989018014895]

Synthesis and structural characterization of four dichloridobis(cyclopropylalkynylamidine)metal complexes

Sida Wang, Phil Liebing, Felix Engelhardt, Liane Hilfert, Sabine Busse and Frank T. Edelmann

Computing details

For all structures, data collection: *X-AREA* (Stoe & Cie, 2002); cell refinement: *X-AREA* (Stoe & Cie, 2002); data reduction: *X-AREA* and *X-RED* (Stoe & Cie, 2002); program(s) used to solve structure: *SHELXT2014/5* (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL2018/3* (Sheldrick, 2015b); molecular graphics: Diamond (Brandenburg, 1999); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)manganese(II) (3)

Crystal data	
$[MnCl_{2}(C_{12}H_{20}N_{2})_{2}]$ $M_{r} = 510.44$ Orthorhombic, <i>Fdd2</i> $a = 17.6701 (10) Å$ $b = 30.9809 (19) Å$ $c = 10.1452 (5) Å$ $V = 5553.8 (5) Å^{3}$ $Z = 8$ $F(000) = 2168$	$D_x = 1.221 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 5371 reflections $\theta = 2.4-26.0^{\circ}$ $\mu = 0.69 \text{ mm}^{-1}$ T = 153 K Plate, colorless $0.33 \times 0.24 \times 0.10 \text{ mm}$
Data collection	
Stoe IPDS 2T diffractometer Radiation source: fine-focus sealed tube Detector resolution: 6.67 pixels mm ⁻¹ area detector scans Absorption correction: numerical X-Area and X-Red (Stoe & Cie, 2002) $T_{min} = 0.851, T_{max} = 0.932$	5371 measured reflections 2432 independent reflections 2203 reflections with $I > 2\sigma(I)$ $R_{int} = 0.030$ $\theta_{max} = 26.0^{\circ}, \ \theta_{min} = 2.4^{\circ}$ $h = -21 \rightarrow 19$ $k = -38 \rightarrow 36$ $l = -10 \rightarrow 12$
Refinement	
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.054$ S = 0.98 2432 reflections 148 parameters 2 restraints Primary atom site location: dual Hydrogen site location: mixed	H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0295P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.17$ e Å ⁻³ $\Delta\rho_{min} = -0.16$ e Å ⁻³ Absolute structure: Flack <i>x</i> determined using 804 quotients $[(I^+)-(I)]/[(I^+)+(I^-)]$ (Parsons <i>et al.</i> , 2013). Absolute structure parameter: 0.005 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
C1	0.36882 (15)	0.54929 (8)	0.4904 (3)	0.0249 (6)
C2	0.33550 (15)	0.58031 (8)	0.5793 (3)	0.0275 (6)
C3	0.30913 (16)	0.60729 (9)	0.6494 (3)	0.0302 (7)
C4	0.28074 (18)	0.63992 (9)	0.7356 (3)	0.0356 (7)
H2	0.319053	0.653154	0.795855	0.043*
C5	0.20206 (19)	0.63718 (12)	0.7899 (4)	0.0499 (9)
H4	0.170588	0.612238	0.763079	0.060*
Н3	0.193744	0.647216	0.881390	0.060*
C6	0.2193 (2)	0.66970 (11)	0.6900 (4)	0.0533 (10)
Н5	0.221801	0.700214	0.718620	0.064*
H6	0.198644	0.665236	0.600306	0.064*
C7	0.48948 (16)	0.58097 (9)	0.5311 (3)	0.0306 (7)
H7	0.459936	0.594392	0.604475	0.037*
C8	0.5092 (2)	0.61607 (9)	0.4321 (4)	0.0483 (9)
H8	0.462550	0.629138	0.398310	0.072*
H9	0.537769	0.603441	0.358799	0.072*
H10	0.539979	0.638262	0.475250	0.072*
C9	0.55984 (19)	0.56063 (11)	0.5888 (5)	0.0523 (10)
H11	0.545423	0.536465	0.645823	0.078*
H12	0.587472	0.582183	0.640576	0.078*
H13	0.592242	0.550058	0.517331	0.078*
C10	0.24079 (15)	0.51535 (9)	0.4664 (3)	0.0309 (6)
H14	0.231615	0.528595	0.554861	0.037*
C11	0.1891 (2)	0.53643 (15)	0.3699 (5)	0.0730 (14)
H15	0.198631	0.567589	0.368767	0.110*
H16	0.136417	0.531090	0.395577	0.110*
H17	0.198092	0.524486	0.281836	0.110*
C12	0.2262 (2)	0.46796 (10)	0.4771 (5)	0.0589 (11)
H18	0.263622	0.454904	0.536161	0.088*
H19	0.230123	0.454725	0.389606	0.088*
H20	0.175270	0.463185	0.512437	0.088*
Cl	0.40889 (4)	0.46957 (2)	0.20903 (8)	0.03750 (19)
N1	0.44187 (12)	0.54779 (6)	0.4682 (2)	0.0244 (5)
N2	0.32035 (14)	0.52226 (8)	0.4319 (3)	0.0329 (6)
H1	0.3386 (17)	0.5071 (10)	0.370 (3)	0.039*
Mn	0.500000	0.500000	0.35079 (6)	0.02229 (14)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0270 (13)	0.0210 (12)	0.0267 (16)	0.0043 (11)	0.0022 (12)	-0.0021 (10)
C2	0.0233 (13)	0.0260 (13)	0.0333 (18)	-0.0001 (11)	0.0014 (13)	-0.0054 (12)
C3	0.0241 (14)	0.0314 (14)	0.0350 (17)	-0.0011 (12)	0.0005 (13)	-0.0042 (12)
C4	0.0299 (15)	0.0393 (15)	0.038 (2)	0.0014 (12)	0.0019 (15)	-0.0162 (14)
C5	0.0372 (19)	0.056 (2)	0.057 (2)	-0.0006 (17)	0.0173 (18)	-0.0191 (17)
C6	0.054 (2)	0.052 (2)	0.055 (3)	0.0212 (17)	0.0009 (19)	-0.0145 (18)
C7	0.0229 (15)	0.0293 (14)	0.0396 (18)	0.0019 (12)	0.0027 (13)	-0.0124 (12)
C8	0.045 (2)	0.0315 (15)	0.068 (3)	-0.0095 (14)	0.0084 (19)	-0.0053 (15)
C9	0.0413 (17)	0.0463 (17)	0.069 (3)	0.0074 (15)	-0.020 (2)	-0.024 (2)
C10	0.0228 (14)	0.0325 (13)	0.0372 (18)	0.0001 (11)	0.0046 (15)	-0.0029 (12)
C11	0.0348 (18)	0.099 (3)	0.085 (4)	0.014 (2)	0.005 (2)	0.044 (3)
C12	0.0396 (18)	0.0394 (17)	0.098 (4)	-0.0071 (15)	0.008 (2)	0.005 (2)
Cl	0.0345 (4)	0.0426 (4)	0.0354 (4)	0.0088 (3)	-0.0083 (4)	-0.0170 (3)
N1	0.0231 (11)	0.0225 (10)	0.0276 (14)	0.0023 (8)	0.0001 (11)	-0.0048 (10)
N2	0.0239 (12)	0.0346 (12)	0.0402 (17)	-0.0013 (10)	0.0060 (11)	-0.0183 (11)
Mn	0.0229 (3)	0.0206 (2)	0.0234 (3)	0.0048 (3)	0.000	0.000

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

C1—N1	1.311 (3)	С8—Н9	0.9800
C1—N2	1.337 (4)	C8—H10	0.9800
C1—C2	1.444 (4)	C9—H11	0.9800
С2—С3	1.192 (4)	C9—H12	0.9800
C3—C4	1.428 (4)	С9—Н13	0.9800
C4—C5	1.498 (4)	C10—N2	1.465 (3)
C4—C6	1.498 (5)	C10—C11	1.491 (5)
C4—H2	1.0000	C10—C12	1.494 (4)
С5—С6	1.461 (6)	C10—H14	1.0000
C5—H4	0.9900	C11—H15	0.9800
С5—Н3	0.9900	C11—H16	0.9800
С6—Н5	0.9900	C11—H17	0.9800
С6—Н6	0.9900	C12—H18	0.9800
C7—N1	1.473 (3)	C12—H19	0.9800
С7—С9	1.512 (4)	C12—H20	0.9800
С7—С8	1.521 (5)	Cl—Mn	2.3556 (8)
С7—Н7	1.0000	N1—Mn	2.160 (2)
С8—Н8	0.9800	N2—H1	0.85 (2)
N1—C1—N2	122.2 (2)	С7—С9—Н12	109.5
N1—C1—C2	122.2 (2)	H11—C9—H12	109.5
N2—C1—C2	115.7 (2)	C7—C9—H13	109.5
C3—C2—C1	177.2 (3)	H11—C9—H13	109.5
C2—C3—C4	177.5 (3)	H12—C9—H13	109.5
C3—C4—C5	120.7 (3)	N2-C10-C11	111.6 (3)
C3—C4—C6	120.1 (3)	N2-C10-C12	109.1 (2)
C3—C4—C6	120.1 (3)	N2-C10-C12	109.1 (2)

C5—C4—C6	58.4 (2)	C11—C10—C12	111.9 (3)
C3—C4—H2	115.3	N2—C10—H14	108.1
С5—С4—Н2	115.3	C11—C10—H14	108.1
C6—C4—H2	115.3	C12—C10—H14	108.1
C6—C5—C4	60.8 (2)	C10—C11—H15	109.5
С6—С5—Н4	117.7	C10—C11—H16	109.5
C4—C5—H4	117.7	H15—C11—H16	109.5
С6—С5—Н3	117.7	C10—C11—H17	109.5
С4—С5—Н3	117.7	H15—C11—H17	109.5
H4—C5—H3	114.8	H16—C11—H17	109.5
C5—C6—C4	60.8 (2)	C10—C12—H18	109.5
С5—С6—Н5	117.7	C10—C12—H19	109.5
С4—С6—Н5	117.7	H18—C12—H19	109.5
С5—С6—Н6	117.7	C10—C12—H20	109.5
С4—С6—Н6	117.7	H18—C12—H20	109.5
Н5—С6—Н6	114.8	H19—C12—H20	109.5
N1—C7—C9	110.3 (2)	C1—N1—C7	117.6 (2)
N1—C7—C8	110.1 (3)	C1—N1—Mn	125.95 (18)
С9—С7—С8	111.4 (3)	C7—N1—Mn	116.44 (16)
N1—C7—H7	108.3	C1—N2—C10	126.9 (2)
С9—С7—Н7	108.3	C1—N2—H1	116 (2)
С8—С7—Н7	108.3	C10—N2—H1	117 (2)
С7—С8—Н8	109.5	$N1$ — Mn — $N1^i$	113.06 (13)
С7—С8—Н9	109.5	N1—Mn—Cl	106.62 (6)
H8—C8—H9	109.5	N1 ⁱ —Mn—Cl	112.79 (6)
C7—C8—H10	109.5	N1—Mn—Cl ⁱ	112.80 (6)
H8—C8—H10	109.5	N1 ⁱ —Mn—C1 ⁱ	106.62 (6)
H9—C8—H10	109.5	Cl-Mn-Cl ⁱ	104.74 (5)
С7—С9—Н11	109.5		
C3—C4—C5—C6	-108.6 (4)	C8—C7—N1—C1	-100.7 (3)
C3—C4—C6—C5	109.7 (3)	C9—C7—N1—Mn	-42.7 (3)
N2—C1—N1—C7	176.0 (3)	C8—C7—N1—Mn	80.7 (2)
C2-C1-N1-C7	-3.8 (4)	N1-C1-N2-C10	167.7 (3)
N2—C1—N1—Mn	-5.5 (4)	C2-C1-N2-C10	-12.5 (4)
C2—C1—N1—Mn	174.66 (19)	C11—C10—N2—C1	104.8 (4)
C9—C7—N1—C1	135.9 (3)	C12-C10-N2-C1	-131.2 (3)

Symmetry code: (i) -x+1, -y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N2—H1…Cl	0.85 (2)	2.36 (2)	3.197 (3)	170 (3)
C8—H9…Cl ⁱ	0.98	2.88	3.776 (4)	152
C5—H4····Cl ⁱⁱ	0.99	2.95	3.931 (4)	172

			supporting informa		
C10—H14…Cl ⁱⁱ	1.00	2.93	3.643 (3)	129	
C4—H2…Cl ⁱⁱⁱ	1.00	2.67	3.516 (3)	143	

 $D_{\rm x} = 1.237 {\rm Mg m^{-3}}$

 $\theta = 2.4 - 26.0^{\circ}$

 $\mu = 0.76 \text{ mm}^{-1}$ T = 153 K

Block, colorless

 $R_{\rm int} = 0.037$

 $h = -20 \rightarrow 21$

 $k = -38 \rightarrow 36$

 $l = -10 \rightarrow 12$

 $0.27 \times 0.25 \times 0.25$ mm

5377 measured reflections

 $\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 2.4^\circ$

2495 independent reflections

2239 reflections with $I > 2\sigma(I)$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 5377 reflections

cupporting information

Symmetry codes: (i) -x+1, -y+1, z; (ii) -x+1/2, -y+1, z+1/2; (iii) -x+3/4, y+1/4, z+3/4.

Dichloridobis(3-cyclopropyl-N,N'-diisopropylprop-2-ynamidine)iron(II) (4)

Crystal data

 $[FeCl_2(C_{12}H_{20}N_2)_2] M_r = 511.35$ Orthorhombic, *Fdd2* a = 17.5703 (9) Å b = 30.9167 (12) Å c = 10.1110 (6) Å V = 5492.5 (5) Å³ Z = 8F(000) = 2176

Data collection

Stoe IPDS 2T diffractometer Radiation source: fine-focus sealed tube Detector resolution: 6.67 pixels mm⁻¹ area detector scans Absorption correction: numerical X-Area and X-Red (Stoe & Cie, 2002) $T_{min} = 0.837, T_{max} = 0.888$

Refinement

Refinement on F^2 H atoms treated by a mixture of independent Least-squares matrix: full and constrained refinement $R[F^2 > 2\sigma(F^2)] = 0.033$ $w = 1/[\sigma^2(F_o^2) + (0.045P)^2]$ $wR(F^2) = 0.074$ where $P = (F_0^2 + 2F_c^2)/3$ S = 1.01 $(\Delta/\sigma)_{\rm max} < 0.001$ 2495 reflections $\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$ 148 parameters $\Delta \rho_{\rm min} = -0.42 \ {\rm e} \ {\rm \AA}^{-3}$ 2 restraints Absolute structure: Flack x determined using Primary atom site location: dual 846 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons *et al.*, Hydrogen site location: mixed 2013). Absolute structure parameter: -0.03 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$	
C1	0.3709 (2)	0.54820 (11)	0.4918 (4)	0.0256 (7)	
C2	0.3378 (2)	0.57953 (11)	0.5794 (4)	0.0295 (8)	
C3	0.3110 (2)	0.60671 (12)	0.6491 (4)	0.0311 (8)	
C4	0.2823 (2)	0.63943 (13)	0.7355 (4)	0.0370 (9)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H2	0.320708	0.652558	0.796514	0.044*
C5	0.2031 (3)	0.63654 (17)	0.7896 (5)	0.0516 (12)
H4	0.171514	0.611617	0.761998	0.062*
Н3	0.194600	0.646416	0.881537	0.062*
C6	0.2208 (3)	0.66945 (15)	0.6897 (5)	0.0506 (12)
Н5	0.223392	0.699970	0.718986	0.061*
H6	0.200305	0.665170	0.599444	0.061*
C7	0.4920 (2)	0.58015 (12)	0.5319 (4)	0.0309 (8)
H7	0.462208	0.593479	0.605717	0.037*
C8	0.5106 (3)	0.61521 (13)	0.4324 (6)	0.0506 (12)
H8	0.463312	0.628650	0.401441	0.076*
Н9	0.537663	0.602488	0.357185	0.076*
H10	0.542756	0.637176	0.474331	0.076*
C9	0.5635 (2)	0.56028 (15)	0.5897 (6)	0.0531 (13)
H11	0.549567	0.536538	0.649137	0.080*
H12	0.591635	0.582334	0.639198	0.080*
H13	0.595472	0.549128	0.517965	0.080*
C10	0.24171 (19)	0.51490 (12)	0.4677 (4)	0.0313 (8)
H14	0.232841	0.527648	0.557256	0.038*
C11	0.1912 (3)	0.5375 (2)	0.3711 (7)	0.0717 (17)
H15	0.204279	0.568265	0.368259	0.108*
H16	0.137983	0.534183	0.398571	0.108*
H17	0.198034	0.524779	0.283094	0.108*
C12	0.2255 (3)	0.46742 (15)	0.4745 (7)	0.0597 (14)
H18	0.261781	0.453556	0.534649	0.090*
H19	0.230443	0.454738	0.386081	0.090*
H20	0.173590	0.462874	0.507208	0.090*
Cl	0.41255 (5)	0.47033 (3)	0.20952 (10)	0.0389 (3)
N1	0.44457 (15)	0.54633 (9)	0.4699 (3)	0.0251 (6)
N2	0.32222 (17)	0.52105 (11)	0.4330 (4)	0.0323 (7)
H1	0.341 (2)	0.5058 (13)	0.369 (4)	0.039*
Fe	0.500000	0.500000	0.35458 (7)	0.02332 (17)

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U ²³
C1	0.0283 (17)	0.0242 (16)	0.0243 (19)	0.0046 (15)	0.0015 (14)	-0.0018 (14)
C2	0.0241 (17)	0.0299 (18)	0.035 (2)	0.0018 (15)	-0.0011 (15)	-0.0040 (16)
C3	0.0289 (19)	0.0305 (19)	0.034 (2)	-0.0010 (17)	0.0009 (16)	-0.0044 (16)
C4	0.0326 (19)	0.040(2)	0.038 (2)	0.0020 (17)	0.0027 (17)	-0.0109 (18)
C5	0.041 (2)	0.062 (3)	0.051 (3)	-0.001 (2)	0.016 (2)	-0.020 (2)
C6	0.051 (3)	0.053 (3)	0.047 (3)	0.021 (2)	0.001 (2)	-0.013 (2)
C7	0.0254 (19)	0.0298 (19)	0.038 (2)	0.0034 (16)	-0.0001 (16)	-0.0123 (15)
C8	0.048 (3)	0.033 (2)	0.071 (3)	-0.0063 (19)	0.011 (2)	-0.005 (2)
C9	0.041 (2)	0.051 (2)	0.067 (4)	0.008 (2)	-0.023 (2)	-0.024 (3)
C10	0.0236 (17)	0.0345 (18)	0.036 (2)	-0.0011 (15)	0.0012 (17)	-0.0033 (16)
C11	0.037 (2)	0.099 (4)	0.080 (4)	0.016 (3)	0.001 (3)	0.039 (4)
C12	0.039 (2)	0.043 (2)	0.097 (5)	-0.010 (2)	0.002 (3)	0.001 (3)

Cl	0.0359 (5)	0.0484 (5)	0.0324 (5)	0.0061 (4)	-0.0068 (4)	-0.0161 (4)
N1	0.0225 (13)	0.0273 (14)	0.0257 (16)	0.0020 (12)	0.0005 (12)	-0.0032 (13)
N2	0.0243 (15)	0.0359 (16)	0.037 (2)	-0.0002 (13)	0.0039 (13)	-0.0130 (13)
Fe	0.0243 (3)	0.0243 (3)	0.0214 (3)	0.0044 (3)	0.000	0.000

Geometric parameters (Å, °)

C1—N1	1.315 (4)	С8—Н9	0.9800
C1—N2	1.337 (5)	C8—H10	0.9800
C1—C2	1.435 (5)	C9—H11	0.9800
C2—C3	1.193 (5)	C9—H12	0.9800
C3—C4	1.429 (5)	C9—H13	0.9800
C4—C5	1.497 (6)	C10—N2	1.470 (4)
C4—C6	1.498 (6)	C10—C11	1.493 (6)
C4—H2	1.0000	C10—C12	1.497 (6)
C5—C6	1.467 (7)	C10—H14	1.0000
С5—Н4	0.9900	C11—H15	0.9800
С5—Н3	0.9900	C11—H16	0.9800
С6—Н5	0.9900	C11—H17	0.9800
С6—Н6	0.9900	C12—H18	0.9800
C7—N1	1.477 (5)	C12—H19	0.9800
С7—С8	1.514 (6)	C12—H20	0.9800
С7—С9	1.515 (6)	Cl—Fe	2.3139 (10)
С7—Н7	1.0000	N1—Fe	2.088 (3)
С8—Н8	0.9800	N2—H1	0.87 (2)
N1—C1—N2	121.8 (3)	C7—C9—H12	109.5
N1—C1—C2	122.1 (3)	H11—C9—H12	109.5
N2—C1—C2	116.1 (3)	C7—C9—H13	109.5
C3—C2—C1	177.6 (4)	H11—C9—H13	109.5
C2—C3—C4	177.3 (4)	H12—C9—H13	109.5
C3—C4—C5	120.6 (4)	N2-C10-C11	110.8 (4)
C3—C4—C6	120.3 (4)	N2-C10-C12	108.7 (3)
C5—C4—C6	58.6 (3)	C11—C10—C12	112.0 (4)
C3—C4—H2	115.2	N2—C10—H14	108.4
С5—С4—Н2	115.2	C11—C10—H14	108.4
С6—С4—Н2	115.2	C12—C10—H14	108.4
C6—C5—C4	60.7 (3)	C10—C11—H15	109.5
С6—С5—Н4	117.7	C10-C11-H16	109.5
C4—C5—H4	117.7	H15—C11—H16	109.5
С6—С5—Н3	117.7	C10—C11—H17	109.5
С4—С5—Н3	117.7	H15—C11—H17	109.5
H4—C5—H3	114.8	H16—C11—H17	109.5
C5—C6—C4	60.7 (3)	C10—C12—H18	109.5
С5—С6—Н5	117.7	C10—C12—H19	109.5
C4—C6—H5	117.7	H18—C12—H19	109.5
С5—С6—Н6	117.7	C10—C12—H20	109.5
С4—С6—Н6	117.7	H18—C12—H20	109.5

$\begin{array}{l} H5 &C6 &H6 \\ N1 &C7 &C8 \\ N1 &C7 &C9 \\ C8 &C7 &C9 \\ N1 &C7 &H7 \\ C8 &C7 &H7 \\ C9 &C7 &H7 \\ C7 &C8 &H8 \\ C7 &C8 &H9 \\ H8 &C8 &H9 \\ H8 &C8 &H10 \\ H8 &C8 &H10 \\ H9 &C8 &H10 \\ H9 &C9 &H11 \end{array}$	114.8 110.2 (3) 110.1 (3) 111.6 (4) 108.3 108.3 108.3 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5	H19—C12—H20 C1—N1—C7 C1—N1—Fe C7—N1—Fe C1—N2—C10 C1—N2—H1 C10—N2—H1 N1 ⁱ —Fe—N1 N1 ⁱ —Fe—Cl N1—Fe—Cl N1 ⁱ —Fe—Cl ⁱ N1—Fe—Cl ⁱ Cl—Fe—Cl ⁱ	109.5 116.9 (3) 125.7 (2) 117.4 (2) 126.2 (3) 115 (3) 118 (3) 112.13 (17) 113.06 (9) 108.42 (8) 108.42 (8) 113.06 (9) 101.32 (6)
C3-C4-C5-C6	-109.0 (5)	C9-C7-N1-C1	137.1 (4)
C3-C4-C6-C5	109.5 (4)	C8-C7-N1-Fe	80.4 (3)
N2-C1-N1-C7	175.2 (3)	C9-C7-N1-Fe	-43.2 (4)
C2-C1-N1-C7	-4.4 (5)	N1-C1-N2-C10	168.1 (4)
N2-C1-N1-Fe	-4.5 (5)	C2-C1-N2-C10	-12.3 (6)
C2-C1-N1-Fe	175.9 (3)	C11-C10-N2-C1	102.8 (5)
C8-C7-N1-C1	-99.4 (4)	C12-C10-N2-C1	-133.6 (5)

Symmetry code: (i) -x+1, -y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N2—H1···Cl	0.87 (2)	2.32 (3)	3.175 (3)	169 (4)
C8—H9····Cl ⁱ	0.98	2.84	3.728 (5)	151
C5—H4····Cl ⁱⁱ	0.99	2.98	3.963 (5)	172
C10—H14···Cl ⁱⁱ	1.00	2.98	3.679 (4)	128
C4—H2…Cl ⁱⁱⁱ	1.00	2.68	3.510 (4)	140

Symmetry codes: (i) -x+1, -y+1, z; (ii) -x+1/2, -y+1, z+1/2; (iii) -x+3/4, y+1/4, z+3/4.

Dichloridobis(N,N'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)iron(II) (5)

Crystal data

[FeCl₂(C₁₈H₂₈N₂)₂] $M_r = 671.59$ Monoclinic, $P2_1/c$ a = 13.905 (7) Å b = 12.500 (6) Å c = 20.742 (11) Å $\beta = 92.24$ (4)° V = 3603 (3) Å³ Z = 4 F(000) = 1440 $D_x = 1.238 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 17648 reflections $\theta = 1.9-25.4^{\circ}$ $\mu = 0.60 \text{ mm}^{-1}$ T = 100 KPlate, colorless $0.26 \times 0.19 \times 0.12 \text{ mm}$ Data collection

Stoe IPDS 2T	18866 measured reflections
diffractometer	7036 independent reflections
Radiation source: fine-focus sealed tube	6355 reflections with $I > 2\sigma(I)$
Detector resolution: 6.67 pixels mm ⁻¹	$R_{int} = 0.029$
area detector scans	$\theta_{max} = 26.0^{\circ}, \theta_{min} = 1.9^{\circ}$
Absorption correction: numerical	$h = -17 \rightarrow 16$
X-Area and X-Red (Stoe & Cie, 2002)	$k = -14 \rightarrow 15$
$T_{min} = 0.838, T_{max} = 0.908$	$l = -25 \rightarrow 25$
Refinement	
Refinement on F^2	H atoms treated by a mixture of independent
Least-squares matrix: full	and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.033$	$w = 1/[\sigma^2(F_o^2) + (0.0293P)^2 + 1.8416P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.075$	$(\Delta/\sigma)_{max} = 0.001$
S = 1.14	$\Delta\rho_{max} = 0.40 \text{ e } \text{Å}^{-3}$
7036 reflections	$\Delta\rho_{min} = -0.33 \text{ e } \text{Å}^{-3}$
395 parameters	Extinction correction: SHELXL-2018/3
2 restraints	(Sheldrick 2015b),
Primary atom site location: dual	Fc*=kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
Hydrogen site location: mixed	Extinction coefficient: 0.0028 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.18374 (11)	0.73239 (12)	0.51035 (7)	0.0161 (3)	
0.18720 (11)	0.66376 (13)	0.45462 (7)	0.0168 (3)	
0.19066 (11)	0.60813 (13)	0.40810(7)	0.0170 (3)	
0.19602 (12)	0.54251 (13)	0.35178 (8)	0.0177 (3)	
0.139809	0.546681	0.320304	0.021*	
0.24578 (12)	0.43512 (13)	0.35720 (8)	0.0212 (3)	
0.273324	0.413811	0.400026	0.025*	
0.219025	0.375546	0.330658	0.025*	
0.29280 (13)	0.52459 (14)	0.32327 (8)	0.0244 (4)	
0.295258	0.520379	0.275701	0.029*	
0.349545	0.558635	0.345053	0.029*	
0.34866 (11)	0.69174 (12)	0.53244 (7)	0.0155 (3)	
0.331881	0.624187	0.508755	0.019*	
0.40490 (12)	0.76358 (13)	0.48786 (8)	0.0194 (3)	
0.420275	0.831957	0.510038	0.023*	
0.364745	0.779817	0.448615	0.023*	
0.49799 (12)	0.70959 (15)	0.46867 (8)	0.0231 (4)	
0.482171	0.646833	0.441134	0.028*	
0.535678	0.760259	0.443040	0.028*	
	x 0.18374 (11) 0.18720 (11) 0.19066 (11) 0.19602 (12) 0.139809 0.24578 (12) 0.273324 0.219025 0.29280 (13) 0.295258 0.349545 0.34866 (11) 0.331881 0.40490 (12) 0.420275 0.364745 0.49799 (12) 0.482171 0.535678	x y $0.18374 (11)$ $0.73239 (12)$ $0.18720 (11)$ $0.66376 (13)$ $0.19066 (11)$ $0.60813 (13)$ $0.19062 (12)$ $0.54251 (13)$ 0.139809 0.546681 $0.24578 (12)$ $0.43512 (13)$ 0.273324 0.413811 0.219025 0.375546 $0.29280 (13)$ $0.52459 (14)$ 0.295258 0.520379 0.349545 0.558635 $0.34866 (11)$ 0.624187 $0.40490 (12)$ $0.76358 (13)$ 0.420275 0.831957 0.364745 0.779817 $0.49799 (12)$ $0.70959 (15)$ 0.482171 0.646833 0.535678 0.760259	xyz $0.18374 (11)$ $0.73239 (12)$ $0.51035 (7)$ $0.18720 (11)$ $0.66376 (13)$ $0.45462 (7)$ $0.19066 (11)$ $0.60813 (13)$ $0.40810 (7)$ $0.19062 (12)$ $0.54251 (13)$ $0.35178 (8)$ 0.139809 0.546681 0.320304 $0.24578 (12)$ $0.43512 (13)$ $0.35720 (8)$ 0.273324 0.413811 0.400026 0.219025 0.375546 0.330658 $0.29280 (13)$ $0.52459 (14)$ $0.32327 (8)$ 0.295258 0.520379 0.275701 0.349545 0.558635 0.345053 $0.34866 (11)$ 0.624187 0.508755 $0.40490 (12)$ $0.76358 (13)$ $0.48786 (8)$ 0.420275 0.831957 0.510038 0.364745 0.779817 0.448615 0.482171 0.646833 0.441134 0.535678 0.760259 0.443040	xyz $U_{iso}*/U_{eq}$ 0.18374 (11)0.73239 (12)0.51035 (7)0.0161 (3)0.18720 (11)0.66376 (13)0.45462 (7)0.0168 (3)0.19066 (11)0.60813 (13)0.40810 (7)0.0170 (3)0.19602 (12)0.54251 (13)0.35178 (8)0.0177 (3)0.1398090.5466810.3203040.021*0.24578 (12)0.43512 (13)0.35720 (8)0.0212 (3)0.2733240.4138110.4000260.025*0.2190250.3755460.3306580.025*0.29280 (13)0.52459 (14)0.32327 (8)0.0244 (4)0.2952580.5203790.2757010.029*0.3495450.5586350.3450530.029*0.34866 (11)0.69174 (12)0.53244 (7)0.0155 (3)0.40490 (12)0.76358 (13)0.48786 (8)0.0194 (3)0.4202750.8319570.5100380.023*0.3647450.7798170.4486150.023*0.49799 (12)0.70959 (15)0.46867 (8)0.0231 (4)0.4821710.6468330.4411340.028*0.5356780.7602590.4430400.028*

C10	0.55896 (12)	0.67335 (16)	0.52738 (8)	0.0261 (4)
H12	0.614416	0.631283	0.512864	0.031*
H13	0.584414	0.736967	0.550800	0.031*
C11	0.50120 (12)	0.60571 (14)	0.57284 (8)	0.0214(3)
H14	0.541338	0.589208	0.612053	0.026*
H15	0.483612	0 537232	0.551501	0.026*
C12	0.41006 (11)	0.66312 (13)	0.59209 (7)	0.020
H16	0.372995	0.616336	0.620556	0.021*
H17	0.37277449	0.729027	0.616312	0.021
C13	0.427449	0.729027 0.75831 (13)	0.010312 0.48221(7)	0.021
U19	0.01049(11)	0.73031 (13)	0.46221(7)	0.01/1(3)
П18	0.020349	0.739901	0.430923	0.020°
U14	-0.05565 (12)	0.85514 (15)	0.47973 (8)	0.0196 (3)
HI9	-0.023073	0.915540	0.458/4/	0.024*
H20	-0.070252	0.87/139	0.524145	0.024*
C15	-0.14923 (12)	0.82858 (14)	0.44199 (8)	0.0210 (3)
H21	-0.193205	0.890760	0.443257	0.025*
H22	-0.135037	0.814825	0.396327	0.025*
C16	-0.19864 (12)	0.73113 (15)	0.46954 (8)	0.0234 (4)
H23	-0.256468	0.713587	0.442226	0.028*
H24	-0.219839	0.747881	0.513424	0.028*
C17	-0.13164 (13)	0.63472 (14)	0.47271 (9)	0.0246 (4)
H25	-0.116038	0.612820	0.428457	0.030*
H26	-0.164296	0.574063	0.493383	0.030*
C18	-0.03899 (12)	0.66161 (13)	0.51117 (8)	0.0225 (3)
H27	-0.054045	0.677124	0.556482	0.027*
H28	0.004969	0.599326	0.511027	0.027*
C19	0.34950 (11)	0.72475 (12)	0.75081 (7)	0.0143 (3)
C20	0.35781 (11)	0.64968 (12)	0.80354 (7)	0.0165 (3)
C21	0.35957 (11)	0.58263 (13)	0.84443 (7)	0.0179 (3)
C22	0.35866 (13)	0.50039 (14)	0.89235 (8)	0.0246 (4)
H30	0 422855	0 471409	0 907068	0.030*
C23	0.28235 (16)	0.50218(17)	0.94202 (9)	0.0337(4)
H31	0.300638	0.477198	0.986107	0.040*
H32	0.235451	0.561790	0.940136	0.040*
C24	0.235451 0.27579(14)	0.301790 0.42104(15)	0.88987 (9)	0.040 0.0289(4)
U23	0.27577 (14)	0.420424	0.855535	0.025*
П33 Ц34	0.223023	0.430424	0.855555	0.035*
C25	0.290240 0.10047 (11)	0.545780	0.301332 0.72027 (7)	0.035°
C25	0.19047 (11)	0.03993 (12)	0.72957 (7)	0.0101(3)
H35	0.21/077	0.393327	0.749938	0.019
C26	0.12855 (12)	0.71616(14)	0.77799 (8)	0.0212 (3)
H36	0.167993	0.731520	0.817682	0.025*
H37	0.105625	0.785192	0.759745	0.025*
C27	0.04233 (13)	0.64810 (16)	0.79503 (8)	0.0278 (4)
H38	0.001660	0.688525	0.824667	0.033*
H39	0.065054	0.582447	0.817556	0.033*
C28	-0.01730 (12)	0.61746 (16)	0.73466 (8)	0.0263 (4)
H40	-0.071153	0.570605	0.746631	0.032*
H41	-0.044864	0.682696	0.714150	0.032*

C29	0.04498 (12)	0.55937 (14)	0.68713 (8)	0.0226 (4)
H42	0.005834	0.541935	0.647639	0.027*
H43	0.068426	0.491401	0.706556	0.027*
C30	0.13082 (11)	0.62796 (13)	0.66927 (7)	0.0173 (3)
H44	0.171569	0.587352	0.639778	0.021*
H45	0.107523	0.693073	0.646411	0.021*
C31	0.51602 (11)	0.78749 (12)	0.78087 (7)	0.0154 (3)
H46	0.501379	0.770673	0.826590	0.018*
C32	0.55969 (12)	0.89931 (13)	0.77874 (8)	0.0198 (3)
H47	0.514586	0.951259	0.797183	0.024*
H48	0.569124	0.919683	0.733302	0.024*
C33	0.65602 (12)	0.90446 (13)	0.81646 (8)	0.0212 (3)
H49	0.684691	0.976251	0.811104	0.025*
H50	0.645231	0.893817	0.862918	0.025*
C34	0.72569 (12)	0.82016 (14)	0.79387 (8)	0.0220 (3)
H51	0.785401	0.822357	0.821440	0.026*
H52	0.742891	0.835846	0.748973	0.026*
C35	0.68131 (12)	0.70902 (14)	0.79694 (8)	0.0223 (4)
Н53	0.669835	0.690603	0.842419	0.027*
H54	0.726701	0.655847	0.780054	0.027*
C36	0.58615 (12)	0.70403 (13)	0.75741 (8)	0.0211 (3)
H55	0.598301	0.716785	0.711324	0.025*
H56	0.557596	0.631888	0.761341	0.025*
N1	0.25819 (9)	0.74443 (10)	0.55028 (6)	0.0152 (3)
N2	0.10047 (10)	0.78421 (11)	0.51761 (7)	0.0183 (3)
H1	0.0964 (14)	0.8248 (14)	0.5499 (8)	0.022*
N3	0.27221 (9)	0.72905 (10)	0.71271 (6)	0.0152 (3)
N4	0.42557 (10)	0.78865 (11)	0.74247 (6)	0.0164 (3)
H29	0.4208 (14)	0.8347 (14)	0.7126 (8)	0.020*
Fe	0.25601 (2)	0.83290 (2)	0.63472 (2)	0.01437 (8)
Cl1	0.37746 (3)	0.95842 (3)	0.62727 (2)	0.02006 (10)
Cl2	0.11601 (3)	0.92675 (3)	0.64870 (2)	0.02200 (10)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0192 (8)	0.0150 (7)	0.0144 (7)	-0.0004 (6)	0.0018 (6)	0.0015 (6)
C2	0.0155 (7)	0.0178 (8)	0.0171 (8)	0.0012 (6)	0.0000 (6)	0.0017 (6)
C3	0.0161 (7)	0.0175 (8)	0.0172 (8)	0.0000 (6)	-0.0004 (6)	0.0018 (6)
C4	0.0191 (8)	0.0179 (8)	0.0159 (7)	0.0001 (6)	-0.0013 (6)	-0.0025 (6)
C5	0.0242 (8)	0.0186 (8)	0.0209 (8)	0.0027 (7)	0.0011 (7)	-0.0009 (6)
C6	0.0272 (9)	0.0245 (9)	0.0218 (8)	0.0012 (7)	0.0064 (7)	-0.0033 (7)
C7	0.0165 (7)	0.0159 (7)	0.0140 (7)	0.0021 (6)	0.0020 (6)	-0.0008 (6)
C8	0.0212 (8)	0.0210 (8)	0.0163 (8)	0.0007 (7)	0.0034 (6)	0.0032 (6)
C9	0.0222 (8)	0.0286 (9)	0.0188 (8)	0.0022 (7)	0.0062 (7)	0.0037 (7)
C10	0.0164 (8)	0.0380 (10)	0.0240 (9)	0.0031 (7)	0.0026 (7)	0.0010 (8)
C11	0.0214 (8)	0.0267 (9)	0.0161 (8)	0.0074 (7)	0.0001 (6)	0.0011 (7)
C12	0.0186 (8)	0.0191 (8)	0.0142 (7)	0.0023 (6)	0.0015 (6)	0.0009 (6)

C13	0.0162 (8)	0.0187 (8)	0.0162 (7)	0.0004 (6)	-0.0005 (6)	-0.0011 (6)
C14	0.0190 (8)	0.0174 (8)	0.0223 (8)	0.0017 (6)	-0.0003 (6)	-0.0005 (6)
C15	0.0168 (8)	0.0241 (8)	0.0220 (8)	0.0028 (7)	-0.0002 (6)	-0.0005 (7)
C16	0.0176 (8)	0.0324 (10)	0.0201 (8)	-0.0038 (7)	0.0013 (6)	-0.0010 (7)
C17	0.0259 (9)	0.0227 (9)	0.0252 (9)	-0.0072 (7)	0.0003 (7)	0.0012 (7)
C18	0.0248 (8)	0.0197 (8)	0.0229 (8)	0.0007 (7)	-0.0013 (7)	0.0031 (7)
C19	0.0177 (7)	0.0127 (7)	0.0125 (7)	0.0012 (6)	0.0028 (6)	-0.0017 (6)
C20	0.0162 (7)	0.0178 (8)	0.0154 (7)	-0.0016 (6)	0.0004 (6)	-0.0014 (6)
C21	0.0180 (8)	0.0205 (8)	0.0153 (7)	-0.0008 (6)	0.0019 (6)	-0.0019 (6)
C22	0.0275 (9)	0.0249 (9)	0.0213 (8)	-0.0021 (7)	0.0000 (7)	0.0084 (7)
C23	0.0471 (12)	0.0335 (10)	0.0215 (9)	-0.0152 (9)	0.0115 (8)	0.0009 (8)
C24	0.0387 (10)	0.0209 (9)	0.0272 (9)	-0.0069 (8)	0.0034 (8)	0.0049 (7)
C25	0.0173 (7)	0.0163 (7)	0.0147 (7)	-0.0029 (6)	0.0016 (6)	0.0001 (6)
C26	0.0208 (8)	0.0270 (9)	0.0161 (8)	-0.0055 (7)	0.0036 (6)	-0.0053 (7)
C27	0.0257 (9)	0.0401 (11)	0.0180 (8)	-0.0120 (8)	0.0067 (7)	-0.0055 (7)
C28	0.0200 (8)	0.0377 (10)	0.0215 (8)	-0.0109 (8)	0.0040 (7)	-0.0023 (7)
C29	0.0246 (9)	0.0267 (9)	0.0164 (8)	-0.0093 (7)	0.0002 (7)	-0.0010 (7)
C30	0.0196 (8)	0.0186 (8)	0.0138 (7)	-0.0028 (6)	0.0021 (6)	-0.0018 (6)
C31	0.0164 (7)	0.0163 (7)	0.0134 (7)	-0.0024 (6)	-0.0002 (6)	-0.0001 (6)
C32	0.0197 (8)	0.0163 (8)	0.0232 (8)	-0.0018 (6)	-0.0007 (6)	0.0011 (6)
C33	0.0207 (8)	0.0182 (8)	0.0244 (8)	-0.0044 (7)	-0.0025 (7)	0.0009 (7)
C34	0.0179 (8)	0.0270 (9)	0.0210 (8)	-0.0029 (7)	-0.0012 (6)	0.0022 (7)
C35	0.0208 (8)	0.0210 (8)	0.0247 (8)	0.0039 (7)	-0.0025 (7)	-0.0027 (7)
C36	0.0213 (8)	0.0196 (8)	0.0221 (8)	0.0007 (7)	-0.0023 (7)	-0.0042 (7)
N1	0.0154 (6)	0.0160 (6)	0.0141 (6)	0.0015 (5)	0.0010 (5)	0.0004 (5)
N2	0.0179 (7)	0.0204 (7)	0.0166 (7)	0.0026 (6)	-0.0017 (5)	-0.0047 (5)
N3	0.0168 (6)	0.0157 (6)	0.0133 (6)	-0.0012 (5)	0.0020 (5)	-0.0011 (5)
N4	0.0179 (7)	0.0172 (7)	0.0140 (6)	-0.0023 (5)	-0.0006 (5)	0.0040 (5)
Fe	0.01670 (12)	0.01337 (12)	0.01306 (12)	0.00048 (9)	0.00100 (8)	-0.00022 (8)
C11	0.0227 (2)	0.01594 (18)	0.02139 (19)	-0.00324 (15)	-0.00072 (15)	0.00174 (14)
Cl2	0.0226 (2)	0.0198 (2)	0.0237 (2)	0.00596 (15)	0.00141 (15)	-0.00294 (15)

Geometric parameters (Å, °)

C1—N1	1.309 (2)	C20—C21	1.192 (2)
C1—N2	1.340 (2)	C21—C22	1.430 (2)
C1—C2	1.442 (2)	C22—C23	1.508 (3)
C2—C3	1.192 (2)	C22—C24	1.520 (3)
C3—C4	1.432 (2)	С22—Н30	1.0000
C4—C6	1.508 (2)	C23—C24	1.483 (3)
C4—C5	1.512 (2)	C23—H31	0.9900
C4—H2	1.0000	С23—Н32	0.9900
C5—C6	1.486 (2)	C24—H33	0.9900
С5—Н3	0.9900	C24—H34	0.9900
С5—Н4	0.9900	C25—N3	1.479 (2)
С6—Н5	0.9900	C25—C26	1.523 (2)
С6—Н6	0.9900	C25—C30	1.524 (2)
C7—N1	1.480 (2)	С25—Н35	1.0000

C7—C12	1.518 (2)	C26—C27	1.523 (2)
С7—С8	1.526 (2)	С26—Н36	0.9900
С7—Н7	1.0000	С26—Н37	0.9900
C8—C9	1.526 (2)	C27—C28	1.524 (2)
С8—Н8	0.9900	C27—H38	0.9900
С8—Н9	0.9900	С27—Н39	0.9900
C9—C10	1.525 (2)	C28—C29	1.522 (3)
С9—Н10	0.9900	C28—H40	0.9900
C9—H11	0.9900	C28—H41	0.9900
C10—C11	1 519 (2)	C^{29} C^{30}	1 527 (2)
C10_H12	0.9900	C29—H42	0.9900
C10—H13	0.9900	C29—H43	0.9900
	1 523 (2)	$C_{20} = H_{40}$	0.9900
$C_{11} = H_{14}$	1.525(2)	$C_{30} = H_{45}$	0.9900
	0.9900	C30—1143	0.9900
	0.9900	C31 - N4	1.402(2)
	0.9900		1.521 (2)
	0.9900	C31—C32	1.525 (2)
C13—N2	1.462 (2)	C31—H46	1.0000
C13—C14	1.520 (2)	C32—C33	1.526 (2)
C13—C18	1.526 (2)	C32—H47	0.9900
C13—H18	1.0000	C32—H48	0.9900
C14—C15	1.529 (2)	C33—C34	1.518 (2)
C14—H19	0.9900	С33—Н49	0.9900
C14—H20	0.9900	С33—Н50	0.9900
C15—C16	1.521 (2)	C34—C35	1.522 (2)
С15—Н21	0.9900	C34—H51	0.9900
С15—Н22	0.9900	C34—H52	0.9900
C16—C17	1.523 (3)	C35—C36	1.531 (2)
С16—Н23	0.9900	С35—Н53	0.9900
C16—H24	0.9900	С35—Н54	0.9900
C17—C18	1.526 (2)	С36—Н55	0.9900
C17—H25	0 9900	C36—H56	0 9900
C17—H26	0.9900	N1—Fe	2,0727 (15)
C18—H27	0.9900	N2—H1	0.844(15)
C18—H28	0.9900	N3—Fe	2.0795(15)
C10 - N20	1,310(2)	N/2H29	0.847(15)
C19 N/	1.310(2) 1.342(2)	$F_{e} = C12$	23000(10)
C_{10} C_{20}	1.342(2) 1.442(2)	$F_{c} = C_{12}$	2.3009(10) 2.3147(0)
C19—C20	1.442 (2)	re—CII	2.3147 (9)
N1—C1—N2	122.59 (15)	C23—C22—H30	116.1
N1—C1—C2	121.70 (15)	C24—C22—H30	116.1
N2—C1—C2	115.70 (14)	C24—C23—C22	61.07 (13)
C3—C2—C1	179.10 (18)	C24—C23—H31	117.7
C2—C3—C4	179.02 (18)	C22—C23—H31	117.7
C3—C4—C6	118.74 (14)	C24—C23—H32	117.7
$C_{3}-C_{4}-C_{5}$	119.09 (14)	C22—C23—H32	117.7
C6—C4—C5	58 96 (11)	H31—C23—H32	114.8
C3—C4—H2	116.0	C^{23} C^{24} C^{22}	60 26 (13)
	110.0		50.20 (15)

C6—C4—H2	116.0	С23—С24—Н33	117.7
С5—С4—Н2	116.0	С22—С24—Н33	117.7
C6—C5—C4	60.36 (11)	C23—C24—H34	117.7
С6—С5—Н3	117.7	С22—С24—Н34	117.7
С4—С5—Н3	117.7	H33—C24—H34	114.9
С6—С5—Н4	117.7	N3—C25—C26	110.16(13)
C4—C5—H4	117.7	N3-C25-C30	111.15 (13)
H3—C5—H4	114.9	$C_{26} - C_{25} - C_{30}$	111.04 (13)
C5-C6-C4	60.67 (11)	N3-C25-H35	108.1
C5-C6-H5	1177	C26—C25—H35	108.1
C4—C6—H5	117.7	C_{30} C_{25} H_{35}	108.1
C5-C6-H6	117.7	C_{27} C_{26} C_{25} C_{25} C_{25} C_{25}	11150(14)
C_{4} C_{6} H_{6}	117.7	$C_{27} C_{26} H_{36}$	100.3
H5 C6 H6	117.7	C_{25} C_{26} H_{36}	109.3
N1 C7 C12	110.06 (12)	$C_{23} = C_{20} = H_{30}$	109.3
N1 = C7 = C8	110.90(13) 110.50(12)	$C_2 = C_2 $	109.5
$N1 - C = C \delta$	110.30(13)	$U_{23} = U_{20} = H_{37}$	109.5
C12 - C7 - C8	110.32 (13)	H36-C26-H37	108.0
NI-C/-H/	108.3	$C_{26} = C_{27} = C_{28}$	110.96 (14)
С12—С/—Н/	108.3	C26—C27—H38	109.4
С8—С/—Н/	108.3	С28—С27—Н38	109.4
C7—C8—C9	110.96 (14)	С26—С27—Н39	109.4
С7—С8—Н8	109.4	С28—С27—Н39	109.4
С9—С8—Н8	109.4	Н38—С27—Н39	108.0
С7—С8—Н9	109.4	C29—C28—C27	110.32 (15)
С9—С8—Н9	109.4	C29—C28—H40	109.6
H8—C8—H9	108.0	C27—C28—H40	109.6
С10—С9—С8	111.94 (14)	C29—C28—H41	109.6
С10—С9—Н10	109.2	C27—C28—H41	109.6
C8—C9—H10	109.2	H40—C28—H41	108.1
С10—С9—Н11	109.2	C28—C29—C30	111.05 (14)
C8—C9—H11	109.2	C28—C29—H42	109.4
H10—C9—H11	107.9	C30—C29—H42	109.4
C11—C10—C9	111.72 (14)	C28—C29—H43	109.4
C11—C10—H12	109.3	С30—С29—Н43	109.4
С9—С10—Н12	109.3	H42—C29—H43	108.0
C11—C10—H13	109.3	C25—C30—C29	110.77 (13)
С9—С10—Н13	109.3	C25—C30—H44	109.5
Н12—С10—Н13	107.9	C29—C30—H44	109.5
C10-C11-C12	111.46 (14)	C25—C30—H45	109.5
C10-C11-H14	109 3	C_{29} C_{30} H45	109.5
C_{12} C_{11} H_{14}	109.3	H44 - C30 - H45	108.1
C10-C11-H15	109.3	N4-C31-C36	112 40 (13)
C_{12} C_{11} H_{15}	109.3	N4 C31 C32	108.07(13)
H14_C11_H15	109.5	C_{36}	111 00 (14)
C7 C12 C11	110.16 (12)	NA C21 H46	108 /
$C_7 = C_{12} = C_{11}$	100.6	$C_{26} C_{21} = U_{46}$	100.4
$C_1 = C_1 $	107.0	$C_{20} = C_{21} = H_{40}$	100.4
$C_{1} = C_{12} = H_{12}$	109.0	$C_{21} = C_{22} = C_{22}$	100.4
$U_1 - U_1 - U_1 - U_1 - U_1$	109.0	(31-(32-(33	111.49 (13)

C11—C12—H17	109.6	С31—С32—Н47	109.3
H16—C12—H17	108.1	С33—С32—Н47	109.3
N2-C13-C14	110.21 (13)	C31—C32—H48	109.3
N2-C13-C18	111.59 (13)	С33—С32—Н48	109.3
C14—C13—C18	111.26 (14)	H47—C32—H48	108.0
N2—C13—H18	107.9	C34—C33—C32	111.75 (14)
C14—C13—H18	107.9	С34—С33—Н49	109.3
C18—C13—H18	107.9	С32—С33—Н49	109.3
C13—C14—C15	110.26 (13)	С34—С33—Н50	109.3
C13—C14—H19	109.6	С32—С33—Н50	109.3
C15—C14—H19	109.6	H49—C33—H50	107.9
C13—C14—H20	109.6	C33—C34—C35	110.85 (14)
C15—C14—H20	109.6	С33—С34—Н51	109.5
H19—C14—H20	108.1	С35—С34—Н51	109.5
C16—C15—C14	111.69 (14)	С33—С34—Н52	109.5
C16—C15—H21	109.3	С35—С34—Н52	109.5
C14—C15—H21	109.3	H51—C34—H52	108.1
C16-C15-H22	109.3	C_{34} C_{35} C_{36}	110.99 (14)
C14-C15-H22	109.3	C34—C35—H53	109.4
H_{21} —C15—H22	107.9	C36—C35—H53	109.4
C_{15} C_{16} C_{17}	111 43 (14)	C_{34} C_{35} H_{54}	109.1
$C_{15} = C_{16} = H_{23}$	109 3	C_{36} C_{35} H_{54}	109.1
C17 - C16 - H23	109.3	H53-C35-H54	109.4
C_{15} C_{16} H_{24}	109.3	C_{31} C_{36} C_{35}	110.63 (13)
C17 - C16 - H24	109.3	C_{31} C_{36} H_{55}	109.5
H_{23} $-C_{16}$ H_{24}	108.0	C35-C36-H55	109.5
C_{16} C_{17} C_{18}	110.53(14)	C31_C36_H56	109.5
$C_{10} = C_{17} = C_{18}$	109.5	C35_C36_H56	109.5
C18 - C17 - H25	109.5	H55-C36-H56	109.5
$C_{16} - C_{17} - H_{26}$	109.5	C1N1C7	116 72 (13)
$C_{10} = C_{17} = H_{20}$	109.5	C1 = N1 = C7	110.72(13) 123.07(11)
$H_{25} = C_{17} = H_{26}$	109.5	C7 N1 Eq.	123.97(11) 110.20(10)
1125 - C17 - 1120	100.1	$C_1 = N_1 = C_1^2$	119.30(10) 124.24(14)
$C_{13} = C_{16} = C_{17}$	100.5	C1 = N2 = C13	124.24(14)
$C_{13} = C_{16} = H_{27}$	109.5	C12 N2 H1	117.7(14)
C12 - C18 - H27	109.5	C_{13} N_2 C_{25}	110.7(14)
$C_{13} - C_{16} - H_{28}$	109.5	$C_{19} = N_{3} = C_{23}$	117.00(13) 122.80(11)
17 - 18 - 128	109.5	C19— $N3$ — $FeC25 N2 E_2$	123.00(11)
$H_2/-C_{10}-H_{20}$	100.1 122.01 (14)	C_{23} —N3—Fe	119.04(10)
N3-C19-N4	122.01(14)	C19 N4 U20	120.11 (13)
N3-C19-C20	121.38 (14)	C19 - N4 - H29	117.3 (13)
N4—C19—C20	116.41 (14)	C_{31} N4 H29	116.6 (13)
$C_2 I = C_2 U = C_1 Y$	1/4./8(1/)		108.64 (6)
$C_{20} - C_{21} - C_{22}$	1//.90(18)	N1 - Fe - C12	114.76(5)
$C_{21} - C_{22} - C_{23}$	119.33 (16)	N3—Fe—CI2	106.66 (5)
C21—C22—C24	118.22 (15)	NI—Fe—CII	105.69 (5)
C23—C22—C24	58.66 (12)	N3—Fe—CII	114.71 (5)
C21—C22—H30	116.1	Cl2—Fe—Cl1	106.61 (4)

C3-C4-C5-C6	-107.90(17)	$C_{31} - C_{32} - C_{33} - C_{34}$	54 38 (19)
C_{3} C_{4} C_{6} C_{5}	107.90(17) 108.49(17)	C_{32} C_{33} C_{34} C_{35}	-54.99(19)
N1 - C7 - C8 - C9	-17950(13)	C_{33} C_{34} C_{35} C_{36}	56 42 (19)
$C_{12} = C_7 = C_8 = C_9$	57 43 (17)	$N_{4} = C_{31} = C_{36} = C_{35}$	177.45(13)
$C_{12} = C_{7} = C_{3} = C_{3}$	-53.02(10)	C_{32} C_{31} C_{36} C_{35}	56 28 (18)
$C^{8} = C^{10} = C^{10}$	53.92(19)	$C_{32} - C_{31} - C_{30} - C_{33}$	57.25 (10)
	52.2 (2)	$C_{34} - C_{33} - C_{30} - C_{31}$	-37.23 (19)
C9—C10—C11—C12	-54.00 (19)	N2C1N1C7	-173.40 (14)
N1—C7—C12—C11	178.12 (13)	C2—C1—N1—C7	5.2 (2)
C8—C7—C12—C11	-59.07 (18)	N2—C1—N1—Fe	5.9 (2)
C10—C11—C12—C7	57.54 (18)	C2-C1-N1-Fe	-175.49 (11)
N2-C13-C14-C15	179.28 (13)	C12—C7—N1—C1	-151.55 (14)
C18—C13—C14—C15	-56.38 (18)	C8—C7—N1—C1	85.76 (17)
C13—C14—C15—C16	55.25 (19)	C12—C7—N1—Fe	29.09 (16)
C14—C15—C16—C17	-55.31 (19)	C8—C7—N1—Fe	-93.61 (13)
C15—C16—C17—C18	55.58 (19)	N1-C1-N2-C13	-167.61 (15)
N2-C13-C18-C17	-178.89 (14)	C2-C1-N2-C13	13.7 (2)
C14—C13—C18—C17	57.55 (18)	C14—C13—N2—C1	-156.41 (15)
C16—C17—C18—C13	-56.52 (19)	C18—C13—N2—C1	79.44 (19)
C21—C22—C23—C24	107.03 (19)	N4—C19—N3—C25	-175.90 (14)
C21—C22—C24—C23	-108.9 (2)	C20-C19-N3-C25	5.0 (2)
N3—C25—C26—C27	178.69 (13)	N4—C19—N3—Fe	0.3 (2)
C30—C25—C26—C27	55.11 (18)	C20-C19-N3-Fe	-178.76 (11)
C25—C26—C27—C28	-55.9 (2)	C26—C25—N3—C19	85.50 (17)
C26—C27—C28—C29	56.7 (2)	C30-C25-N3-C19	-150.99 (14)
C27—C28—C29—C30	-57.4 (2)	C26—C25—N3—Fe	-90.90 (14)
N3—C25—C30—C29	-178.35 (13)	C30—C25—N3—Fe	32.62 (16)
C26—C25—C30—C29	-55.34 (18)	N3-C19-N4-C31	-177.79 (14)
C28—C29—C30—C25	56.85 (19)	C20-C19-N4-C31	1.3 (2)
N4—C31—C32—C33	-178.60 (13)	C36—C31—N4—C19	84.39 (19)
C36-C31-C32-C33	-54.92 (18)	C32—C31—N4—C19	-152.79 (15)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N2—H1…Cl2	0.84 (2)	2.42 (2)	3.2511 (19)	169 (2)
N4—H29…Cl1	0.85 (2)	2.41 (2)	3.2459 (18)	170 (2)
C22—H30····Cl1 ⁱ	1.00	2.90	3.744 (3)	143
C35—H53…C11 ⁱ	0.99	3.05	3.613 (2)	118
C28—H40…C12 ⁱⁱ	0.99	2.91	3.699 (2)	138

Symmetry codes: (i) -x+1, y-1/2, -z+3/2; (ii) -x, y-1/2, -z+3/2.

Dichloridobis(*N*,*N*'-dicyclohexyl-3-cyclopropylprop-2-ynamidine)cobalt(II) (6)

Crystal data	
$[CoCl_2(C_{18}H_{28}N_2)_2]$	b = 12.5574 (3) Å
$M_r = 674.67$ Monoclinic, $P2_1/c$	c = 20.8394 (5) A $\beta = 91.717$ (2)°
a = 13.8898 (3) Å	V = 3633.17 (15) Å ³

Z = 4 F(000) = 1444 $D_x = 1.233 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathcal{A} Cell parameters from 25049 reflections

Data collection

Stoe IPDS 2T	22018 measured reflections
diffractometer	7124 independent reflections
Radiation source: fine-focus sealed tube	5922 reflections with $I > 2\sigma(I)$
Detector resolution: 6.67 pixels mm ⁻¹	$R_{\rm int} = 0.042$
area detector scans	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
Absorption correction: numerical	$h = -15 \rightarrow 17$
X-Area and X-Red (Stoe & Cie, 2002)	$k = -15 \rightarrow 15$
$T_{\min} = 0.807, \ T_{\max} = 0.938$	$l = -25 \rightarrow 25$

Refinement

Hydrogen site location: mixed
H atoms treated by a mixture of independent
and constrained refinement
$w = 1/[\sigma^2(F_o^2) + (0.0426P)^2 + 1.0094P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.65 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\theta = 1.9 - 27.3^{\circ}$

 $\mu = 0.65 \text{ mm}^{-1}$ T = 153 K

 $0.39 \times 0.19 \times 0.10 \text{ mm}$

Rod, blue

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.68127 (13)	0.26772 (14)	0.01098 (8)	0.0221 (4)	
C2	0.68620 (13)	0.33626 (15)	-0.04462 (8)	0.0246 (4)	
C3	0.69022 (13)	0.39139 (14)	-0.09095 (8)	0.0238 (4)	
C4	0.69597 (14)	0.45734 (15)	-0.14694 (8)	0.0255 (4)	
H2	0.639622	0.453885	-0.177878	0.031*	
C5	0.74656 (15)	0.56342 (15)	-0.14185 (9)	0.0314 (4)	
H3	0.720164	0.623037	-0.168012	0.038*	
H4	0.774340	0.584306	-0.099389	0.038*	
C6	0.79318 (16)	0.47400 (17)	-0.17614 (10)	0.0357 (5)	
H5	0.849734	0.439518	-0.154864	0.043*	
H6	0.795549	0.478255	-0.223499	0.043*	
C7	0.84593 (13)	0.30851 (14)	0.03345 (8)	0.0216 (4)	
H7	0.829147	0.375167	0.009358	0.026*	
C8	0.90582 (13)	0.33917 (15)	0.09268 (8)	0.0242 (4)	
H8	0.923234	0.274419	0.117521	0.029*	
H9	0.867750	0.386219	0.120380	0.029*	

C9	0.99708 (14)	0.39662 (17)	0.07312 (9)	0.0311 (4)
H11	0.979370	0.464254	0.051400	0.037*
H10	1.036606	0.414083	0.112028	0.037*
C10	1.05599 (15)	0.3288(2)	0.02837(10)	0.0386 (5)
H13	1.111608	0.370733	0.013820	0.046*
H12	1 081342	0.266023	0.052129	0.046*
C11	0.99668(15)	0.29143(18)	-0.02980(9)	0.0344(5)
H15	1.035268	0 240872	-0.054871	0.041*
H14	0.980910	0.353300	-0.057618	0.041*
C12	0.90331(14)	0.23711(15)	-0.01041(8)	0.0275(4)
U12 H17	0.863810	0.23711(13)	-0.0/0300	0.0275 (4)
H16	0.018831	0.220094	0.049399	0.033*
C12	0.918031 0.50821 (12)	0.109400	-0.012003	0.035
U19	0.50651 (15)	0.24230 (13)	-0.01777(8)	0.0231(4)
П18 С14	0.323233	0.239981	-0.002842	0.030°
U14	0.44241 (14)	0.14592 (16)	-0.01981 (9)	0.0293 (4)
H19	0.42/183	0.124519	0.024470	0.035*
H20	0.4/53//	0.085598	-0.040437	0.035*
C15	0.34929 (14)	0.17201 (16)	-0.05751 (9)	0.0303 (4)
H22	0.364137	0.184913	-0.103020	0.036*
H21	0.305130	0.110251	-0.055881	0.036*
C16	0.29970 (14)	0.26938 (18)	-0.03075 (9)	0.0345 (5)
H24	0.242165	0.286411	-0.058018	0.041*
H23	0.277878	0.253451	0.013014	0.041*
C17	0.36628 (16)	0.36497 (17)	-0.02816 (10)	0.0369 (5)
H25	0.333240	0.425682	-0.007993	0.044*
H26	0.382614	0.386012	-0.072302	0.044*
C18	0.45860 (15)	0.33863 (16)	0.01048 (10)	0.0328 (4)
H27	0.502652	0.400597	0.010098	0.039*
H28	0.442784	0.323783	0.055614	0.039*
C19	0.84880 (13)	0.27434 (14)	0.25053 (8)	0.0213 (4)
C20	0.85597 (13)	0.34902 (14)	0.30319 (8)	0.0236 (4)
C21	0.85812 (14)	0.41499 (15)	0.34448 (8)	0.0259 (4)
C22	0.85834 (17)	0.49612 (17)	0.39270 (9)	0.0364 (5)
H30	0.922987	0.522900	0.407681	0.044*
C23	0.7774 (2)	0.57704 (18)	0.39069 (11)	0.0444 (6)
H31	0.793351	0.651330	0.402858	0.053*
H32	0.727111	0.569752	0.356306	0.053*
C24	0.7808(2)	0.4955(2)	0.44195(11)	0.0510(7)
H34	0.732534	0.437550	0.439489	0.061*
Н33	0.798758	0.519109	0.486029	0.061*
C25	0.68956 (13)	0.33810(15)	0.22933 (8)	0.001 0.0235(4)
H35	0.715959	0.403773	0.22053 (8)	0.0235 (4)
C26	0.713737 0.63157(14)	0.703773	0.250527	0.025
C20 H37	0.03137 (14)	0.37103 (13)	0.10902 (0)	0.0233(4) 0.021*
1137 Ц26	0.007337	0.307003	0.140504	0.031*
C27	0.075452	0.412041 0.44124 (17)	0.140374	0.031°
U20	0.54059 (15)	0.44134(17) 0.508102	0.10014 (9)	0.0330(3)
1120	0.570990	0.306103	0.20/9/4	0.040*
ПJУ	0.000120	0.400339	0.147040	0.040

C28	0.48268 (16)	0.3839 (2)	0.23505 (10)	0.0408 (5)
H40	0.429548	0.431574	0.247395	0.049*
H41	0.454034	0.320153	0.214098	0.049*
C29	0.54070 (16)	0.3506 (2)	0.29479 (10)	0.0420 (6)
H43	0.498800	0.310458	0.323824	0.050*
H42	0.564340	0.414812	0.317882	0.050*
C30	0.62621 (14)	0.28122 (17)	0.27699 (9)	0.0310 (4)
H44	0.664916	0.263746	0.316245	0.037*
H45	0.602324	0.213672	0.257887	0.037*
C31	1.01589 (13)	0.21371 (14)	0.28045 (8)	0.0223 (4)
H46	1.000389	0.228954	0.326094	0.027*
C32	1.08503 (14)	0.29842 (16)	0.25785 (9)	0.0296 (4)
H47	1.055450	0.369628	0.262519	0.036*
H48	1.097814	0.287215	0.211865	0.036*
C33	1.17997 (15)	0.29393 (16)	0.29703 (10)	0.0319 (4)
H50	1.224839	0.348128	0.280692	0.038*
H49	1.167746	0.310826	0.342464	0.038*
C34	1.22609 (14)	0.18423 (17)	0.29290 (10)	0.0323 (4)
H52	1.244067	0.170104	0.248086	0.039*
H51	1.285534	0.182371	0.320300	0.039*
C35	1.15711 (15)	0.09852 (16)	0.31466 (10)	0.0311 (4)
Н53	1.145601	0.107716	0.360982	0.037*
H54	1.186802	0.027682	0.308657	0.037*
C36	1.06089 (14)	0.10306 (15)	0.27715 (9)	0.0289 (4)
H56	1.071126	0.084213	0.231730	0.035*
H55	1.016155	0.050150	0.295016	0.035*
N1	0.75490 (11)	0.25596 (12)	0.05117 (7)	0.0213 (3)
N2	0.59761 (11)	0.21671 (13)	0.01815 (7)	0.0262 (3)
H1	0.5925 (16)	0.1765 (16)	0.0506 (9)	0.031*
N3	0.77203 (11)	0.26909 (11)	0.21253 (7)	0.0211 (3)
N4	0.92585 (11)	0.21171 (13)	0.24215 (7)	0.0232 (3)
H29	0.9211 (16)	0.1646 (15)	0.2125 (9)	0.028*
Co	0.75507 (2)	0.17118 (2)	0.13474 (2)	0.02071 (7)
Cl1	0.87506 (4)	0.04756 (3)	0.12921 (2)	0.02899 (11)
Cl2	0.61692 (4)	0.07705 (4)	0.14621 (2)	0.03201 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0268 (9)	0.0219 (8)	0.0176 (8)	-0.0004 (7)	0.0012 (7)	-0.0010 (6)
C2	0.0229 (9)	0.0268 (9)	0.0240 (9)	-0.0021 (8)	-0.0024 (7)	-0.0011 (7)
C3	0.0233 (9)	0.0248 (9)	0.0234 (9)	-0.0012 (7)	-0.0011 (7)	-0.0010 (7)
C4	0.0279 (10)	0.0252 (9)	0.0232 (8)	-0.0019 (8)	-0.0026 (7)	0.0047 (7)
C5	0.0367 (11)	0.0265 (10)	0.0310 (10)	-0.0053 (9)	0.0014 (8)	0.0010 (8)
C6	0.0396 (12)	0.0349 (11)	0.0330 (10)	0.0008 (10)	0.0105 (9)	0.0058 (9)
C7	0.0220 (9)	0.0234 (9)	0.0196 (8)	-0.0034 (7)	0.0007 (7)	0.0013 (7)
C8	0.0263 (9)	0.0264 (9)	0.0199 (8)	-0.0044 (8)	0.0012 (7)	-0.0021 (7)
C9	0.0273 (10)	0.0412 (11)	0.0248 (9)	-0.0108 (9)	-0.0008 (7)	-0.0020 (8)

C10	0.0245 (10)	0.0573 (14)	0.0342 (11)	-0.0047 (10)	0.0040 (8)	-0.0021 (10)
C11	0.0308 (11)	0.0451 (12)	0.0277 (9)	-0.0036 (9)	0.0081 (8)	-0.0068 (9)
C12	0.0285 (10)	0.0314 (10)	0.0227 (9)	-0.0033 (8)	0.0038 (7)	-0.0042 (7)
C13	0.0232 (9)	0.0290 (9)	0.0227 (8)	-0.0016 (8)	-0.0029 (7)	0.0026 (7)
C14	0.0273 (10)	0.0281 (10)	0.0323 (10)	-0.0023 (8)	-0.0014 (8)	0.0014 (8)
C15	0.0238 (9)	0.0354 (10)	0.0316 (10)	-0.0052 (8)	-0.0024 (8)	0.0019 (8)
C16	0.0248 (10)	0.0504 (13)	0.0282 (10)	0.0069 (9)	0.0013 (8)	0.0012 (9)
C17	0.0363 (12)	0.0352 (11)	0.0389 (11)	0.0105 (10)	-0.0014 (9)	-0.0026 (9)
C18	0.0343 (11)	0.0303 (10)	0.0335 (10)	0.0003 (9)	-0.0027 (8)	-0.0062 (8)
C19	0.0250 (9)	0.0219 (8)	0.0171 (8)	0.0009 (7)	0.0027 (7)	0.0018 (6)
C20	0.0242 (9)	0.0256 (9)	0.0211 (8)	0.0020 (8)	0.0006 (7)	0.0014 (7)
C21	0.0282 (10)	0.0280 (9)	0.0214 (8)	0.0023 (8)	-0.0002 (7)	0.0014 (7)
C22	0.0416 (12)	0.0371 (11)	0.0304 (10)	0.0013 (10)	-0.0008 (9)	-0.0133 (9)
C23	0.0635 (16)	0.0295 (11)	0.0404 (12)	0.0109 (11)	0.0054 (11)	-0.0069 (9)
C24	0.0733 (18)	0.0509 (14)	0.0297 (11)	0.0245 (13)	0.0150 (11)	-0.0016 (10)
C25	0.0246 (9)	0.0261 (9)	0.0200 (8)	0.0056 (8)	0.0010 (7)	0.0001 (7)
C26	0.0274 (10)	0.0292 (9)	0.0201 (8)	0.0069 (8)	0.0017 (7)	0.0026 (7)
C27	0.0367 (11)	0.0393 (11)	0.0247 (9)	0.0175 (9)	-0.0003 (8)	0.0022 (8)
C28	0.0305 (11)	0.0610 (15)	0.0313 (10)	0.0196 (11)	0.0069 (8)	0.0055 (10)
C29	0.0371 (12)	0.0635 (15)	0.0260 (10)	0.0199 (11)	0.0098 (9)	0.0089 (10)
C30	0.0280 (10)	0.0415 (11)	0.0238 (9)	0.0102 (9)	0.0046 (8)	0.0091 (8)
C31	0.0243 (9)	0.0239 (8)	0.0185 (8)	0.0026 (7)	-0.0019 (7)	0.0002 (7)
C32	0.0300 (10)	0.0267 (9)	0.0318 (10)	-0.0011 (8)	-0.0043 (8)	0.0069 (8)
C33	0.0287 (10)	0.0299 (10)	0.0366 (10)	-0.0046 (9)	-0.0070 (8)	0.0046 (8)
C34	0.0242 (10)	0.0399 (11)	0.0324 (10)	0.0027 (9)	-0.0030 (8)	-0.0040 (8)
C35	0.0306 (10)	0.0259 (9)	0.0365 (10)	0.0079 (8)	-0.0057 (8)	-0.0002 (8)
C36	0.0280 (10)	0.0233 (9)	0.0353 (10)	0.0018 (8)	-0.0021 (8)	-0.0022 (8)
N1	0.0217 (8)	0.0223 (7)	0.0198 (7)	-0.0024 (6)	0.0009 (6)	0.0000 (6)
N2	0.0230 (8)	0.0312 (8)	0.0242 (7)	-0.0041 (7)	-0.0040 (6)	0.0077 (6)
N3	0.0236 (8)	0.0213 (7)	0.0183 (7)	0.0027 (6)	0.0003 (6)	0.0023 (6)
N4	0.0241 (8)	0.0253 (8)	0.0200 (7)	0.0034 (7)	-0.0027 (6)	-0.0052 (6)
Co	0.02311 (13)	0.02012 (12)	0.01881 (12)	-0.00067 (10)	-0.00071 (9)	0.00079 (9)
Cl1	0.0338 (3)	0.0225 (2)	0.0304 (2)	0.00481 (19)	-0.00324 (18)	-0.00277 (17)
Cl2	0.0329 (3)	0.0295 (2)	0.0336 (2)	-0.0093 (2)	0.00000 (19)	0.00584 (18)

Geometric parameters (Å, °)

C1—N1	1.311 (2)	C20—C21	1.194 (3)
C1—N2	1.339 (2)	C21—C22	1.431 (3)
C1—C2	1.447 (2)	C22—C24	1.510 (3)
С2—С3	1.191 (3)	C22—C23	1.515 (3)
C3—C4	1.435 (2)	С22—Н30	1.0000
C4—C5	1.508 (3)	C23—C24	1.479 (3)
C4—C6	1.512 (3)	C23—H31	0.9900
C4—H2	1.0000	С23—Н32	0.9900
С5—С6	1.490 (3)	C24—H34	0.9900
С5—Н3	0.9900	C24—H33	0.9900
C5—H4	0.9900	C25—N3	1.487 (2)

С6—Н5	0.9900	C25—C26	1.522 (2)
С6—Н6	0.9900	C25—C30	1.524 (2)
C7—N1	1.483 (2)	С25—Н35	1.0000
C7—C8	1.517 (2)	C26—C27	1.527 (3)
C7—C12	1 523 (2)	C26—H37	0.9900
C7—H7	1 0000	C26—H36	0.9900
C_{8} C_{9}	1.525 (3)	C27 C28	1.522(3)
	0.0000	$C_{27} = C_{28}$	0.0000
C_{8} H0	0.9900	$C_{27} = H_{20}$	0.9900
$C_0 = C_{10}$	0.9900	C27—H39	0.9900
C9—C10	1.520 (3)	C28—C29	1.521 (3)
C9—H11	0.9900	C28—H40	0.9900
C9—H10	0.9900	C28—H41	0.9900
C10—C11	1.519 (3)	C29—C30	1.528 (3)
С10—Н13	0.9900	С29—Н43	0.9900
C10—H12	0.9900	C29—H42	0.9900
C11—C12	1.530 (3)	C30—H44	0.9900
C11—H15	0.9900	C30—H45	0.9900
C11—H14	0.9900	C31—N4	1.463 (2)
C12—H17	0.9900	C31—C32	1.517 (3)
C12—H16	0.9900	C31—C36	1.526 (3)
C13—N2	1.465 (2)	C31—H46	1.0000
C13—C14	1.517 (3)	C32—C33	1.531 (3)
C13—C18	1.520 (3)	С32—Н47	0.9900
С13—Н18	1.0000	C32—H48	0.9900
C14-C15	1 529 (3)	C_{33} C_{34}	1 523 (3)
C14—H19	0.9900	C33—H50	0.9900
C14H20	0.9900	C33_H49	0.9900
C15 C16	1 518 (3)	C_{34} C_{35}	1.510(3)
C15_H22	0.0000	C_{24} H52	0.0000
C15—H21	0.9900	C24 U51	0.9900
C13—H21	0.9900	C34—H31	0.9900
	1.515 (3)	C35—C36	1.529 (3)
C16—H24	0.9900	С35—Н53	0.9900
C16—H23	0.9900	С35—Н54	0.9900
C17—C18	1.530 (3)	С36—Н56	0.9900
С17—Н25	0.9900	C36—H55	0.9900
С17—Н26	0.9900	N1—Co	2.0412 (14)
C18—H27	0.9900	N2—H1	0.848 (15)
C18—H28	0.9900	N3—Co	2.0426 (14)
C19—N3	1.311 (2)	N4—H29	0.856 (15)
C19—N4	1.344 (2)	Co—Cl2	2.2725 (5)
C19—C20	1.445 (2)	Co—Cl1	2.2830 (5)
NI CI NO	122.55 (17)	C24 C22 1120	116.2
NI-CI-N2	122.55 (16)	C_{24} C_{22} H_{30}	116.2
NI-CI-C2	121.60 (16)	C23—C22—H30	116.2
N2—C1—C2	115.85 (16)	C24—C23—C22	60.54 (15)
C3—C2—C1	179.04 (19)	C24—C23—H31	117.7
C2—C3—C4	179.4 (2)	C22—C23—H31	117.7
C3—C4—C5	119.33 (16)	С24—С23—Н32	117.7

C3—C4—C6	118.63 (17)	С22—С23—Н32	117.7
C5—C4—C6	59.10 (13)	H31—C23—H32	114.8
С3—С4—Н2	116.0	C23—C24—C22	60.89 (16)
C5—C4—H2	116.0	C23—C24—H34	117.7
C6—C4—H2	116.0	С22—С24—Н34	117.7
C6—C5—C4	60.58 (13)	C23—C24—H33	117.7
С6—С5—Н3	117.7	С22—С24—Н33	117.7
C4—C5—H3	117.7	H34-C24-H33	114.8
C6-C5-H4	117.7	N3-C25-C26	111.25 (14)
C4-C5-H4	117.7	N3_C25_C30	110.13(15)
$H_3 C_5 H_4$	117.7	$C_{25} = C_{25} = C_{30}$	111.19(16)
113 - 03 - 114	60.33 (13)	$N_{20} = C_{20} = C_{30}$	108.0
C5 C6 H5	1177	13-225-1155	108.0
C_{3}	1177	$C_{20} = C_{23} = H_{33}$	108.0
C4-C0-H3	117.7	С30—С23—Н33	108.0
C_{2}	117.7	$C_{25} = C_{26} = C_{27}$	110.28 (14)
C4—C6—H6	11/./	C25—C26—H37	109.6
H5—C6—H6	114.9	С27—С26—Н37	109.6
N1—C7—C8	111.17 (13)	С25—С26—Н36	109.6
N1—C7—C12	110.67 (14)	С27—С26—Н36	109.6
C8—C7—C12	110.71 (15)	H37—C26—H36	108.1
N1—C7—H7	108.1	C28—C27—C26	111.21 (17)
С8—С7—Н7	108.1	С28—С27—Н38	109.4
С12—С7—Н7	108.1	С26—С27—Н38	109.4
С7—С8—С9	110.03 (14)	С28—С27—Н39	109.4
С7—С8—Н8	109.7	С26—С27—Н39	109.4
С9—С8—Н8	109.7	Н38—С27—Н39	108.0
С7—С8—Н9	109.7	C29—C28—C27	110.56 (19)
С9—С8—Н9	109.7	C29—C28—H40	109.5
H8—C8—H9	108.2	C27—C28—H40	109.5
C10—C9—C8	111.47 (17)	C29—C28—H41	109.5
С10—С9—Н11	109.3	C27—C28—H41	109.5
C8—C9—H11	109.3	H40—C28—H41	108.1
C10—C9—H10	109.3	C28—C29—C30	110.79 (16)
C8—C9—H10	109.3	C28—C29—H43	109.5
H11—C9—H10	108.0	C_{30} C_{29} H43	109.5
C11 - C10 - C9	111 94 (18)	C_{28} C_{29} H42	109.5
$C_{11} - C_{10} - H_{13}$	109.2	$C_{20} = C_{29} = H_{42}$	109.5
C_{0} C_{10} H_{13}	109.2	$H_{43} = C_{29} = H_{42}$	109.5
$C_{11} = C_{10} = H_{12}$	109.2	$C_{25} = C_{30} = C_{29}$	100.1
$C_{10} = C_{10} = H_{12}$	109.2	$C_{25} = C_{30} = C_{25}$	100 4
	109.2	$C_{23} = C_{30} = H_{44}$	109.4
HI3-CI0-HI2	107.9	C29—C30—H44	109.4
	111./5 (16)	C25—C30—H45	109.4
C10—C11—H15	109.3	C29—C30—H45	109.4
C12—C11—H15	109.3	H44—C30—H45	108.0
C10—C11—H14	109.3	N4—C31—C32	112.41 (14)
C12—C11—H14	109.3	N4—C31—C36	107.71 (15)
H15—C11—H14	107.9	C32—C31—C36	111.12 (16)
C7—C12—C11	111.04 (16)	N4—C31—H46	108.5

С7—С12—Н17	109.4	С32—С31—Н46	108.5
C11—C12—H17	109.4	С36—С31—Н46	108.5
C7—C12—H16	109.4	C31—C32—C33	110.59 (15)
C11—C12—H16	109.4	С31—С32—Н47	109.5
H17—C12—H16	108.0	С33—С32—Н47	109.5
N2-C13-C14	109.88 (15)	C31—C32—H48	109.5
N2—C13—C18	111.35 (15)	С33—С32—Н48	109.5
C14—C13—C18	111.41 (16)	H47—C32—H48	108.1
N2—C13—H18	108.0	C34—C33—C32	111.12 (16)
C14—C13—H18	108.0	С34—С33—Н50	109.4
C18—C13—H18	108.0	С32—С33—Н50	109.4
C13—C14—C15	110.11 (16)	С34—С33—Н49	109.4
C13—C14—H19	109.6	С32—С33—Н49	109.4
C15—C14—H19	109.6	Н50—С33—Н49	108.0
C13 - C14 - H20	109.6	C_{35} — C_{34} — C_{33}	110 73 (16)
C_{15} C_{14} H_{20}	109.6	C35—C34—H52	109 5
H_{19} $-C_{14}$ H_{20}	108.2	C_{33} C_{34} H_{52}	109.5
C_{16} C_{15} C_{14}	111 73 (16)	$C_{35} = C_{34} = H_{51}$	109.5
$C_{10} = C_{15} = C_{14}$	100.3	$C_{33} = C_{34} = H_{51}$	109.5
$C_{10} = C_{15} = H_{22}$	109.3	H52 C24 H51	109.5
$C_{14} = C_{15} = H_{21}$	109.3	1132 - 0.54 - 1151	100.1 111.74(16)
$C_{10} = C_{13} = H_{21}$	109.3	$C_{24} = C_{25} = C_{30}$	100.2
$H_{12} = C_{15} = H_{21}$	109.5	$C_{34} = C_{35} = H_{53}$	109.3
$H_{22} - C_{13} - H_{21}$	107.9	Сзо-Сз5-Н55	109.5
CI/-CI6-CI5	111.59 (16)	С34—С35—Н54	109.3
С17—С16—Н24	109.3	С36—С35—Н54	109.3
C15—C16—H24	109.3	H53—C35—H54	107.9
С17—С16—Н23	109.3	C31—C36—C35	111.34 (16)
С15—С16—Н23	109.3	С31—С36—Н56	109.4
H24—C16—H23	108.0	С35—С36—Н56	109.4
C16—C17—C18	110.40 (17)	C31—C36—H55	109.4
C16—C17—H25	109.6	С35—С36—Н55	109.4
C18—C17—H25	109.6	H56—C36—H55	108.0
С16—С17—Н26	109.6	C1—N1—C7	116.47 (14)
C18—C17—H26	109.6	C1—N1—Co	125.79 (12)
H25—C17—H26	108.1	C7—N1—Co	117.74 (11)
C13—C18—C17	110.58 (16)	C1—N2—C13	124.21 (15)
C13—C18—H27	109.5	C1—N2—H1	117.9 (16)
C17—C18—H27	109.5	C13—N2—H1	116.6 (16)
C13—C18—H28	109.5	C19—N3—C25	116.56 (14)
C17—C18—H28	109.5	C19—N3—Co	125.60 (12)
H27—C18—H28	108.1	C25—N3—Co	117.81 (11)
N3—C19—N4	121.93 (16)	C19—N4—C31	126.16 (15)
N3—C19—C20	121.86 (16)	C19—N4—H29	117.0 (15)
N4—C19—C20	116.20 (16)	C31—N4—H29	116.8 (15)
$C_{21} - C_{20} - C_{19}$	175.8 (2)	N1—Co—N3	111.12 (6)
C_{20} C_{21} C_{22}	178.0 (2)	$N1 - C_0 - C_1^2$	112.43 (4)
$C_{21} - C_{22} - C_{24}$	119.2 (2)	N3—Co—Cl2	107 90 (4)
$C_{21} = C_{22} = C_{23}$	118 18 (10)	$N1 - C_0 - C_{11}$	107.08 (4)
021 - 022 - 023	110.10 (19)		107.00 (+)

C24—C22—C23	58.57 (15)	N3—Co—Cl1	112.48 (4)
С21—С22—Н30	116.2	Cl2—Co—Cl1	105.76 (2)
C3—C4—C5—C6	107.7 (2)	C31—C32—C33—C34	57.3 (2)
C3—C4—C6—C5	-108.88 (19)	C32—C33—C34—C35	-56.4 (2)
N1—C7—C8—C9	-177.91 (15)	C33—C34—C35—C36	55.0 (2)
C12—C7—C8—C9	58.6 (2)	N4-C31-C36-C35	178.57 (15)
C7—C8—C9—C10	-57.1 (2)	C32—C31—C36—C35	55.0 (2)
C8—C9—C10—C11	54.2 (2)	C34—C35—C36—C31	-54.4 (2)
C9-C10-C11-C12	-52.3 (3)	N2-C1-N1-C7	173.79 (16)
N1-C7-C12-C11	179.12 (15)	C2-C1-N1-C7	-5.4 (2)
C8—C7—C12—C11	-57.1 (2)	N2—C1—N1—Co	-5.6 (2)
C10-C11-C12-C7	53.7 (2)	C2—C1—N1—Co	175.14 (12)
N2-C13-C14-C15	-179.74 (15)	C8—C7—N1—C1	150.77 (16)
C18—C13—C14—C15	56.4 (2)	C12—C7—N1—C1	-85.76 (19)
C13—C14—C15—C16	-55.0 (2)	C8—C7—N1—Co	-29.76 (18)
C14—C15—C16—C17	55.4 (2)	C12—C7—N1—Co	93.71 (15)
C15—C16—C17—C18	-55.7 (2)	N1-C1-N2-C13	167.74 (17)
N2-C13-C18-C17	179.27 (16)	C2-C1-N2-C13	-13.0 (3)
C14—C13—C18—C17	-57.7 (2)	C14—C13—N2—C1	156.28 (17)
C16—C17—C18—C13	56.6 (2)	C18—C13—N2—C1	-79.8 (2)
C21—C22—C23—C24	108.7 (2)	N4—C19—N3—C25	176.46 (15)
C21—C22—C24—C23	-107.0 (2)	C20-C19-N3-C25	-4.6 (2)
N3—C25—C26—C27	179.25 (16)	N4—C19—N3—Co	-1.4 (2)
C30—C25—C26—C27	56.1 (2)	C20—C19—N3—Co	177.62 (12)
C25—C26—C27—C28	-56.9 (2)	C26—C25—N3—C19	149.59 (16)
C26—C27—C28—C29	57.3 (2)	C30-C25-N3-C19	-86.66 (19)
C27—C28—C29—C30	-56.5 (3)	C26—C25—N3—Co	-32.41 (18)
N3—C25—C30—C29	-179.81 (16)	C30—C25—N3—Co	91.34 (15)
C26—C25—C30—C29	-56.0 (2)	N3-C19-N4-C31	177.89 (16)
C28—C29—C30—C25	56.0 (3)	C20-C19-N4-C31	-1.1 (3)
N4—C31—C32—C33	-177.17 (15)	C32—C31—N4—C19	-83.8 (2)
C36—C31—C32—C33	-56.4 (2)	C36—C31—N4—C19	153.48 (17)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D^{\dots}A$	D—H···A
N2—H1…Cl2	0.85 (2)	2.37 (2)	3.1979 (16)	166 (2)
N4—H29…Cl1	0.86 (2)	2.35 (2)	3.1917 (15)	168 (2)
C22—H30…C11 ⁱ	1.00	2.95	3.800 (2)	144
C33—H49…C11 ⁱ	0.99	3.09	3.628 (2)	115
C28—H40····Cl2 ⁱⁱ	0.99	2.96	3.758 (2)	139

Symmetry codes: (i) -x+2, y+1/2, -z+1/2; (ii) -x+1, y+1/2, -z+1/2.