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ABSTRACT

Thermogenic fat differentiation and function can be promoted through multiple pathways, resulting in a common cell phenotype characterized by
the expression of Uncoupling Protein-1 and the ability to dissipate energy, but local and systemic stimuli are necessary to promote adequate
thermogenic fat vascularization, which is a precondition for the transport of substrate and the dissipation of heat. Angiopoietin-2 is an important
driver of vascularization, and its transcription is in part promoted by estrogen signaling. In this study we demonstrate that adipose tissue-specific
knock out of Angiopoietin-2 causes a female-specific reduced thermogenic fat differentiation and function, resulting in obesity and impaired
glucose tolerance with end-organ features consistent with metabolic syndrome. In humans, angiopoietin-2 levels are higher in females than in
males, and are inversely correlated with adiposity and age more strongly in pre-menopause when compared to post-menopause. Collectively,
these data indicate a novel and important role for estrogen-mediated Angiopoietin-2 adipose tissue production in the protection against calorie

overload in females, and potentially in the development of postmenopausal weight gain.
© 2022 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Thermogenic fat (brown and beige adipose tissue-[AT]) has the unique
ability of dissipating energy through the transcription and activity of
Uncoupling Protein 1 (UCP-1) [1]. While its expansion results in
resistance to obesity and its metabolic consequences, impairment
promotes weight gain [2]. Aside from its role in non-shivering ther-
mogenesis, thermogenic fat plays a pivotal role in the thermic effect of
food, which is thought to be a short-loop response against calorie
overload [3]. The plasticity of thermogenic fat, and in particular beige
fat, allows for differentiation, expansion, and activation following
different pathways, which result in a common adipocyte phenotype.
The increased substrate utilization in turn promotes improvement in
insulin sensitivity and resistance to end-organ damage resulting from
calorie overload such as chronic inflammation, ectopic deposition of
lipids, and cardiovascular dysfunction [4]. Irrespective of the stimu-
latory pathway, expansion of the capillary bed surrounding the adi-
pocytes is a common feature of thermogenic fat, which allows for

efficient delivery of substrate and dissipation of thermal energy,
resulting in one of the most vascularized tissues of the organism [5].
The vascularization of thermogenic fat is driven by systemic and
paracrine angiogenic factors [6], while endothelial cells and pericytes
serve as a stem cell reservoir for supplying preadipocytes [7]. Recip-
rocally, adipocytes produce various angiogenic factors, including
vascular endothelial growth factor (VEGF) and angiopoietin [8].
Enhanced angiogenesis promotes healthy thermogenic fat expansion,
decreases inflammation, and minimizes fibrotic damage. Conversely,
inadequate angiogenesis leads to adipose tissue hypoxia, enlarged
adipocyte size, increased inflammation, and fibrosis [9]. Increased
angiogenesis during early adipose tissue expansion could thus improve
metabolic response to sustained positive energy balance, minimizing
the negative systemic consequences of obesity [10].

Most preclinical models of obesity have been conducted in male mice
because they are extremely sensitive to high-fat diet (HFD)-induced
obesity and its metabolic consequences [11,12], while female mice are
protected against HFD [13]. Upon HFD feeding, perigonadal fat in female
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mice showed augmented capillarization and elevated pro-angiogenic
factors including Vegfa and its receptor (Vegfr2), the Notch ligand
Jagged-1 (Jag1), and Angiopoietin-2 (ANGPT2 or ANG2) [14]. Collec-
tively, these data indicate the importance of pro-angiogenesis factors
from adipose tissue in whole body metabolism regulation, and a sex
dysmorphic response to calorie overload.

Inthis study, we identified an unrecognized role for ANG2 as an important
regulator in thermogenic fat recruitment and function, especially in fe-
males. Moreover, we presentclinical observations that support the role of
ANG2 in humans, particularly infemales, consistent with our mechanistic
observations. Collectively, our findings demonstrate the role of ANG2 in
modulating energy metabolism in a sex-specific manner through the
recruitment and activation of thermogenic fat.

2. MATERIALS AND METHODS

2.1. Animals

ANG2 flox/flox mice was provided by Dr. Martin Witzenrath from
Charité — Universitdtsmedizin Berlin. Adiponectin-Cre mice were
purchased from Jackson Laboratory (Jackson Labs, Bar Harbor, ME).
To evaluate whether ANG2 from the adipose tissue affects whole-body
metabolism, we first created an ANG2 adipose tissue specific knockout
mice model (ANG2 aKO) by cross breeding the ANG2 flox/flox to
Adiponectin-Cre mice. All mice are housed under controlled temper-
ature (22 °C) 12-hour light (06:00—17:59) to 12-hour dark (18:00—
05:59) cycles at Animal Care Facility at Virginia Commonwealth Uni-
versity. For all experiments, male and female mice aged 8-weeks were
used for long term HFD (45 kcal% fat, D12451i, Research Diets)
feeding.

2.2. Indirect calorimetry

Before the metabolic phenotype measurement, mice were acclimated
in metabolic chambers (PhenoMaster, TSE Systems, Inc, Germany) for
2 days. V02, VCO2, energy expenditure (EE), respiratory exchange ratio
(RER), locomotor activity (beam breaks; X + Y planes), food con-
sumption and water intake were then measured for 5 consecutive
days. EE differences between genotypes were analyzed by analysis of
covariance (ANCOVA) according to the guidelines of the National Mouse
Metabolic Phenotyping Center [15].

2.3. Body composition analysis

Body composition was assessed using the time-domain NMR minispec
(LF90II, Bruker Optik). Briefly, mice were weighed and placed in the
LF90Il using a movement restrainer to allow proper measurements.
Data for fat and lean mass were extracted for further analysis.

2.4. Oral glucose tolerance test (OGTT) and Intraperitoneal Insulin
Tolerance Test (IPITT)

OGTT: Mice were fasted for 6 h followed by gavage feeding with p-
glucose (2 g/kg) (Sigma Aldrich). Blood was then collected from the tail
vein at 0, 15, 30, 60, 90, and 120 min after administration, and
glucose was measured with a glucometer (AimStrip Plus, GERMAINE
Lab, INC). IPITT: Mice were fasted for 4 h before undergoing an
intraperitoneal injection of insulin (1U/kg) (Sigma Aldrich). Blood was
then collected from the tail vein at 0, 15, 30, 45, 60, 120 min for
glucose measurement with glucometer.

2.5. Serum insulin, triglyceride and free fatty acid (FFA)
measurement

Serum insulin, triglyceride and free fatty acid were measured with
ultrasensitive mouse Insulin ELISA kit (Crystal Chem, #90080),

triglyceride colorimetric assay kit (#10010303, Cayman Chemical) and
free fatty acid quantification kit (MAKO044-1KT, Sigma Aldrich)
respectively according to manufacturers’ instruction.

2.6. Homeostasis model assessment of insulin resistance (HOMA-
IR) and adipose tissue insulin resistance index (Adipo-IR) calculation
HOMA-IR was calculated with the formula: glucose (mmol/L) x insulin
(mU/L)/22.5. Adipo-IR was calculated with the formula: FFA (mmol/L)
x insulin (pmol/L).

2.7. Quantitative real-time PCR (qPCR)

Total RNA was extracted using TRIzol (Thermo Fisher Scientific), and
cDNA was obtained from 1 pg of RNA using the iScript cDNA Synthesis
Kit (Bio-Rad). Quantitative PCR was performed using target specific
primers reported in Supplementary Table 1. PCR reactions consisted of
1x PowerUp SYBR Green Master Mix (Thermo Fisher Scientific),
0.5 uM forward and reverse primers, 5—20 ng cDNA (mRNA analysis)
in a total reaction volume of 10 puL. Reactions were amplified as
technical duplicates or triplicates on a CFX96 real-time PCR system
(Bio Rad). Data were analyzed using the CFX Maestro Software (Bio
Rad) with an efficiency-corrected relative quantification (ZAACq)
methodology utilizing 18S as a reference gene.

2.8. Western blot

Mouse tissues were homogenized and lysed in RIPA buffer containing
protease and phosphatase inhibitors (cOmplete, EDTA-free Protease
Inhibitor Cocktail, PhosSTOP; Roche). Protein lysates were separated
by SDS—PAGE and dry blotted to a Polyvinylidene difluoride (PVDF)
membrane and further processed using established methods. Western
blot signal was visualized using enhanced chemiluminescence re-
agents (#7003S, Cell Signaling) according to the manufacturer’s
protocol for ChemiDoc MP Imaging System (Bio Rad) imaging as well
as film development.

2.9. Histopathology and digital imaging analysis of hepatic
steatosis

Mouse adipose tissue, pancreas, and liver paraffin-embedded sections
were sliced at 5 pm and stained with hematoxylin and eosin (H.E.) in
the Cancer Mouse Models Core Laboratory at Virginia Commonwealth
University. Images were scanned in Vectra Polaris fully-enclosed
multispectral imaging system (PerkinElmer) for further histomorphol-
ogy analysis. Hepatic steatosis quantification was processed with
Biocellvia software (Biocellvia, Marseille, France) and expressed as a
percentage of steatosis and vesicle area. Hepatic fibrosis was identi-
fied using Sirius Red stained slides and evaluated by Biocellvia soft-
ware expressed as the percentage of Sirius Red stained area among
total area. We also evaluated pancreatic islet morphology changes
since enhancement in pancreatic islet size is always linked with the
induction of insulin resistance [16].

2.10. Adipocyte size quantification

The sizes of the adipocytes were analyzed using the ImageJ version
1.53a program (https://imagej.nih.gov/ij) with the Adiposoft version
1.16 plug-in (https://imagej.net/adiposoft). The area was calculated
only in the part that completely constituted one cell and adipocyte size
distribution was further analyzed in Graphpad 9.0 with frequency
distribution analysis.

2.11. Immuno-staining
Slices for immunofluorescence staining were rinsed in PBST and then
deparaffinized and heat retrieved at 96 °C for 30 min in citrate acid
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buffer. After cooling naturally, slides were rinsed in PBST again and
blocked with 5% BSA (FisherSci, BP1600) for 1 h and then incubated
with primary antibodies to glucagon, 1:500 (Millipore Sigma, G2654),
Insulin 1:500 (Bio Rad, 5330-0104G) overnight at 4 °C. Following
washes in PBST, slides were then incubated with secondary antibodies
to Goat anti-Guinea Pig IgG, Alexa Fluor 568 1:1000 (Thermo Fisher
Scientific, A11075), Goat anti-Mouse IgG, Alexa Fluor 488 (Thermo
Fisher Scientific, A11001) diluted in PBST containing 1% BSA for 1 h at
room temperature. Slides were then washed in PBST, and then
mounted with Prolong Anti-Fade mounting medium containing DAPI
(Thermo Fisher Scientific).

2.12. Confocal microscopy

Pancreas slides staining with anti-Glucagon and anti-Insulin antibody
were imaged on a Zeiss LSM 710 Confocal Laser Scanning Micro-
scopy (1:500, Sigma Aldrich, G2654) and (1:500, Bio Rad 5330-
0104G), respectively. Cell nuclei was stained with DAPI as described
above.

2.13. Cold exposure and core body temperature measurement

For short term cold exposure experiment, female control and ANG2
aK0 mice were single housed in rodent incubator (RIS33SD, Powers
Scientific, Inc) at 23 °C for one day. Then incubator temperature
was dropped to 18 °C and kept for 4 consecutive days as adap-
tation. Thereafter, all mice were exposed at 10 °C for consecutive
days. Core body temperature was monitored daily during the cold
exposure via mice rectal probe thermometer (OMEGA HH806AW).
Whole-body thermogenesis was imagined with an infrared camera
(T420, FLIR).

2.14. Stromal vascular fraction cell isolation, adipocyte
differentiation and estradiol (E2) treatment

Stromal vascular fraction (SVF) cells were isolated from the inguinal fat
pad of a 1-month old female C57BL/6 J mouse using collagenase D
(Roche) and dispase Il (Roche) digestion as described previously [17].
Adipocyte differentiation was performed as described previously [18].
During this experiment, phenol red free medium (Thermo Fisher Sci-
entific) and charcoal stripped Fetal Bovine Serum (FBS) (Sigma Aldrich,
F6765) were used in order to avoid the endogenous estrogen inter-
ference as phenol red has been reported to have estrogenic activity
[19]. After 2 days of induction medium, E2 (10, 100 nM) and vehicle
were used to treat both beige and white adipocyte during the entire
differentiation process. Fresh maintenance medium contained E2 was
replaced every other day till differentiation was completed (8 days),
then the adipocytes were harvested for RNA isolation and quantitative
PCR assay.

2.15. Echocardiography

Cardiac function was assessed via echocardiography at the end of diet
study using the Vevo2100 imaging system (VisualSonics Inc, Toronto,
Canada). Mice were anesthetized with isoflurane (1.5%, delivered at a
flow rate of 1 L/min), in accordance with our animal protocol
throughout the duration of the procedure The general procedure for
acquiring short-axis images, estimating fractional shortening (FS) and
ejection fraction (EF), measuring heart rate, and obtaining left ven-
tricular end-systolic diameter (LVESD), left ventricular end-diastolic
diameter (LVEDD), cardiac output, end-systolic (ES) volume, end-
diastolic (ED) volume and stroke volume has been previously
described [20]. LV fractional shortening (FS) was calculated as
(LVEDD-LVESD)/LVEDD*100 and Ejection Fraction (EF) was calculated
using the Teichholz formula.
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2.16. Human subjects study

To corroborate in humans the sex-related findings we observed in mice,
we assessed the association of sex with serum ANG2 levels in 1198
subjects from the Amish Research program. Serum ANG2 was
measured in subjects who had previously participated in two
community-based studies of cardiovascular health and platelet function
[21,22]. Subjects were generally healthy and drug naive; all had dis-
continued the use of vitamins and supplements at least one week prior
to sampling collection. Serum ANG2 level was measured with the R&D
Systems Human Angiopoietin-2 Quantikine Immunoassays (Minneap-
olis, MN). Samples were processed in triplicate according to the man-
ufacturer’s instructions (R&D Systems). To control for inter-plate and
inter-batch variation, aliquots from a single time point blood draw
from two volunteer subjects were run on each plate in triplicate (internal
controls). Serum ANG2 levels were natural log-transformed prior to
analyses to reduce skewness. Body fat mass was measured by DXA in
grams, using a Hologic 4500 W (Bedford, MA, USA).

2.17. Statistical analysis

For laboratory-based experiments statistical comparisons were made
using the unpaired t-test or One-way ANOVA with GraphPad Prism 9.
Statistical significance was accepted at a p-value of less than 0.05. P-
values are represented as *p < 0.05; **p < 0.01; ***p < 0.001
respectively.

For the human subject study, we assessed the correlation of age with
ANG2 levels in males and females separately and then whether the
age-ANG correlation was moderated by sex on ANG2 using multiple
regression analysis. We similarly estimated the correlation of ANG2
with two adiposity-related measurements (fat mass and BMI) and then
assessed whether these correlations were moderated by sex, using
multiple regression analysis with adjustment for age. These analyses
were performed in SAS.

2.18. Study approval

All animal study protocols were approved by the Institutional Animal
Care and Use Committee of Virginia Commonwealth University. The
human study was approved by the Institutional Review Board at the
University of Maryland. Written informed consent was obtained from all
patients or their designated family members.

3. RESULTS

3.1. Characterization of ANG2 aKO mice

ANG2 aKO0 mice were generated by cross breeding the ANG2 flox/flox
to Adiponectin-Cre mice, and no fertility difference was observed in
ANG2 aKO mice compared with controls. ANG2 deletion driven by
adiponectin-CRE resulted in loss of ANG2 transcript in isolated mature
adipocyte (Figure 1A). No differences in body weight or growth curve
were observed in either female or male ANG2 aK0-mice fed with
regular chow diet (RCD) when compared to littermates (Figure 1B and
C). In contrast, female ANG2 aKO on 6-month HFD diet had signifi-
cantly greater body weight gain (Figure 1D) and fat mass expansion
(Figure 1E). Furthermore, female ANG2 aKO mice showed increased
myocardial dimensions on echocardiogram (Fig. S1). Interestingly, no
significant body weight difference was observed in male mice
(Figure 1F).

3.2. Female ANG2 aKO mice show decreased energy expenditure
upon HFD challenge

To determine whether the weight gain in HFD-fed female ANG2 aKO
mice was attributable to altered energy metabolism, we characterized
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Figure 1: ANG2 deletion in female mice (ANG2 aK0) on HFD results in significant body weight gain and decreased energy expenditure. (A): Comparisons of Ang2 mRNA
expression in isolated mature adipocytes in control and ANG2 aKO mice. (B): Body weight of female control and ANG2 aKO mice on RCD at 2 and 8 months. (C): Body weight of
male control and ANG2 aK0 mice on RCD at 2 and 8 months. (D): Body weight changes of female control and ANG2 ak0 mice fed HFD. (E): Percentage of fat mass in female control
and ANG2 aKO mice, before and after HFD. (F): Body weight changes of male control and ANG2 aKO mice on HFD. (G): Regression plot of full day energy expenditure, with ANCOVA
analysis of energy expenditure of female control and ANG2 aKO mice on HFD (n: Control F = 10, ANG2 aKO F = 7). (H): RER in dark, light cycle and full day. (I): Cumulative food
consumption reported as Kcal. (J): Locomotor activity. Data are shown as mean + SEM *p < 0.05, **p < 0.01 vs control.

the metabolic phenotype using indirect calorimeters (PhenoMaster™).
Weight-adjusted ANCOVA analysis shows that Energy Expenditure (EE)
was significantly lower in HFD-fed female ANG2 aKO mice in com-
parison with controls (Figure 1G, Fig. S2). Respiratory Exchange Ratio
(RER) was similar between groups (Figure 1H). ANG2 aKO female mice
had a non-significant increase in food consumption (Figure 11) and a
significantly decreased locomotor activity (Figure 1J). Male ANG2 aKO
mice on HFD did not show any significant difference in EE, RER, food
consumption, or locomotor activity when compared with controls
(Fig. S3). Collectively, this set of HFD-exposure experiments demon-
strate that deletion of ANG2 in adipose tissue alters energy metabolism
in female mice, causing obesity.

3.3. ANG2 adipocyte depletion resulted in beige fat “whitening”
and adipocyte hypertrophy in perigonadal fat depot upon HFD
challenge

We next investigated the effect of ANG2 adipocyte deletion on different
adipose depots. ANG2 aKO female mice on HFD had larger brown fat
(BAT) lipid droplets size compared with controls (Figure 2A), while the
two genotypes had no significant difference in UCP1 and other lipo-
genesis markers such as FASN, PPARy, ATGL, and HSL by immuno-
blotting (Figure 2B and C). In mice, the subcutaneous inguinal adipose
tissue depot undergoes the most profound induction of beige adipo-
cytes in response to either cold exposure or HFD [23,24]. As expected,
beige fat with a classical multilocular morphology was seen in controls,
but ANG2 aKO female mice had much larger adipocytes (Figure 2D).
Adipocyte distribution quantification revealed that ANG2 aKO female

inguinal adipocytes were nearly triple in size when compared with
controls (Figure 2E and F). Consistent with a “whitening” phenotype,
browning/beige adipogenesis markers, such as Ucp1, Pgcla, were
significantly downregulated in ANG2 aKOs (Figure 2G). Immunoblotting
also confirmed the downregulation of UCP1 (Figure 2H). Notably, we
observed that although the protein expression of Fatty Acid Synthase
(FASN) was unchanged, Adipose Triglyceride Lipase (ATGL) was
significantly downregulated (Figure 2H and I). Using immunohisto-
chemistry, we found the endothelial marker CD31 was reduced around
the beige adipocyte of ANG2 aKOs compared to controls mice
(Figure 2J), consistent with a decrease in vascularization. Similar to
inguinal fat, histologic assessment of perigonadal fat depot showed
adipocyte hypertrophy in ANG2 aKO mice (Figure 2K, L, M). Interest-
ingly, immunoblotting showed the expression of FASN and ATGL were
both significantly decreased (Figure 2N and 0), suggesting decreased
lipid metabolism (i.e., lipogenesis/lipolysis balance) in ANG2 aKOs.
Furthermore, lipid metabolism regulators (PPARy, CEBPa, ADIPOQ and
FABP4) were significantly downregulated, (Figure 2N and 0). These
results indicate that ANG2 is unlikely to be the predominant angio-
genesis factor in controlling mature BAT. Conversely, the data indicate
that ANG2 plays a more important role in recruitment as well as lipid
homeostasis in inducible fat depots.

3.4. HFD-fed ANG2 aKO female mice have impaired carbohydrate
metabolism and insulin resistance

Although no difference was observed in fasting glucose, (Figure 3A),
OGTT (Figure 3B and C) and IPITT (Figure 3D and E) revealed that ANG2
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Figure 2: ANG2 adipocyte depletion resulted in beige fat “whitening” and adipocyte hypertrophy. (A): BAT sections H&E staining. Scale bars: 50 pm. (B): Immunoblots and
quantification (C) of UCP1, FASN, PPAR~, ATGL, HSL and GAPDH in BAT. n = 3 each group. (D): Inguinal adipose tissue section H&E staining. Scale bars: 20 pum. (E): Adipocyte size
distribution frequency and (F) quantification in both groups. (G): mRNA levels of Ucp1 and Pgc1a. in inguinal fat. n = 10 each group. (H): Immunoblots and quantification (I) of UCP1,
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Control.

aK0 female mice had significant insulin resistance. Serum insulin
levels and free fatty acids were also significantly elevated in ANG2
aKO0s (Figure 3F and G), and consequently both HOMA-IR index and
Adipo-IR index were significantly higher in ANG2 aKOs (Figure 3H and
I). Moreover, H&E and immunofluorescence staining show that ANG2
aKO0 female mice had an expanded pancreatic islet size (Figure 3J and
K). Collectively, the data indicate that ANG2 aKO female mice on HFD
diet developed significant insulin resistance.

3.5. HFD feeding induced hepatic steatosis in ANG2 aKO female
mice

Adiposity caused by sustained positive energy balance results in
ectopic accumulation of fat in the liver [25,26], being a major
contributor to the development of fibrosis (non-alcoholic steatohepa-
titis—NASH) and eventually cirrhosis. We thus examined whether
adipose tissue-specific ANG2 ablation would result in hepatic end-
organ damage. In this model, HFD did not induce changes in circu-
lating triglycerides between genotypes (Figure 4A), while free fatty
acids were increased and histology analysis demonstrated that HFD-
fed ANG2 aKO female mice had significant lipid droplet accumula-
tion in the liver (Figure 4B). Image-based quantification showed
significantly increased hepatic steatosis as well as cytoplasmic vesicle
areas (Figure 4C and D), but no differences in collagen scoring
(Figure 4E and F). Moreover, the master lipogenic transcription factor
Lxra and its associated downstream lipogenic genes, such as Cyp7ail
and Srebpic, were both significantly downregulated in ANG2 akO

groups, while Fasn remained unchanged (Figure 4G). Consistent with
the gene expression data, ANG2 aKO female mice had lower hepatic
LXRa., CYP7A1, as well as SREBP1 protein expression (Figure 4H and
I). These results clearly show that loss of ANG2 in AT not only affected
AT function, but also caused ectopic fat deposition and consequent
hepatic steatosis.

3.6. Adipose tissue-specific deletion of ANG2 results in an
impaired thermogenesis in females

To determine if the metabolic phenotype changes in ANG2 aKO fe-
males were due to a defective adaptive thermogenesis response, we
performed a short-term cold exposure experiment in chow-fed mice.
After days of acclimation in 18 °C, mice were exposed to cold
(10 °C) for 8 consecutive days. In these conditions, the core body
temperature declined more drastically in ANG2 aKO mice than
controls (Figure 5A ans B) before rebounding by the end of cold
exposure. In another indirect calorimetry experiment, when housed
at 23 °C (standard laboratory temperature but below thermoneu-
trality), ANG2 aKO female mice had higher EE (Figure 5C), while no
significant difference was observed in body weight, food consump-
tion, activity, or RER (Figure 5D—H). Similarly, no difference in
thermogenesis-related gene expression between the genotypes was
observed in brown fat (Figure 5I). Collectively, these results indicate
that adipose-tissue-specific ANG2 deletion causes in females a small
but physiologically relevant derangement in the adaptive thermo-
genesis response.
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Figure 3: Female ANG2 aKO mice have impaired glucose homeostasis on HFD. (A): Fasting glucose levels measured at the end of the HFD study. (B): oral glucose tolerance
test (OGTT). (C): Area under the curve from OGTT. (D): Intraperitoneal Insulin Tolerance Test (IPITT). (E): Area under the curve from IPITT. (F): Fasting serum insulin levels. (G):
Fasting serum free fatty acid. (H): HOMA IR index. (I): Adipo-IR index. (J): Pancreas H&E and immunofluorescence staining insulin (red) and glucagon (green). Nuclei were stained
with DAPI. Scale bars: 800 pum in H&E, 200 pum in IF staining. (K): Pancreatic islets size quantification. n > 10 islets per animal. n = 10 per group. Data are shown as

mean + SEM. *p < 0.05 vs control.

3.7. ANG2 transcript was upregulated by estradiol (E2)

The stronger association of obesity with Ang2 depletion in female
compared to male mice prompted us to explore the role of estrogen in
Ang2 transcription regulation in adipocytes. Preadipocytes obtained
from stromovascular fraction extracted from inguinal depots of female
wild-type mice were differentiated toward white or beige adipocytes
(18) and exposed to E2. In white adipocytes Ang2 transcript was
upregulated by 1.20 + 0.09 fold (p = 0.34), and 1.45 & 0.11 fold
(p < 0.05), while in beige adipocytes Ang2 transcript was upregulated
by 1.31 4 0.03 fold (p = 0.14) and 1.40 4+ 0.04 fold (p = 0.035)
following exposure to E2, 10 nM, and 100 nM, respectively (Fig. S4B).
These data support the role of estradiol in inducing Ang2 transcription
in both white and beige adipocytes.

3.8. In humans circulating ANG2 is inversely correlated with body
fat mass in a sex-specific manner

To evaluate the potential relevance of these findings to humans, we
assessed the relationship between serum ANG2 levels and adiposity in
1,198 subjects, including how these associations might vary by sex
and menopausal status. Study subjects were members of the Amish
community of Lancaster, PA, aged 20—83 years who had previously
participated in a community-wide cardiovascular health study as part
of the Amish Research Program [21,22]. Serum ANG2 levels were
natural logarithm transformed (tANG2) to remove skewness. Forty-
eight percent of subjects were female, mean (SD) BMI was
26.8 + 4.6 kg/mz, and mean fat mass was 21.3 + 10.2 kg (Table 1).
We used linear regression models to estimate the associations of BMI
and fat mass with serum ANG2 levels in males and females, and in
pre- and post-menopausal females, adjusting for age. Serum ANG2
levels were higher in females than males (p < 0.001) and decreased
with age in females (B = —0.005, p < 0.001), but not in males
(B = 0.0009, p = 0.35) (Figure 6A). Serum ANG2 levels were
significantly inversely associated with BMI, more so in females than in

males (interaction p-value = 0.002) (Figure 6B). In a subgroup of
subjects who underwent fat mass measurement, similar trends were
also observed (Figure 6C), where ANG2 levels had more negative
association with fat mass (by 4.6 unit more, p = 0.067 for the
interaction effect) than male (p = 0.021).

Since ANG2 levels are regulated by estrogen level and menopause is
associated with drastically reduced estrogen levels, we also investi-
gated the association between ANG2 and menopausal status, as well
as their effects on BMI and whole body fat mass in female stratified by
their menopausal status. First, ANG2 levels are lower (by 0.178 unit,
p = 0.152) in post-menopausal females than in pre-menopausal fe-
males, and age is negatively associated with ANG2 levels in pre-
menopausal females (by 0.01 unit, p < 0.001) but not in post-
menopausal females (by 0.0001 unit, p < 0.001 for the interaction
effect) (Figure 6D). ANG2 levels also have negative association with
BMI (Supplmentary Fig. 5A) and whole body fat mass (Supplementary
Fig. 5B) in both pre- and post-menopausal females, with the effect
slightly larger in pre-menopasual females. Collectively, the data sup-
port the hypothesis that in humans ANG2 plays a protective role
against adiposity, in particular in premenopausal females.

4. DISCUSSION

In this study, we identified a previously unrecognized role for ANG2 as
an important regulator of thermogenic fat, especially in females. Adi-
pose tissue-selective ANG2 deletion caused reduced energy expen-
diture and obesity in female mice exposed to HFD. Female ANG2
adipose-deficient mice not only gained more weight than controls,
but also developed metabolic traits associated with adiposity (impaired
carbohydrate metabolism, ectopic fat deposition, and to a certain
degree cardiovascular dysfunction). In our study population serum
ANG2 was higher in females, and inversely correlated with body fat
mass. These clinical observations highlight the translational relevance
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of our findings in the ANG2 KO model whereby ANG2 plays an
important role in modulating energy metabolism in a sex-specific
manner by mediating inducible thermogenic fat recruitment and
activity.

The role of ANG2 in metabolic disorders has been previously
explored. However, manipulation of ANG2 expression in adipose
tissue has led to inconsistent results [27,28]. ANG2 neutralization
with antibody did not show effects on body weight against HFD but
resulted in impaired carbohydrate metabolism [27]. Conversely,
conditional knock down of ANG2 in adipose tissue resulted in
marginal weight gain and impaired thermogenic function [28]. Of
note, both studies were conducted in male mice. Interestingly, in our
ANG2 aKO model we did not observe differences in EE attributable to
genotype when using the more rigorous ANCOVA model [29,30] to
adjust body weight in male mice. Conversely, in female ANG2 aKO
mice, we clearly demonstrated a difference in EE attributable to the
genotype. The data demonstrate that ANG2 aKO female mice failed
to recruit thermogenic fat to resist HFD-induced adiposity and
developed end-organ effects of obesity. The lack of significant dif-
ferences in brown adipose tissue UCP1 indicates that ANG2 is critical
for beige fat recruitment but not for maintaining the activity of pre-
vascularized brown fat. The delayed adaptive thermogenesis
response in ANG2 aKO female mice during short-term cold exposure
further confirmed its role in inducible fat recruitment. No differences
in UCP-1 were observed between wild type and ANG2 aKO adipo-
cytes derived from inguinal SVF, supporting the lack of direct action
of ANG2 on adipocyte differentiation (data not shown). Interestingly,
while female ANG2 aKO mice on chow diet had slightly higher EE
than controls, the opposite occurred following HFD exposure at room

temperature. No differences in EE were observed between HFD wild
type and ANG2 aKO female mice at thermoneutrality (30°). (Fig. S6).
This paradoxical finding is indeed consistent with a deficient adaptive
thermogenesis response. The standard housing temperatures (20—
23 °C) for laboratory mice are below the temperatures of thermo-
neutrality (30 °C), and at 20—23 °C, adaptive thermogenesis ac-
counts for approximately half of their total EE to maintain the core
body temperature [31,32]. Thus, when exposed to mild cold, in the
absence of calorie overload and protection from heat dissipation
ANG2 aKO female mice respond with activation of less energy-
efficient compensatory mechanisms (muscle fasciculation, locomo-
tor activity) driving an increase in EE. At room temperature under
calorie overload, when the adaptive thermogenesis and thermogenic
fat recruitment is stimulated, a defective expansion in thermogenic
fat capacity due to lack of ANG2 leads to inability to dissipate the
excess of calorie through thermic effect of food [33] resulting in
excessive fat accumulation with the development of obesity and its
metabolic consequences. Conversely, at thermoneutrality and under
calorie overload, when the adaptive thermogenesis and thermogenic
fat recruitment is abrogated, the effects of ANG2 on EE are abol-
ished. In humans, impaired non-shivering thermogenesis response
promotes activation of less energy-efficient muscle fasciculation,
which results in the higher EE [34]. The data presented are indeed in
agreement with the findings of Wolfrum and al [35]. showing only a
marginal role of inguinal fat to the adaptive thermogenesis response
in male mice. While our observations replicate the findings in male
mice, the effects of angiopoietin-2 deletion in adipose tissue resulted
in a dramatic metabolic phenotype in females. This paradoxical
finding can be ascribed to the greater angiogenesis and thermogenic
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fat expansion in female compared to male mice when challenged
with high-fat diet [14] indicating an important role of inducible fat in
females, compared to male mice.

We recognize that this interpretation is speculative, and additional
mechanistic studies are necessary to validate it.

The remarkable phenotypical differences between sexes in ANG2 ak0
mice and the findings in the clinical study suggest the presence of an

Table 1 — Characteristics of study subjects according to sex.

Total Females Males
(n = 1198) (n = 578) (n = 620)
Age (years)
Mean (SD) 435 + 13.8 451 + 141 421 +£13.3
Median 43.0 [20, 83] 45.0 [20, 83] 41.0 [20, 77]
[Min, Max]
BMI (kg/m?)
Mean (SD) 26.8 + 4.6 28.0 £ 5.5 25.7 + 3.4
Median 26.1 [16.7,46.8] 27.5 [16.7, 46.8] 25.4 [18.3, 42.3]
[Min, Max]
Fat Mass (kg)
Mean (SD) 21.3 £ 10.2 26.4 £ 9.4 152 +7.2
Median 20.4 [4.1,50.0] 25.9 [5.7, 50.0] 14.3 [4.1, 43.2]
[Min Max]
Missing® 795 359 436
Ang-2 (pg/mL)
Mean (SD) 1999 + 904 2369 + 1040 1655 + 570
Median 17921 21447 1569
[Min Max] [688.8, 8807.0] [796.2, 8307.0] [688.8, 6322.4]

2 Due to the cost of DEXA body composition analysis, not all subjects were measured
for the whole body fat mass.

adipose estrogen-ANG2 axis that modulates whole-body metabolism.
In previous studies we demonstrated that in young healthy volunteers,
females had greater non-shivering adaptive thermogenesis response
than males due to diffuse activation of thermogenic fat [36]. Indeed,
the connection between estrogen and ANG2 has been observed in
different experimental models. Ye et al. showed that estrogen therapy
produced a significant Ang2 mRNA increase in heart, kidney, and lung,
respectively [37], while a decreased Ang2 expression was observed in
ovariectomized mice [38]. These findings support our hypothesis that
ANG2 can serve as a target for mediating estrogen-regulated metabolic
disorders. Weight gain in females correlates with aging and becomes
more prevalent at menopause [39,40], when there is a significant loss
in ovarian hormone production [41]. Moreover, the metabolic conse-
quences of weight gain (metabolic syndrome, insulin resistance, and
increase in cardiovascular risk) rise dramatically post menopause [42].
Energy expenditure studies demonstrated that, compared to pre-
menopause, postmenopausal females have approximately 8% lower
24-hour resting EE [43]. This minor change can indeed have significant
metabolic consequences [44]. The mechanistic effects of estrogen on
energy metabolism have not been completely elucidated [45]. While
estrogen replacement therapy results in lowering visceral adipose
tissue, fasting serum glucose, and insulin levels [46,47], the associ-
ation with increased cardiovascular disease and breast cancer risk
prevents the wide use of this intervention [48—50]. Targeted activation
of ANG2 might overcome this shortcoming. Further mechanistic and
clinical studies will be necessary to elucidate the clinical relevance of
these novel findings and to translate into interventions directed to
promote expansion and activation of thermogenic fat by exploiting the
estrogen-ANG2-adipose tissue axis.
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Figure 6: Relationships between age, tANG2 (log-transformed Angiopoiten-2 levels), menopausal, and adiposity in humans. Figures show unadjusted regression
results in various groups, tables under figures show results from multiple linear regression models. (A): Effect of age on tANG2 levels in males and females. Age*Female
captures the differences in changes with respect to age between males and female (B): Effect of tANG2 on BMI in both sexes, adjusting for age, sex and the interaction effect of the
two. ANG2*female captures the differences in the effect of ANG2 on BMI between males and females. (C): Effect of tANG2 on fat mass in both sexes, adjusting for age, sex and the
interaction effect of the two. ANG2*female captures the differences in the effect of ANG2 on fat mass between males and females. (D): Effect of age on tANG2 in pre- and post-
menopausal females. Age*menopausal captures the difference in changes with respect to age pre- and post-menopause.

5. CONCLUSIONS
The results of our study provided four novel findings:

1) Estrogen-ANG2-adipose tissue axis is an important and previously
unrecognized determinant of adaptive thermogenesis and whole-
body metabolism in mice and humans.

2) Modulation of angiogenesis plays a critical permissive role in the
expansion and activation of inducible thermogenic fat, independent
of the stimulating pathway for adipose tissue browning.

3) Adipose tissue-specific ANG2 aKO mouse is a novel experimental
model of female obesity and its metabolic consequences.

4) In humans, there is a differential sex-driven interaction between
ANG2 levels, age, and adiposity.
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