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Abstract: Mesenchymal stem cells (MSCs) have been developed as cell therapeutics for various im-
mune disorders using their immunoregulatory properties mainly exerted by their paracrine functions.
However, variation among cells from different donors, as well as rapid clearance after transplantation
have impaired the uniform efficacy of MSCs and limited their application. Recently, several strategies
to overcome this limitation have been suggested and proven in pre-clinical settings. Therefore,
in this review article, we will update the knowledge on bioengineering strategies to improve the
immunomodulatory functions of MSCs, including genetic modification and physical engineering.
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1. Introduction

Mesenchymal stem cells (MSCs) are the multipotent adult stromal cells that can self-
renew and differentiate into various cell types of the mesodermal lineage. Moreover,
MSCs have been revealed to possess unique immunomodulatory properties through a
broad spectrum of mechanisms including cell-to-cell contact and mediation of soluble
factors [1,2], rendering them an attractive candidate for cellular therapy for a wide range
of immune-related diseases. Indeed, a variety of innate immune cells including mono-
cytes/macrophages, dendritic cells (DC), natural killer (NK) cells and adaptive immune
cells such as T cells and B cells are polarized to the inactive or inflammation-resolving
state by MSCs [3]. In particular, growing attention has been paid to the paracrine capacity
of MSCs in this context since several MSC-derived paracrine factors are associated with
their immunomodulatory effects [4]. For instance, indoleamine 2,3-dioxygenase (IDO)
and prostaglandin E2 (PGE2) derived from MSCs participate in the suppression of pro-
inflammatory macrophage polarization, T cell proliferation and NK cell cytotoxicity [5,6],
while MSC-derived transforming growth factor-β (TGF-β) leads to the systemic immune
tolerance via inducing the regulatory T cells [7].

At present, hundreds of clinical trials have been conducted to treat immune-mediated
disease with MSCs; however, the clinical application of MSCs often fails to recapitulate
therapeutic potential for immunomodulation despite the promising results from in vitro
and animal studies, partially due to their heterogeneity according to originated sources and
diversity of delivery methods (e.g., cell dose, injection route and treatment frequency) [8].
Dynamic interaction between transfused MSCs and unfavorable host microenvironments
such as nutrient deficiency, hypoxia and extensive inflammatory stimuli also changes the
characteristics of MSCs, reducing the benefit of cell therapy [9]. Therefore, strict quality
management of MSCs and standardization of their potency in vivo must precede the prac-
tical application to achieve reproducible and successful clinical outcomes as demonstrated
in the preliminary settings [10,11]. In addition, it is necessary to explore novel strategies to
strengthen the therapeutic capacity of MSCs. This review summarizes the state-of-the-art
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engineering technologies for the clinical translation of MSCs, with a focus on enhancing
their paracrine activity.

2. Immunomodulatory Property of MSCs
2.1. Interaction between MSCs and Innate Immune Cells
2.1.1. Macrophage

Macrophage are the crucial cell component in the innate immune system with signif-
icant plasticity. The activation state of macrophages can be divided into two directions:
classically polarization towards M1 (pro-inflammatory subtype) or alternatively activated
M2 type (anti-inflammatory subtype) [12]. In general, MSCs tend to inhibit M1 type
while inducing M2 type, contributing to the resolution of inflammation and further tissue
regeneration [13]. In this context, MSC-derived paracrine factors such as indoleamine
2,3-dioxygenase (IDO) and prostaglandin E2 (PGE2) play a significant role [14]. In addi-
tion, transforming growth factor-β (TGF-β) pathway is involved in the M2 macrophage
differentiation process induced by MSCs [15].

2.1.2. Myeloid Dendritic Cells (DCs)

DCs play as antigen-presenting cells (APCs), linking the innate- and adaptive immune
system cascade [16]. MSCs can compromise their APC function via the suppression of
differentiation, maturation and migration of DCs; MSCs inhibit the differentiation of
monocytes to DCs by suppressing their expression of Major Histocompatibility Complex II
(MHC II), CD1-α, CD80 and CD86 and IL-12 [17]. Similar to macrophage polarization, MSCs
can induce DCs into an anti-inflammatory phenotype through downregulating the pro-
inflammatory factors (i.e., TNF-α and IL-12) and upregulating the anti-inflammatory factors
(i.e., IL-10) in DCs [18]. In addition, MSCs prevent LPS-mediated maturation of DCs and
induces regulatory DC population in a hepatic growth factor (HGF)-dependent manner [19].

2.1.3. Natural Killer (NK) Cells

Natural killer (NK) cells are the key effector cells possessing both cytotoxic lymphocyte
function and anti-tumor/anti-viral capacity in the innate immune system [20,21]. Notably,
MSCs exert potent inhibitory functions on NK cell proliferation, differentiation and mi-
gration and these suppressive impact of MSCs on NK cells are mediated by MSC-derived
general immunomodulating factors including IDO, PGE2 and human leukocyte antigen-G5
(HLA-G5) [22,23]. Interestingly, NK cell-derived IL-12- or IL-18 promotes IFN-γ secretion,
which would further enhance C-C Motif Chemokine Ligand 2 (CCL2) expression and
immunomodulatory capacity of MSCs [24].

2.1.4. Neutrophils

Neutrophils are abundantly found in the bloodstream and are regarded as the key
players during acute inflammation [25], defending the invading microorganisms, while
they also function as APCs to trigger the adaptive immune response [26]. MSCs provide
some protective effects on neutrophils against apoptosis and promote their recruitment
to the bone marrow through the recreation of IL-6, IL-8 and macrophage migration in-
hibitory factor (MIF) [27]. On the contrary, some reports have shown that MSCs play
the opposite role since they would impede neutrophils’ recruitment and functionality
in terms of extracellular trap formation and protease secretion by secreting superoxide
dismutase-3 (SOD-3) [28]. Thus, neutrophils modulation by MSCs might depend on the
immunophenotype of MSCs.

2.2. Interaction between MSCs and Adaptive Immune Cells
2.2.1. T Cells

In general, MSCs suppress T-cell proliferation (both CD4+ and CD8+ T cell subsets)
and activation regardless of their originated species and tissue types. As mentioned
in Section 2.1.2., MSCs inhibit DC maturation and, in turn, reduce the T cell activation.
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MSCs expressing HLA-G1 and TGF-β inhibit T-cell proliferation by reducing cell-cycle
associated components such as phospho-retinoblastoma (pRb), cyclin D and cyclin A,
resulting in growth arrest in the G1 phase [29]. PD-L1 secreted by MSCs also acts on T
cell apoptosis and influences an irreversible T cell hypo- responsiveness [30]. In terms
of helper T cell subtype, MSCs can interfere with the differentiation of pro-inflammatory
Th1 to anti-inflammatory Th2 condition [31]. MSCs inhibit Th1 type pro-inflammatory
factor expression (I.e. IFN-γ, TNF-α and IL-1β) and induce an increase in IL-10 levels
and thus, enhancing Th2 type factor expression. MSCs also inhibit the differentiation and
function of Th17 cells by de-activating the signal transducer and activator of transcription 3
(STAT3) pathway through PD-1, IL-10, CCL2 or suppressor of cytokine signaling 3 (SOCS3)
expression [32]. MSCs are known to directly induce the differentiation of regulatory T
cells (Treg), T cells mainly involved in T cell suppression and immunomodulation for
maintenance of homeostasis [33], through the TLR-Notch pathway and the secretion of
IL-10, TGF-β1, IDO and inducible nitric oxide synthase (iNOS) [34]. In addition, MSCs
suppress the secretion of pro-inflammatory cytokines including interferon-γ (IFN-γ), IL-22
and IL-17, but promote IL-10 production by Th1 and Th17 cells, inducing the generation
of Treg [35].

2.2.2. B Cells

MSCs affect differentiation, proliferation, reduce cell cycle arrest, impaired plasma cell
generation and compromised the immunoglobulin-secreting ability of B cells [36]. MSCs
inhibit STAT3 activation and induces PAX5 expression via CCL2 secretion to suppress
immunoglobulin synthesis in B cells [37]. MSCs secrete IL-1 receptor antagonist (IL-1Ra)
and PD-L1 to inhibit B-cell differentiation [38]. Finally, MSCs drive the induction of
regulatory B cells (Bregs) or naïve B cells with memory function and IL-10 derived from
the Breg further enhances the immunomodulation of MSCs via converting effector T cells
into Tregs [39,40].

2.3. MSC-Derived Immune Modulators

MSCs display immunomodulatory phenotype partially via the secretion of immune-
associated bioactive factors depending on the context of the microenvironment. These
soluble factors include a diverse multitude of cytokines, growth factors, chemokines and
hormones, which combine to modulate the immune system [41].

PGE2 is regarded as one of the most potent, key immunosuppressive factors of
MSCs. It is generated from the arachidonic acid in the membrane phospholipids by
cyclooxygenase-1 and 2 (COX-1 and COX-2) and prostaglandin synthase [42]. MSC-derived
PGE2 modulates the direction of macrophage polarization from the pro-inflammatory
phenotype M1 into the anti-inflammation phenotype M2 and exerting the inhibitory effects
of MSCs on DCs by inducing up-regulation of IL-10 secretion from DCs [43]. In addition,
PGE2 inhibits T cell proliferation, Th17 cell differentiation and NK cell cytotoxicity [44].

MSC-derived IDO plays immunosuppressive roles against various immune cells,
including Macrophages, DCs, T cells and NK cells [6]. IDO catalyzes the conversion of
tryptophan to kynurenine, which inhibits the proliferation of immune cells. IDO leads to T
cell suppression by skewing the pro-inflammatory Th1 state to the anti-inflammatory Th2
condition [6]. IDO secretion by MSCs inhibits NK cell activation as well as the maturation
of DC and M1 macrophages [45].

Finally, MSCs express iNOS, which metabolizes L-arginine into citrulline and produces
NO, which suppresses the secretion of pro-inflammatory cytokines and T cell prolifera-
tion [46]. Upon exposure to pro-inflammatory cytokines in vitro, MSCs produce high
amounts of NO to suppress the proliferation and modulation of T cells and other im-
mune cells [47,48].
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3. Clinical Application of MSCs for Immune-Associated Disorders

Given that MSCs exhibit an impressive immunomodulatory role in a context-dependent
manner in pre-clinical settings, the practical efficacy of MSC application has been evaluated
over the past decade. Statistically, bone-marrow (BM) is a dominant source for MSCs, while
umbilical cord (UC) and adipose-tissue (AD)-derived MSCs are also frequently used in
clinical trials [49]. The injection route is largely divided into intravenous systemic delivery
and local delivery (i.e., intrathecal, intramuscular and intra-articular injection) [11,49]. The
local injection of MSCs enables direct targeting of the problematic lesion but it is usually
invasive and impedes the viability as well as engraftment of MSCs due to the harsh mi-
croenvironment [11]. On the contrary, systemic administration of MSCs can be a feasible
option in various clinical circumstances and provides flexibility in terms of injection vol-
ume, dose and frequency. The major drawback of the intravenous route is the insufficient
migration of MSCs to the target lesion. Indeed, most of the intravenously introduced cells
are trapped in the lung and cleared by resident macrophages, which significantly dampens
the therapeutic efficacy of MSC application [50,51]. In addition, undesirable immune
responses so-called “instant blood-mediated inflammatory reaction” triggered by systemic
MSC transplantation can elicit safety concerns [51]. Therefore, intensive monitoring of
the injected cell fate as well as host response should be followed to overcome the current
limitation and improve the therapeutic as observed in the preclinical investigation.

To mitigate and/or control the disabilities in the immune system with MSC application,
several clinical trials targeting various intractable autoimmune disorders and inflammatory
diseases such as graft-versus-host disease (GvHD), multiple sclerosis (MS), inflammatory
bowel diseases (IBD) and systemic lupus erythematosus (SLE) have been conducted in
MSC therapeutic felid (Table 1).

3.1. Graft-Versus-Host Disease (GvHD)

GvHD is a major cause of death after hematopoietic stem cell transplantation (HSCT)
and is the result of donor-derived hematopoietic stem cell mounting an alloreactive re-
sponse against host tissues and organs. GvHD is characterized by the immune response
of helper T cells, showing the typical characteristics of autoimmune diseases [52]. Owing
to the innate supporting and immunomodulatory role of MSCs for HSCs in the bone
marrow, transplantation of MSCs has been applied to manage this complication and a total
of 46 studies have been enrolled for the clinical trials (to February 2021, clinicaltrials.gov.
6 March 2021).

3.2. Multiple Sclerosis (MS)

MS is an autoimmune disorder with chronic, progressive inflammation in the central
nervous system. The etiology is unknown, but autoimmune responses mainly of CD4+T
cells that migrate from the periphery attack myelin-based protein, leading to demyelination
and, in turn, neurodegeneration [53]. Since MSC application in the EAE model, the
representative MS-recapitulating animal model, has been proven effective with promising
outcomes, about 50 clinical trials have been conducted to estimate the therapeutic role of
MSCs for treating MS (to February 2021, clinicaltrials.gov. 6 March 2021).

3.3. Inflammatory Bowel Diseases (IBD)

IBD is a chronic inflammatory disorder of the gastrointestinal tract associated with
multifactorial conditions, such as ulcerative colitis (UC) and Chrohn’s disease (CD) [54].
The development and progression of IBD is influenced by numerous factors, such as the
dysfunction of mucosal T cells, impairment in the mucosal/epithelial barrier, intestinal
infections and dysbiosis [55]. The paracrine functions of MSCs can remedy these com-
plications in various ways. A total of 34 clinical trials to treat IBD with MSCs have been
conducted so far (to February 2021, clinicaltrials.gov. 6 March 2021). MSCs are provided
IL-12 and TGF-β to control the function of NK cells and restrained the proliferation of B
lymphocytes via promoting the expression of CD40 in colitis [56,57]. Nod-like receptor
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signaling pathway would be activated by MSCs to boost the PGE2 expression and reduce
the multiplication of monocyte [58]. MSCs also secrete TGF-β to transform the phenotype
of macrophages from M1, identified as pro-inflammatory properties, to M2. In the mean-
time, MSCs were able to secret TGF-β and IL-10 to inhibit the T cell activation and promote
regulatory T cells [59]. Therefore, the therapeutic actions of MSC-paracrine factors are
largely dependent on their immunomodulatory capacity in IBD.

3.4. Systemic Lupus Erythematosus (SLE)

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized
by activation of B and T lymphocytes [60]. SLE is accompanied by the formation of
immune complexes, tissue inflammation in multiple organs and high levels of serum
pro-inflammatory cytokines. In addition, Tregs and T helper 17 cells play important roles
in the pathogenesis of SLE [61]. So far, about 15 cases of clinical trials for SLE have been
performed with MSC application (to February 2021, clinicaltrials.gov. 6 March 2021).
Recent clinical studies have revealed that UC MSCs up-regulate Foxp3 + Treg cell and
down-regulate Th17 cells through the regulation of TGF- β and PGE2 in SLE [44].

Table 1. Examples of clinical trials for the treatment of immune-mediated diseases using MSCs.

Disease Origin of MSCs Clinical Trial Number Phase MSC-Derived
Soluble Factors

Alteration in the
Immune System References

GvHD Allogeneic
MSCs NCT01522716 II CXCL9 ↑

CXCL10 ↑
Naïve CD4 Tcell ↑

Naïve B cell ↑ [62]

IBD

Autologous
MSCs NCT01659762 I IDO ↑ PBMC proliferation ↓ [63]

Autologous
BM-MSCs NCT01659762 I IL-10 ↑ Treg induction ↑

T cell apoptosis ↑ [64]

MS Autologous
BM-MSCs NCT01228266 II N.A Th1/Th17 ratio ↓

Breg induction ↑ [65]

SLE Allogeneic
UC-MSCs NCT01741857 I TGF-β ↑

PGE2 ↑
Th17 cell proliferation ↓

Treg induction ↑ [44]

MSCs; mesenchymal stem cells, GvHD; Graft-versus-host disease, CXCL; Chemokine (C-X-C motif) ligand, IBD; Inflammatory bowel
diseases, IDO; Indoleamine 2,3-dioxygenase, BM; bone marrow, PBMC; Peripheral blood mononuclear cell, IL; Interleukin, Treg; regulatory
T cell, MS; Multiple sclerosis, N.A; not available, Breg; regulatory B cell, SLE; Systemic lupus erythematosus, UC; umbilical cord, TGF;
Transforming growth factor, PGE2; Prostaglandin E2.

4. Bioengineering of MSCs for the Functional Improvement

Based on the improved understanding of mode-of-action underlying the MSC-mediated
immune regulation as well as practical limitations of naïve cells, various bioengineering
strategies aiming to maximize the therapeutic potency have been proposed [66,67]. These
approaches can be briefly divided into (1) enforcement of innate paracrine function via
priming or genetic engineering of MSCs and (2) biomaterial-based physical/structural
modification of MSCs.

4.1. Enforcement of Innate Paracrine Function
4.1.1. MSC Priming

Since the immunomodulatory function of MSCs is conferred by reciprocal commu-
nication with immune cells, pre-conditioning of MSCs with immune response mediators
in vitro, so-called “priming” or “licensing” strategy, has been applied to enhance their
innate immunomodulatory capacity [68,69]. IFN-γ, TNF-α and several interleukin families
are the most frequently used bioactive agents and exposure to these pro-inflammatory
cytokines prior to in vivo application can educate MSCs to acquire immunosuppressive
phenotype via reinforcing their paracrine capacity mainly for IDO, PGE2, IL-10, TGF-β
and NO [70]. Global transcriptome- and proteome analysis of MSCs has further revealed
that activity of immune-associated key signaling such as NF-kB, JAK-STAT1/3, COX-2

clinicaltrials.gov
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and mTOR pathway can be dramatically altered upon priming towards anti-inflammatory
signature [71–74]. As a result, the superior therapeutic performance of primed MSCs com-
pared to naïve cells has been reported in various immune-related disorders including atopic
dermatitis [75], experimental colitis [76], experimental autoimmune encephalomyelitis
(EAE) [77], hepatic infection [78,79] and GvHD [73,80].

In addition, recapitulating the infectious condition in MSCs via stimulating the innate
immune systems contributes to boosting their immune regulatory functions [81]. The
pattern recognition receptors (PRRs) participate in the early response of innate immune
cells by detecting the specific endogenous and exogenous dangerous signals. Of interest,
MSCs are constantly expressing the PRRs such as TLRs and Nod-like receptors (NLRs) and
PRR activation in MSCs can drive anti-inflammatory downstream response both in vitro
and in vivo [82]. For example, MSCs cultured with TLR3 agonist polyinosinic:polycytidylic
acid (poly I:C) or TLR4 agonist lipopolysaccharide (LPS) could suppress T cell proliferation
and Th1/17 polarization to a greater extend to control cells partially via the activation of
Notch pathway, resulting in a better clinical outcome in EAE and colitis model [33,83,84].
LPS primed MSCs exerted an enhanced innate antibacterial activity than naïve cells and
promoted the faster bacterial clearance in septic mice [85]. Similarly, pre-activation of
the NOD2 pathway using muramyl dipeptide (MDP) promoted the anti-inflammatory
signature of MSCs mainly through the activation of COX-2 signaling and PGE2 secretion,
which could ameliorate the disease severity of the experimental colitis model [58]. The
potential role of innate immune sensor “inflammasome complex” in the regulation of
MSC immunophenotype has been also demonstrated recently [86]. After the stimulation
of NLRP3, one of the best-described inflammasomes in present, the immunomodulatory
function of MSCs was potentiated in terms of induction of Treg as well as suppression
of pro-inflammatory macrophage and NLRP3-activated MSCs could provide superior
protection against colitis mice.

Although MSC priming is the foremost and simplest way to augment the MSC-
derived immunoregulatory potential, several practical challenges remain prior to its clinical
application. First, the intrinsic immunomodulatory nature of MSCs and their response
to licensing agents vary depending on the cell origin and the priming protocols such as
stimulant combination, treatment concentration and exposure time [87,88]. Moreover, the
boosting impact of pre-conditioning often fails to reach a substantial level in vivo, resulting
in unexpected therapeutic differences. Several advanced approaches have been suggested
to overcome these limitations of priming strategy. One way is to utilize biomaterials for the
fabrication of microparticle (MP), a bioinstructive molecule-carrying platform, to deliver the
priming agents to the MSCs consistently [89]. Using this technique, licensing molecules can
be anchored to MSCs. For instance, MSCs mixed with IFN-γ loaded-heparin MP presented
a sustained expression of IDO and T cell suppressive property compared to traditionally-
primed cells [90]. Moreover, MP containing the immune-response controlling chemicals
can be internalized into MSCs to change their immunophenotype directly. Ranganath
et al. delivered MPs encapsulating TPCA-1, an inhibitor of nuclear factor kappa-B kinase
subunit-β (IKK-β), to MSCs. As MPs were internalized in cells, the intracellular release
of TPCA-1 led to a stable inhibition of NF-kB pathway, preventing the unexpected pro-
inflammatory response of MSCs upon TNF-α treatment [91]. Based on the prior finding that
activation of glucocorticoid pathway augments the immunomodulatory function of MSCs,
Ankrum et al. conducted MSC modification with MP carrying a glucocorticoid steroid
budesonide [92]. Budesonide MP was efficiently internalized into MSCs and enhanced
immunomodulatory potential along with stable IDO activity in vitro. Thus, MP-based
local delivery of the bioactive compound to MSCs would be an effective and safe strategy
to control the therapeutic capacity that can replace the conventional priming strategy.

4.1.2. Genetic Engineering of MSCs

Although MP-mediated priming can provide a more constant and durable boosting
impact on the paracrine capacity of MSCs, it can only potentiate the innate function.
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Therefore, researchers have applied genetic engineering techniques for the direct induction
of either insufficient endogenous factors or brand-new proteins within MSCs [93]. In
general, RNA viruses such as lentivirus and retrovirus are the most commonly used viral
vectors for gene transfer owing to their host-genome integration capacity. Virus-transduced
cells display the permanent expression of the desired gene product, while potential safety
issues such as mutagenesis and tumorigenesis should be carefully monitored prior to
their clinical application [94]. On the contrary, DNA viruses including adenovirus and
adeno-associated virus (AAV) provide transient but relatively safer gene delivery. The viral
vector-based method provides high potent gene transfer with low cytotoxicity; however,
viral vectors tend to elicit host immune response which might dampen their efficiency [95].
Genetic information can be also introduced to MSCs via non-viral method using physical
(i.e., microinjection, electroporation) or chemical (i.e., calcium-phosphate nanoparticle)
tools, although significant cytotoxic effects during the procedure as well as unstable gene
expression with low efficiency limit its practical use [96].

The representative pre-clinical outcomes of genetically enhanced MSCs targeting
immune-associated diseases are summarized in Table 2. At present, IL-10 is the most
frequently chosen overexpression target in MSC genetic engineering since IL-10 acts as a
powerful immunomodulatory factor for the resolution of excessive inflammation and tissue
regeneration. Therefore, the potential therapeutic impact of IL-10 overexpressing MSCs has
been demonstrated in various immune-mediated pathologic conditions including various
neuro-inflammatory/degenerative diseases [97–99], acute liver allograft rejection [100] and
lung injury induced by ischemia-reperfusion damage or LPS challenge [101,102].

Table 2. The immunomodulatory impact of genetically modified MSCs on animal models.

Target Factor Engineering Method Cell Source/Route
of Injection

Animal Model/Immune-Related
In Vivo Effect References

IL-10 Lentivirus mBM-MSC
Intracerebral

TBI model
Astrosytosis & Microgliosis ↓ [99]

IL-10 Lentivirus hAD-MSC
Intraperitoneal

EAE model/ [98]Treg ↑, Th17 ↓, DC maturation ↓

IL-10 AAV hBM-MSC
Intravenous

MCAO model
Microgliosis ↓, Pro-inflammtory cytokine ↓ [97]

IL-10 Lentivirus Dark-Aguti MSC
Intravenous

acute liver allograft rejection model/
Treg ↑, Th17 ↓ [100]

IL-10 Retrovirus hBM-MSC
Intravenous

Lung Ischemia–Reperfusion Injury/
Granulocyte, CD4+ & CD8+ T cells ↓

Treg ↑ in BAL
[102]

IL-10 Retrovirus mBM-MSC
Intravenous

LPS-Induced ALI model/
IL-10 producing CD4+ &CD8+ T cells, B cells ↑

TNF-α ↓in BAL
[101]

IL-4 Lentivirus hAD-MSC
Intraperitoneal

EAE model/
Th1/Th17 ↓, Th2 response ↑ [103]

IL-4 Lentivirus
mAD-MSC

(single cells and spheroid)
Intra-articular

Osteoarthritis model/
NO mediated damage ↓ [104]

GM-CSF Lentivirus mBM-MSC
Intraperitoneal

ECDC model/
CD11b+GR-1+ MDSC & Treg

mobilization ↑, Th17 ↓
[105]

IFN-γ Lentivirus mAD-MSC
Intravenous

EAE model/
Treg ↑, CD3+ & CD4+ T cells ↓ [106]

IL-1Ra Lentivirus hAF-MSC FHF model/ [107]Portal vein injection infiltration of mononuclear cells ↓

IL-37 Lentivirus mBM-MSC
Intravenous

MRL/lpr mice (model of SLE)/
B220+, CD3+, CD4+, CD8+, CD11b+,

B220+CD3+, CD138+IgG+ and CD4+IL17+
cells ↓Treg ↑

[108]

sST2 Lentivirus hAD-MSC
Intravenous

LPS-Induced ALI model/
Pro- IL-33, TLR4, IL-1β and IFN-γ ↓IL-10 ↑ [109]
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Table 2. Cont.

Target Factor Engineering Method Cell Source/Route
of Injection

Animal Model/Immune-Related
In Vivo Effect References

IL-10 CRISPR/Cas9
(dCas-SAM system)

mBM-MSC/
Intramyocardial

myocardial infarction in diabetes model/
CD68+ CD11b+ cells ↓ in the heart

Pro-inflammatory cytokine ↓
[110]

miR-223 Lentivirus
mBM-MSC/

Intraperitoneal exosome
treatment

experimental autoimmune hepatitis model/
NLRP3 inflammasome activation ↓

IL-1β, TNF-α, IL-17 ↓
[111]

miR-181a Lentivirus
hUCB-MSC/

Intramyocardial exosome
treatment

myocardial ischemia-reperfusion
injury model/

Treg ↑ in the heart
[112]

miR-181-5p Plasmid
transfection

mAD-MSC/
Intrasplenic exosome

treatment
Liver fibrosis model/

TNF-α, IL-6, IL-17 ↓ in the liver [113]

miR-30d-5p Plasmid
transfection

ratAD-MSC/
Intravenous exosome

treatment
Ischemic stroke model/

Microglial autophagy ↓ M1 polarization ↓ [114]

Angiopoietin1 Plasmid
electroporation

mBM-MSC/
Intravenous

LPS-Induced ALI model/
TNF-α, IL-6, IL-8, Cxcl2 ↓ in the lung [115]

SOD3 Lentivirus hUCB-MSC/
Subcutaneous

Imiquimod-induced psoriasis-like model/
lymphocyte, DC, neutrophil infiltration ↓

in the skin
[116]

SOD3 Lentivirus
hUCB-MSC/

Subcutaneous MSCs or
exosome treatment

atopic dermatitis model/
lymphocyte and mast cell infiltration ↓ [117]

IL; interleukin, m; mouse, h; human, BM; bone marrow, Treg; regulatory T cell, Th; helper T cell, AD; adipose tissue-derived, TBI; traumatic
brain injury, EAE; experimental autoimmune encephalomyelitis, MCAO; middle cerebral artery occlusion, BAL; bronchoalveolar lavage,
LPS; lipopolysaccharide, ALI; acute lung injury, NO; nitric oxide, GM-SCF; granulocyte-colony stimulating factor, ECDC; experimental
Chagas disease cardiomyopathy, MDSC; myeloid-derived suppressor cell, IFN; interferon, FHF; fulminant hepatic failure, AF; amniotic
fluid, SLE; Systemic Lupus Erythematosus, sST2; soluble IL-33/IL-1 receptor–like–1, dCas-SAM; de-activated Cas-Synergistic activation
mediator, UCB; umbilical cord blood, DC; dendritic cell, SOD3; superoxide dismutase 3.

In addition, IL-10, another important anti-inflammatory cytokine, IL-4, can be geneti-
cally delivered in MSCs to enhance the immunosuppressive role of naive cells targeting
autoimmune disorders [103,104]. To increase homing capacity to the injury site, Silva et al.
introduced granulocyte-Colony Stimulating Factor (GM-CSF) to MSCs (MSCGM-CSF) and
evaluated their therapeutic roles in Chagas disease cardiomyopathy [105]. Compared to
control MSCs, MSCGM-CSF displayed a remarkable homing ability to the heart, sequen-
tially leading to the recruitment of myeloid-derived suppressor cells (MDSCs) and Treg
induction. Likewise, the therapeutic efficacy of genetically engineered IFN-β expressing
MSCs (MSCIFN-β) was evaluated in murine EAE model owing to the beneficial role of
recombinant IFN-ß in the management of MS [106]. The authors found that MSCIFN-β led
to a significant recovery of demyelination in the spinal cord accompanied by a reduction in
clinical score of EAE mice, partially via the suppression of circulating CD25/69+ activated
CD4+ T cells.

As represented by IL-1α and β, activation of IL-1 pathway is generally associated
with clinical deterioration of inflammatory disease [118]; interestingly, however, some
of the recently-discovered IL-1 family members such as IL-1Ra are known to suppress
the classical pro-inflammatory IL-1 function and, thus, treatment of MSCs expressing
these endogenous IL-1 antagonists can provide superior therapeutic benefits than naïve
cells. Indeed, overexpression of IL-1Ra in MSCs improved the survival of the fulminant
hepatic failure model by alleviating the liver damage accompanied by the attenuation of
intrahepatic inflammation [107]. Inhibition of IL-1 signaling with MSC overexpressing
IL-37 also augmented the anti-inflammatory capacity of MSCs both in vitro and in vivo,
reducing the SLE-like symptoms in the mouse model [108]. Given that pro-inflammatory
IL-33 binds to its receptor IL-33/IL-1 receptor–like–1 (ST2) to elicit the Th2 differentiation,
González et al. genetically introduced soluble IL-1 receptor–like–1 (sST2) into MSCs to
block the IL-33/ST2 interaction [109]. The authors found that sST2-expressing MSCs
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brought an improvement in the clinical severity of endotoxemia as well as histological
pathology in a murine model of LPS-mediated lung injury, demonstrating the therapeutic
benefits of targeting the IL-33 pathway for the management of the acute respiratory disease.

Meanwhile, microRNAs (miRNAs) are attractive overexpression targets for the func-
tional improvement of MSCs. miRNAs are highly conserved single-stranded non-coding
RNA molecules that induce gene silencing either by degradation or translational blocking
of target messenger RNA. Importantly, cell-to-cell communication is largely mediated by
the exchange of miRNAs-containing extracellular vesicles (EVs). In this context, MSCs and
their EVs can be utilized as therapeutic miRNA delivering tools and miRNAs involved in
immune regulation have been introduced to MSCs to upregulate the innate immunomodu-
latory function of MSCs. For instance, the introduction of miR-223, which can negatively
regulate the pro-inflammatory responses such as activation of NLRP3 inflammasome path-
way, can enhance the MSC-mediated protection against murine models of experimental
autoimmune hepatitis [111]. Zilun et al. overexpressed T cell-regulating miR-181a in MSCs
and found that exosomes derived from miR-181a overexpressing MSCs led to a prominent
induction of Treg cells in injured cardiac tissue compared to control [112]. The therapeutic
advantage of miR-181 overexpression in MSCs was also revealed in liver fibrosis model, in
which MSCs could induce autophagy of hepatic satellite cells and down-regulate inflam-
matory response upon miR-181-5p overexpression [113]. In addition, clinical data-based
miRNA selection is another commonly used strategy; indeed, given that the expression
level of miR-30d-5p tend to be down-regulated in the serum of stroke patients, Jiang et al.
generated miR-30d-5p overexpressing MSCs and demonstrated their protective impact
on M1 microglia-mediated acute ischemic stroke injury [114]. Both in vitro and in vivo,
MSC-derived miR-30d-5p skewed M2 polarization by preventing abnormal autophagy.

Overexpression of angiogenic- or pro-survival factors also augments the overall ther-
apeutic efficacy of MSCs against inflammatory disease. For instance, angiopoietin 1, a
major player for blood vessel formation and maturation, enhanced the benefits of MSCs
in the acute lung injury (ALI) model by reducing vascular leakage [115]. The overexpres-
sion of superoxide dismutase 3 (SOD3) in MSCs resulted in the increment of cell viability
both in vitro and in vivo, contributing to functional improvement of MSCs in various
inflammatory skin disease models [116,117].

4.1.3. CRISPR/Cas9-Based Functional Improvement of MSCs

In recent years, the groundbreaking technique called Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR) system contributes to a profound development in
the field of gene therapy [119,120]. The operating principle of CRISPR/Cas9-based gene
editing is initiated with the induction of target-site specific double-strand breaks with Cas9
endonuclease to activate the DNA repair system, which in turn leads to gene correction
or mutation. The advanced utilization of mutated Cas9 with Nickase activity enables
researchers to perform more accurate and purpose-specific genomic engineering [121].
Moreover, deactivated Cas9 (dCas9) without catalytic activity applies to transcriptional
regulation of the target genes, expanding the scope of the technique beyond genome edit-
ing [121]. Owing to its convenience and economic advantages compared to conventional
methods, CRISPR has become the most popular genome engineering technique.

Growing attempts have been conducted to apply CRISPR/Cas9-mediated gene modifi-
cation in the field of MSC therapeutics [122]. First, CRISPR-based gene silencing can modify
the intrinsic nature of naïve cells. Shen et al. have shown that knockout of tumor suppres-
sor phosphatase and tensin homolog (PTEN) in BM-MSCs via CRISPR/Cas9-mediated
exon targeting increased the cell proliferative capacity accompanied with the decreased
osteogenic- and adipogenic potentials compared to control cells [123]. In a recent work
by Zha et al., authors have utilized CRISPR/Cas9 system targeting one of MHC class I
molecules β2 microglobulin (B2M) to generate “less immunogenic” iPSC-derived MSC
lines for the allogenic transplantation [124]. It is noted that B2M-KO MSCs could escape
more efficiently from the immune response-mediated killing by peripheral blood-derived
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monocytes (PBMCs) than control cells, while the loss of B2M expression did not alter
the innate immunosuppressive feature of MSCs. In addition, since CRISPR/Cas9 system
only requires short nucleotides so-called guide RNAs (gRNAs) to recognize the target
site, researchers can knock-in the desired sequences at a specific, intended “safe” location.
For instance, Hu et al. have represented a concept of CRISPR-based cell immortalization
strategy for mouse MSCs by introducing simian virus SV40 large T antigen into an intrinsic
safe harboring site at Rosa26 locus [125]. In other reports, CRISPR/Cas9 construct was
simultaneously delivered with the AAV vector then gene construct that encodes benefi-
cial protein was knock-in into the AAV-specific safe locus such as AAVS1 [126,127]. This
AAV-CRISPR/Cas9 genetic engineering platform can induce the stable overexpression
of therapeutic factors in MSCs in a relatively simple and safe way. Finally, dCas9-based
gene regulation at the transcriptional level can change the fate of MSCs. Indeed, CRISPR-
mediated activation of the adipogenic system induced spontaneous adipogenesis in MSCs
and switching the target gene combination could control the white/beige adipocyte ratio
during the differentiation condition [128]. Sun et al. have reported that MSCs were trans-
formed into sweat-gland like cells via ectopic stimulation of ectodysplasin promoter with
dCas9 [129]. Moreover, dCas9-activation mediator system has been applied to generate
IL-10-overexpressing MSCs, which could suppress the immune cell accumulation and
pro-inflammatory response in the diabetes-associated myocardial infarction model [110].
In the future, CRISPR/Cas9 technique would contribute to enhancing the therapeutic
potential of MSCs in immune-associated disorders not only by upregulating the beneficial
immunomodulatory factors (via knock-in or transcriptional activation strategy) but also by
lowering their immunogenicity (via knock-out strategy) to prevent host immune-rejection.

4.2. Structural/Physical Engineering of MSCs
4.2.1. 3D Assembly of MSCs via Spheroid Formation

After the isolation and phenotype validation, MSCs are grown on a flat plastic surface
as a monolayer sheet in general. This conventional 2D culture method is a well-established
convenient system to obtain a large number of cells in a short time; however, it signifi-
cantly affects the innate characters of MSCs and even diminishes their therapeutic poten-
tials [130,131]. For instance, a standardized culture condition and fast expansion cycle lead
to premature cellular senescence, lowering both cell yields and quality. Another major draw-
back of the 2D system is the lack of proper cell-to-cell and/or cell-to-microenvironment
communications. In vivo, MSCs reside in the “stem cell niche” surrounded by other
cell components and extracellular matrix (ECM) and depending on physio-pathological
circumstances, as well as the tissue-of origin, dynamic nature within the niche such as
concentration gradients of oxygen and nutrient, mechanical force changes and multiple
paracrine signals from neighbor cells can regulate MSC behavior. On the contrary, 2D-
cultured cells seem to lose their heterozygosity due to the limited cellular interaction and
identical microenvironment supplemented with sufficient nutrients and constant oxygen
level. Hence, established 2D MSC lines often fail to represent their in vivo response to vari-
ous stimuli, hindering the accurate estimation of the therapeutic effect of MSC application
in the practical field.

The disadvantages of the traditional method have led to the development of an ad-
vanced 3D cell culture system. For instance, floating cells in a small droplet (hanging drop
culture) or centrifugation of cells in low-attachment wells (forced aggregation method)
leads to the formation of the spheroid-like structure by gravitational force [132]. Since
the aggregation of MSCs (which in turn induces spheroid formation) recovers the cell
communication and provides a concertation gradient of external factors depending on the
location (core to marginal region) as observed in vivo, MSC spheroid exhibits superior
viability and self-renew capacity with enhanced differentiation potential compared to 2D
cells [132]. Moreover, 3D cells tend to produce a higher level of therapeutic paracrine
molecules than 2D cells; indeed, the secretion of anti-inflammatory factors such as TSG-6,
PGE2, Stanniocalcin-1, Leukemia inhibitory factor (LIF) and TGF-β is significantly stimu-
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lated upon cell aggregation [133]. collectively, the immunomodulatory efficacy of 3D cells
is generally superior to that of 2D cells. Interestingly, 3D assembly of MSCs drives transcrip-
tome change with activation of immune responsive pathways including chemokines and
IL-1 signaling and these pro-inflammatory agents within the spheroid microenvironment
can further prime MSCs to adopt anti-inflammatory properties [134–136]. Thomas et al.
found that both neutralization of IL-1 activity and prevention of pro-IL-1 cleavage with
caspase inhibitor significantly decreased the anti-inflammatory effect of 3D cells against
macrophage activation [135]. In addition, treatment of γ-secretase inhibitor during the
MSC spheroid culture suppressed the secretion of PGE2 in a dose-dependent manner,
indicating the involvement of contact-dependent Notch signaling in this phenomenon.

The anti-inflammatory property of MSC aggregates has been demonstrated in vitro
and in vivo (Table 3). Several works have been indicated that both MSC spheroid itself
and its conditioned media stimulate the macrophage polarization into M2 phenotype via
PGE2 and its receptor EP4-mediated regulation [133,135,137]. In addition, intraperitoneally
transfused MSC spheroid could reduce the total volume and protein content of ascites in the
zymogen-induced murine peritonitis model with improved inflammatory signs [136]. The
intraportal injection of 3D MSCs rescued the macrophagic M1/M2 imbalance by inducing
M2 differentiation in galactosamine/LPS (GalN/LPS)-mediated hepatic injury mouse [138].
Moreover, the immunomodulatory function of MSC spheroid can be further enhanced by
combining priming strategies as described in Section 4.1.1. For instance, 3D MSCs given
pre-treatment of IL-1α and β could reduce the TNF-α secretion level in LPS-activated
murine microglia cell BV2 to a greater extend to naïve 3D cells [139]. In addition, priming
of MSC spheroid with IFN-γ and TNF-α led to a great increment in the production of
MSC-derived immunomodulatory factors such as PGE2 and kynurenine, resulting in the
suppression of the pro-inflammatory response of macrophage [140].

Table 3. Influence of 3D assembly on MSC-mediated immunoregulatory functions.

Strategy Method/Biomaterial Cell Source In Vitro/In Vivo
Immunomodulatory Effect References

3D spheroid Hanging drop hBM-MSC (in vitro) PGE2 ↑, M2 ↑ [133,137]

3D spheroid Hanging drop hBM-MSC (in vitro) Self-activation of IL1 pathway
PGE2 ↑, M ↓, M2 ↑ [135]

3D spheroid Hanging drop hBM-MSC (in vitro) TSG-6 ↑, STC-1 ↑, LIF ↑
(in vivo) M1 ↓ peritonitis model [136]

3D spheroid Hanging drop hAD-MSC
(in vitro) PGE2 ↑, M1 ↓, M2 ↑

(in vivo) CD11b+F4/80+ cell ↓, M1 ↓,
M2 ↑ in FHF model

[138]

3D spheroid
+ IL-1αβ priming Hanging drop hBM-MSC (in vitro) priming enhanced

TNF-α ↓ in LPS-treated BV2 cell [139]

3D spheroid
+ TNF-α, IFN-γ priming Forced aggregation hAD-MSC (in vitro) priming enhanced M1 ↓ [140]

At present, the hanging-drop culture, forced aggregation technique and culture on
the low-attachment micro-well plate are the simplest as well as the most widely used 3D
culture techniques in the basic research field; however, these methods are labor-intensive
and often lead to low yields of spheroids. Therefore, several advanced techniques such
as utilizing biocompatible scaffold, microbioreactor and robotics-based 3D printing have
been developed to produce a sufficient number of homogenous spheroid [141]. In addition,
different culture conditions such as media type, composition and the presence of serum
can significantly influence not only cell yield but also the immunophenotype of MSC
spheroid [137,140]. Since cells residing at the core have to be exposed to hypoxia and
mechanical stress, the optimal cell packing density and average diameter of aggregates
must be determined during spheroid generation. Interestingly, Shobha et al. generated
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heterospheroid by combining 3D MSCs with anti-oxidative agent quercetin to potentiate the
viability of MSCs. Interestingly, the delivery of quercetin could prevent apoptosis of center-
positioned cells and thus improved their therapeutic capacity against DSS-induced colitis
model [142]. In addition, Murphy et al. have designed an analysis platform to estimate
how three culture variables, which are cell count per spheroid, oxygen concentration and
immune mediators, can affect the functionality of MSC spheroid. Using this approach, the
authors specified the best combination of culture conditions to generate the most potent
BM-MSC aggregates in terms of secretion of PGE2 and VEGF [143], providing some insights
on how to optimize the MSC spheroid culture procedure for the clinical translation.

4.2.2. Encapsulation or Embedding of MSCs with Biocompatible Agents

For the reconstitution of MSC niche-mimicking environment in vitro, various bioac-
tive materials can be utilized as the encapsulating hydrogel as well as the biomimetic scaf-
folds [144]. They can offer MSCs with stable “tissue-like” microenvironment with sufficient
cell-to-ECM interactions, which enables MSCs to maintain their therapeutic potency in vivo
as observed in vitro. Both natural and synthetic biomaterials can be applied for the 3D culture
of MSCs. The most widely-used natural materials include alginate, hyaluronic acid (HA),
chitosan, collagen, gelatin and fibrin, while poly ethylene glycol (PEG) and poly-(l-lactic acid),
poly(lactic-co-glycolic acid) (PLGA) represent the synthetic materials at present. Each material
can be cross-linked together to synthesize new copolymer structures (i.e., PEG-PLGA).

The positive impact of biomaterial-based 3D structure on MSC-mediated immunomod-
ulation has been demonstrated over the past decade (Table 4). For instance, alginate mi-
croencapsulation can induce immune-phenotype of MSCs towards an anti-inflammatory
direction. It has been reported that alginate-MSC hydrogel induced macrophage polariza-
tion towards anti-inflammatory M2 type differentiation and prevented PBMC proliferation
significantly, while it did not elicit DC maturation and activation [145,146]. Zanotti et al.
also studied the immune-regulatory capacity of alginate encapsulated MSCs in murine
GvHD model and found that intravenously injected MSCs could reduce the proliferation
of both CD4+ and CD8+ T cells and ameliorated the infiltration of immune cells in the liver,
leading to the overall enhancement in the clinical score and survival of GvHD mouse [147].
In a spinal cord injury model, alginate-MSC hydrogel reduced the neuro-inflammatory
signs by preventing the pro-inflammatory reactive microgliosis and astrocytosis [146]. The
neuroprotective impact of encapsulated MSCs has also been addressed on LPS-treated
organotypic hippocampal slice, where MSC-derived PGE2 was involved in the reduction
of TNF-α level [148]. Similar to encapsulated MSCs, MSCs cultured within the biomaterial
3D scaffold exerted a superior anti-inflammatory impact on innate- and adaptive immune
cells compared to 2D cultured MSCs [149,150].

It has been noted that biomaterials modulate the MSC behavior in terms of differentia-
tion, proliferation, mobility (retention at the injected site or homing to other targets) and
paracrine activity depending on the combination of physical parameters such as stiffness,
degradability, polarity and porosity. A recent study has investigated how the rigidity of
encapsulating material affects the transcriptome of MSCs cultured in alginate hydrogels
at different stiffness by bulk sequencing [151]. The main signatures of differentially ex-
pressed genes were involved in cell-substrate adhesion, proteolysis and developmental
pathway, along with immune-related processes such as IL-1 signaling. Intriguingly, an
increase in alginate stiffness led to an up-regulation of the NF-kB subunit p65 and IDO
expression in MSCs, implying that the activity of central immune mediators including
NF-kB and CREB signaling could be regulated by the substrate stiffness. In another study,
three HAs with different molecular weight (1.6 MDa, 150 kDa or 7.5 kDa) was applied for
microencapsulation of MSCs and their immune-related activity was evaluated with PBMC,
T cells and monocytes to study the influence of the molecular weight of biomaterials on
MSC functionality [152]. It has been noted that although the higher molecular weight of
HA (hHA) itself led to an unexpected slight increase in PBMC proliferation, application
of hHA could enhance the immunomodulatory capacity of MSCs in terms of induction
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of IL-10 secretory Th cells and M2 macrophages. Meanwhile, the fibrous topography of
scaffolds is another important determinant for MSC regulation [153,154]. To investigate
the contribution of nanofiber orientation in the scaffold to the paracrine function of MSCs,
MSCs were cultured on the 2D plate or 3D scaffolds that consist of electrospun fibers
with random, mesh-like or aligned structures and their secretory profiles were evalu-
ated [153]. Interestingly, differences in fiber arrangement of 3D scaffold can significantly
affect the paracrine activity of MSCs and conditioned media (CM) obtained from MSCs on
mesh-like structure (MSC-MEF CM) displayed the most potent anti-inflammatory roles in
macrophage inhibition. Moreover, upon the topical application in the skin defect model,
MSC-MEF CM accelerated the wound healing process via recruiting the pro-regenerative
CD206 + M2 macrophages into the wound bed. In another report by Wan and colleagues,
the authors compared the immunophenotype of MSCs cultured on random or aligned
fibrous scaffold [154]. They found that aligned fiber structure was ideal to upregulate the
immunoregulatory capacity of MSCs than the randomly assembled scaffold. Mechanisti-
cally, aligned microenvironment-mediated mechanotransduction induced the stimulation
of the Yes-associated protein (YAP) pathway as well as focal adhesion kinase (FAK)-ERK1/2
signaling cascade in MSCs, resulting in enhanced immunomodulatory properties. Collec-
tively, these observations emphasize the importance of the hydrogel fabrication method in
the regulation of the MSC functions.

Table 4. The biomaterial-based structural modification of MSCs to boost immunomodulatory property.

Strategy Method/Biomaterial Cell Source In Vitro/In Vivo
Immunomodulatory Effect References

Encapsulation Alginate mBM-MSC (in vivo) CD4+, CD8+and CD11c+ cells
↓in Murine GvHD model [147]

Encapsulation Alginate-PLL hBM-MSC
(in vitro) M1 ↓, M2 ↑

(in vivo) recruitment of M2 in the lesion
of SCI model

[146]

Encapsulation Alginate with
RGD motif hAD-MSC (in vitro) PBMC proliferation ↓ [145]

Encapsulation Alginate-PLL hBM-MSC (ex vivo) PGE2 ↑, TNF-α ↓ in
hippocampal slice culture [148]

3D scaffold embedding Collagen, chitosan,
PLGA hUCB-MSC (in vitro) CD73 ↓ in 3D MSCs

T cell proliferation ↓ [150]

3D scaffold embedding HA-gelatin hBM, AD,
VF MSC

(in vitro) CD16 ↓ in monocyte
co-cultured with 3D MSC [149]

3D scaffold embedding Alginate with
different stiffness mMSC (in vitro) NF-kB subunit p65 and IDO ↑

in MSCs cultured within stiff gel [151]

3D scaffold embedding HA with various MW hBM-MSC (in vitro) high MW HA-derived MSC
further increased M2 ↑ [152]

3D scaffold embedding PCL EF with
various orientation Rat AD-MSC (in vitro) MSCs cultured on mesh-like

scaffold were most potent in M1 ↓, M2 ↑ [153]

3D scaffold embedding PLLA EF with
various orientation hAD-MSC (in vitro) PGE2 ↑, TSG6 ↑in MSCs

cultured on aligned scaffold [154]

3D scaffold embedding HA with
Adhesive motif Rat BM-MSC (in vivo) CD68+ cell ↓, glial scar ↓in

spinal cord transection model [155]

3D scaffold embedding
PEG hydrogel with

IFN-γ
functionalization

hBM-MSC
(in vitro) increase in MCP-1, M-CSF,
CXCL9, CXCL10 and CCL8 in MSCs
cultured within PEG-INF-γ scaffold

[156]

Encapsulation
+ TNF-α, IFN-γ priming APA construct hBM-MSC

mBM-MSC
(in vitro) increase in IL-10, IL-6, Cox-2,

TGF-β and TSG-6 in the form of MAPA [157]

PLL; Poly-L-Lysine, SCI; spinal cord injury, RGD; Arg-Gly-Asp, PLGA; poly(lactic-co-glycolic acid), HA; hyaluronic acid, MW; molecular
weight, PCL EF; polycaprolactone electrospun fiber, PEG; poly(ethylene glycol), APA; alginate to form alginate–PDL–alginate, MAPA;
multicellular APA.



Int. J. Mol. Sci. 2021, 22, 3397 14 of 21

Meanwhile, MSC encapsulation technique can overcome the several limitations of the
conventional single cell- or spheroid injection [158]; first, biomaterials function as a physical
barrier of MSCs against harsh environmental conditions such as damaged tissue-derived
cytotoxic signals and host immune responses, leading to the prolonged survival of MSCs
in vivo. Moreover, the natural ECM-mimicking domain can be tethered into the substrate
in an attempt to enhance cell adhesion and viability. For instance, PPFLMLLKGSTR
peptide-bearing HA scaffold significantly improved the MSC viability than naïve HA,
contributing to the effective nerve regeneration with decreased astrocytic activation upon
MSC-scaffold implantation in spinal cord injury model [155]. The fibronectin-derived
Arg-Gly-Asp (RGD) motif is another commonly used peptide for this purpose [145]. In
addition, encapsulated MSCs can be primed by tethering the pro-inflammatory agent such
as IFN-γ into hydrogel [156] as described in Section 4.1.1.

A recent work by Mao et al. has suggested an advanced strategy for the practical usage
of the current technique [157]. Using a microfluidic device, a single cell can be encapsulated
into a multi-layered microgel composed of alginate-poly-D-lysine (PDL)-alginate (APA)
coating. These microgels exerted resistance to the cytotoxic damage caused by the repeated
freeze-thawing cycle. The enclosed MSCs could proliferate normally, generating a clonally
identical multicellular structure (MAPA). In the form of MAPA, MSCs produced a higher
level of immunomodulatory paracrine factors including IL-10, Cox-2, TGF-β and TSG-6
than control cells. Upon in vivo administration via the intravenous route, both naïve single
cells and MAPA are predominantly trapped in the lung then single cells were disappeared
rapidly as reported previously [159]; on the contrary, MAPA exhibited a significantly
prolonged half-life and higher residence capacity than bare cells without causing any host
pathological responses. In addition, licensing factors such as TNFα and IFN-γ could further
reinforce the therapeutic immunophenotype of MAPA; indeed, primed MAPA reduced
host immune rejection responses and, in turn, supported the engraftment of allogeneic
BM transplant in the mouse model to a great extent to unprimed control. Therefore, the
application of this specialized microencapsulation technique with a programmable multi-
layered structure resulted in an overall improvement in the immunomodulatory capacity
of MSCs.

5. Conclusions and Future Perspectives

During the last decade, MSCs have been suggested as promising therapeutics for
the treatment of various immune disorders and a large body of preclinical and clinical
studies have been reported. More recently, as summarized in this review, researchers
have developed several bioengineering technologies to generate highly efficient MSCs to
overcome previously reported limitations of MSC application mainly mediated by non-
uniform functional potency and rapid clearance after transplantation. For the clinical
application of these latest technologies, future studies should intensively focus on the
verification of the safety of manipulated cells, as well as the development of the standard
platform for the quality control of clinically potent cells.
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