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Discovering Pair-wise Synergies in 
Microarray Data
Yuan Chen1,2,*, Dan Cao3,*, Jun Gao4,5 & Zheming Yuan1,2

Informative gene selection can have important implications for the improvement of cancer diagnosis 
and the identification of new drug targets. Individual-gene-ranking methods ignore interactions 
between genes. Furthermore, popular pair-wise gene evaluation methods, e.g. TSP and TSG, are 
helpless for discovering pair-wise interactions. Several efforts to discover pair-wise synergy have been 
made based on the information approach, such as EMBP and FeatKNN. However, the methods which 
are employed to estimate mutual information, e.g. binarization, histogram-based and KNN estimators, 
depend on known data or domain characteristics. Recently, Reshef et al. proposed a novel maximal 
information coefficient (MIC) measure to capture a wide range of associations between two variables 
that has the property of generality. An extension from MIC(X; Y) to MIC(X1; X2; Y) is therefore desired. 
We developed an approximation algorithm for estimating MIC(X1; X2; Y) where Y is a discrete variable. 
MIC(X1; X2; Y) is employed to detect pair-wise synergy in simulation and cancer microarray data. The 
results indicate that MIC(X1; X2; Y) also has the property of generality. It can discover synergic genes 
that are undetectable by reference feature selection methods such as MIC(X; Y) and TSG. Synergic 
genes can distinguish different phenotypes. Finally, the biological relevance of these synergic genes is 
validated with GO annotation and OUgene database.

Cancer tissue sample microarray expression data typically possess a common property—the number of sam-
ples is much smaller than the number of features—here those features are genes1. Informative gene selection 
has important implications for the improvement of cancer diagnosis, the selection of targeted therapeutics, and 
the identification of new drug targets2,3. Individual-gene-ranking methods, such as the t test for binary class 
differentiation4 and the F test for multi-class differentiation rank genes by comparing the expression values 
of the same individual gene between different classes. Although these individual-gene methods may discover 
individual effect genes efficiently, they may have ignored interactions (i.e., redundancy and synergy) between 
genes4–6. The interactions between genes are critical in pathway dysregulations which trigger carcinogenesis7. 
Table 1 illustrates an example case of synergy between Gene X1 and Gene X2: 1) Knowledge regarding the state 
of only one of these two variables leaves the state of Y uncertain. 2) When states of both X1 and X2 are known, 
then the state of Y becomes certain.

Pair-wise gene evaluation has been implemented in several popular algorithms, including top scoring pair 
(TSP)8,9, top scoring genes (TSG)2, and doublets (sum, diff, mul and sign)7, which all compare expression values 
of the same sample between two different genes. However, these methods are incapable of discovering pair-wise 
interactions efficiently. For example, let X1 and X2 be two independent random variables; Y equals |X1–X2| and is 
binarized with a median (Fig. 1). Then, the Δ -score for TSP is 0.04, the χ2-score for TSG is 0.18, and the t-score 
is 0.04, 0.18, 3.42, and 0.56 for sum, diff, mul, and sign, respectively. The synergic pairs, X1 and X2, cannot be high-
lighted with these low scores calculated by these methods.

Based on information theory, the measure of I(X1; X2; Y)10,11 can be used to identify pair-wise interactions12–14. 
The interaction of a gene pair with respect to cancer is defined as

= − −I X X Y I X X Y I X Y I X Y( ; ; ) ( , ; ) ( ; ) ( ; ) (1)1 2 1 2 1 2
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Where I is the symbol for mutual information (MI), X1 and X2 are random variables representing the expression 
levels of the two genes and Y is a binary random variable representing the presence or absence of cancer15. A 
positive value of I(X1; X2; Y) indicates synergistic interactions, while a negative value of I(X1; X2; Y) indicates 
redundant interactions.

Several efforts have recently been made to discover pair-wise synergy even multivariate synergy among 
interacting genes on experimental biological data. The Anastassiou group proposed a systems-based 
approach called Entropy Minimization and Boolean Parsimony (EMBP) to identify modules of genes 
that are jointly associated with a phenotype from gene expression data15 and SNP data16. Anastassiou11 
emphasized the significance of multivariate analysis such as EMBP for molecular systems biology and clar-
ified the fundamental concepts by explaining the precise physical meaning. Watkinson et al.17 presented 
a novel dendrogram-based technique to identify synergies of pairwise genes. Hanczar et al.18 devised a 
histogram-based method called FeatKNN to detect the joint effect I(X1, X2; Y). Park et al.19 proposed a new 
approach for inferring combinatorial Boolean rules of gene sets for cancer classification by using a synergy 
network. Shiraishi et al.20 presented a rank-based non-parametric statistical test for measuring synergistic 
combinations between two gene sets. Ignac et al.21 used interaction distances (ID) to identify the most syn-
ergic pairs of markers such as SNPs.

Binarization of continuous expression data simplifies the estimation of MI and provides simple logical func-
tions connecting the genes within the found modules2,15. However, there are multitype complicated patterns in 
both real-world data (Fig. 2A,B) and simulation data (Fig. 2C,D); binarization might lead to loss of informa-
tion11,21. For example, the IGLC1 gene for the prostate dataset must be trinarized, rather than binarized (Fig. 2C). 
Several methods have been proposed for the MI estimation, such as kernel density estimation22, histogram-based 
technique23, k-nearest-neighbor estimator24, B-spline functions25, Edgeworth26, adaptive partitioning27,28 and 
dendrogram-based method17. Khan et al.29 evaluated the relative performance of several MI estimation meth-
ods, and suggested that the most suitable estimation procedure would depend on known data or domain char-
acteristics and exploratory data analysis. Recently, Reshef et al.30 presented a novel estimator for two variables 
called maximal information coefficient (MIC). MIC explores various binning strategies with different numbers 
of bins, and can capture a wide range of associations, both functional and non-functional, regardless of linear or 
non-linear relationships. Due to its generality, MIC is becoming widely accepted in scientific research fields31. 
Therefore, there is a large demand for extending MIC from two variables to three variables, even multivariate, to 
capture a wide range of synergistic interactions32.

In this paper, we first developed and described an algorithm to compute MIC(X1; X2; Y). We demonstrated the 
generality of MIC(X1; X2; Y) with simulation data. We identified the most synergic pairs of genes (not discovered 
by popular feature selection approaches) using MIC(X1; X2; Y) with several real-world, cancer gene expression 
profile datasets. Finally, we validated these synergic genes using classification performance, Gene Ontology anno-
tation (GO), and the OUgene database33.

Y X1 X2 X1 ⊕ X2

− 1 1 0

− 0 0 0

+ 1 0 1

+ 0 1 1

Table 1.  A typical pair-wise synergy between X1 and X2. ⊕  is an exclusive-or operation.

Figure 1. Synergic pairs conducted by function. Y =  |X1 – X2|(n =  200). Y is binarized with a median. Red 
point: positive sample. Green point: negative sample.
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Calculation of MIC(X1; X2; Y) where Y is a discrete variable
Preliminary. Given a finite set Dn × 3 =  {(x1, x2, y)| x1 ∈  X1, x2 ∈  X2, y ∈  Y}, where n is the sample size, X1 and X2 
are two continuous independent variables, Y is the discrete dependent variable Y =  {class1, class2,..., classP}, and P 
is the number of classes, we can partition X1, X2, and Y into x1 bins, x2 bins, and y bins, respectively. Here, y is fixed 
as P, because Y is a discrete variable. We denote such a partition x1-by-x2-by-y as grid G, and the distribution of 
the data points in D on the cells of G as D|

G.

Definition 1 For a finite set ⊂ RD 3 and positive integers x1, x2, y, define

= |⁎I D x x y I D( , , , ) max ( ) (2)G1 2

where the maximum is over all grids G with x1-by-x2-by-y, and I(D|G) is the interaction defined in formula (1).

Definition 2 The characteristic matrix M(D) of a set D of three-variable data is an infinite matrix with entries
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Definitions 3 The maximal interaction coefficient MIC(X1; X2; Y) of a set D of three-variable data with sample size 
n and grid size less than B(n) is defined as

Figure 2. Examples of scatter plots of discretization for gene expression. (A,B) are real-word gene expression 
values for prostate dataset74 and yeast dataset75; the values of HTB1 gene are binarized with 0. C and D are 
simulation datasets from Y =  4·X2 and Y =  sin (4·π ·X), Y is binarized with 0.5 and 0, respectively. Red point: 
positive sample. Green point: negative sample.
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In this paper a equals 0.6, the default setting suggested by Reshef et al.30.

The maximal grid size B(n) and normalization of MIC(X1; X2; Y). Formula (1) can be rewritten as

= −I X X Y I X Y X I X Y( , , ) ( , ) ( , ) (5)1 2 2 1 2

= −I X X Y I X Y X I X Y( , , ) ( , ) ( , ) (6)1 2 1 2 1

Here I(X2, Y|X1) and I(X1, Y|X2)are conditional mutual information.
According to formula (5) and knowing that the X1, x1-axis partition is fixed, i.e. that X1 is equipartitioned with 

x1 bins, the set D of three-variable data with sample size n can be subdivided into x1 subsets, and each subset has 
only two-variable ( X2 and Y) and n/x1 samples. The mutual information for each subset can be normalized with 
log(min{x2, y}) and the maximal grid size B(n) for each subset should be (n/x1)a. Therefore, for set D, while the 
x1-axis partition is fixed, the normalization benchmark and B(n) are log (min{x2, y}) and (n/x1)a, respectively.

Similarly, for set D where the x2-axis partition is fixed, the normalization benchmark and B(n) are log (min{x1, y})  
and (n/x2)a, respectively.

Approximation algorithm for MIC(X1; X2; Y). Here, we describe the heuristic algorithm, 
ApproxCharateristicMatrix_3D, for approximating the optimal MIC(X1; X2; Y). It includes four sub-algorithms: 
EquipartitionX1Axis, SortInIncreasingOrderByX2Value, GetSuperclumpsPartition_3D, and ApproxOptimizeX2Axis. 
In the dataset D, the first and second columns represent X1 and X2 respectively; the last column represents Y. n is the 
sample size. B defines the maximal grid size. The symbol “⊥ ” represents the dataset which is changed from (a1, b1, z1) 
to (b1, a1, z1). c represents the candidate partition point for x-axis. “log” is base-2 logarithm. xfix, representing the corre-
sponding x-axis partition, is fixed (xfix ∈  {x1, x2}). The symbol “ ←  ” is an assignment operator.

Algorithm ApproxCharacteristicMatrix_3D(D, B, c)

Require: D={(a1, b1, z1), … , (an, bn, zn)| z ∈  Y} is a set of ordered 3D vector sorted in increasing order by the First column-values

Require: B is an integer greater than 3, and B(n) =  (n/xfix)0.6

Require: c is greater than 0

1: D⊥ ←  {(b1, a1, z1), … , (bn, an, zn)}

2: for all x1 ∈  {2, … , [(n/2)0.6/y]} do

3:  x2 ←  [(n/x1)0.6/y]

4:  Q ←  EquipartitionX1Axis(D, x1)

5:  D′  ←  SortInIncreasingOrderByX2Value(D)

6:  < c0, … , ck>  ←  GetSuperclumpsPartition_3D(D′ , Q, cx2)

7:  (I(x1, 2, y), … , I(x1, x2, y)) ←  ApproxOptimizeX2Axis(D, Q, < c0, … , ck> )

8:  Q⊥ ←  EquipartitionX1Axis(D⊥, x1)

9:  D′ ⊥ ←  SortInIncreasingOrderByX2Value(D⊥)

10:  < c0, … , ck> ⊥ ←  GetSuperclumpsPartition_3D(D′ ⊥, Q⊥, cx2)

11: (I⊥(x1, 2, y), … , I⊥(x1, x2, y)) ←  ApproxOptimizeX2Axis(D⊥, Q ⊥, < c0, … , ck> ⊥)

12: end for

13: for (x1, x2, y) such that x2, y ≤  (n/x1)0.6 do

14:  I*(x1, x2, y) ←  max{I(x1, x2, y), I⊥(x1, x2, y)}

15:  M(x1, x2, y) ←  I*(x1, x2, y)/log min{x2, y}

16: end for

17: return {M (x1, x2, y): x2, y ≤  (n/x1)0.6}

Algorithm GetSuperclumpsPartition_3D (D, Q, cx2)

Require: D={(a1, b1, z1), … , (an, bn, zn)} is a set of n ordered 3D vector

Require: Q is a x1-axis partition of D

Require: k =  cx2 is the maximum number of superclumps

Continued
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Ensure: A x2-axis partition of superclumps P =  < c0, c1, … , ck> 

1: Q′  ←  Sort_Q_InIncreasingOrderByX2Value(D, Q)

2: i ←  1

3: classNum ←  {1, … , y}

4: count ←  {11, …  1y}

5: Repeat

6: for j ←  1, … , y

7:  if ai =  classNum(j)

8:   Qj-class(count(j)) ←  Q′ (i)

9:   Positionj(count(j)) ←  i

10:   count(j) ←  count(j) +  1

11:  end if

12: end for

13: until i >  n

14: i ←  1

15: currCol ←  1

16: c0 ←  0

17: desiredColSize ←  n/k

18: currPos ←  1

19: # ←  0

20: repeat

21:  i ←  (m : Positionj(m))

22:  flag ←  true

23:  while flag and i <  |Positionj|

24:   if Qj(i +  1) =  Qj(i)

25:    i =  i +  1

26:   else if

27:    flag ←  false

28:   end if

29:  end while

30:  if Positionj(i) −  ccurrCol–1 <  desiredColSize

31:   # ←  Positionj(i)–ccurrCol–1

32:   currPos ←  Positionj(i) +  1

33:  else if

34:   if # ≠  0 and |# −  desiredColSize| ≤  |Positionj(i) −  ccurrCol–1 −  desiredColSize|

35:    ccurrCol ←  # +  ccurrCol–1

36:    # ←  |Positionj(i) −  ccurrCol–1 −  desiredColSize|

37:   else if # =  0 or |#–desiredColSize| >  |Positionj(i) −  ccurrCol–1 −  desiredColSize|

38:    ccurrCol ←  Positionj(i)

39:    # ←  0

40:   end if

41:   currPos ←  Positionj(i) +  1

42:   desiredColSize ←  (n −  ccurrCol)/(k −  currCol)

43:   currCol ←  currCol +  1

44:  end if

45: until Positionj(i) >  n

Algorithm Sort_Q_InIncreasingOrderByX2Value(D, Q)

Require: D =  {(a1, b1, z1), … , (an, bn, zn)} is a set of n ordered 3D vector

Require: Q is a x1-axis partition of D

Ensure: Returns a map Q′  sort in increasing order by X2 value

1: D′  ←  SortIncreasingOrderByX2(D)

2: i ←  1

3: repeat

2:  Q′ (i) ←  {Q(j): D(aj, bj, zj) =  D′ (ai, bi, zi)}

3: until i >  n

4: return Q′ 



www.nature.com/scientificreports/

6Scientific RepoRts | 6:30672 | DOI: 10.1038/srep30672

EquipartitionX1Axis, SortInIncreasingOrderByX2Value and ApproxOptimizeX2Axis are nearly the same as 
EquipartitionYAxis, SortInIncreasingOrderByXValue, and ApproxOptimizeXAxis in Reshef et al.30, respectively, 
except that ApproxOptimizeX2Axis uses I(X1; X2; Y) in place of I(X; Y). Here we demonstrate an example of a 
superclumps partition (see Fig. 3) and list only the pseudo-code of GetSuperclumpsPartition_3D, which is our 
core algorithm for calculating interactions. The algorithm includes three steps: 1) divide the data into P parts 
according to Y; 2) fix an equipartition of size x1 on x1-axis; and 3) ensure points in the same superclump to be a 
unit in the same class, with the rank of x2-axis.

Results
Generality of MIC(X1; X2; Y) according to simulation analysis. If X1 and X2 are statistically independ-
ent of Y, MIC(X1; X2; Y) should be close to 0. For example, let X and Y be two independent, random variables 
and Y is binarized with a median (sample size n =  200 and 500 replicates), then MIC(X; Y) =  0.1702 ±  0.0292. 
Similarly, let X1, X2 and Y be three independent, random variables, then MIC(X1; X2; Y) =  0.1562 ±  0.0230. 
MIC(X1; X2; Y) is reasonable in scope compared with MIC(X; Y), and decreases as the sample size grows 
(0.0596 ±  0.0012, n =  20000) and finally converges to 0.

If the state of Y is completely determined by the synergy between X1 and X2, then MIC(X1; X2; Y) should be 1, 
and MIC(X; Y) should be close to 0. As shown in Fig. 4, MIC(X1; X2; Y) =  1, MIC(X1;Y)  =  0.0379 and MIC(X2; Y) =   
0.0533. If Y is a noiseless function of X1 and X2, and X1 is fully redundant of X2, then MIC(X1; X2; Y) should be − 1. 
For example, = +Y X X3 51

2
2 and X1 =  X2, MIC(X1; X2; Y) =  − 1, MIC(X1;Y) =  1 and MIC(X2;Y) =  1.

If Y is a noiseless function of X1 and X2, then the joint effect, i.e., the sum of MIC(X1; X2; Y), MIC(X1; Y) and 
MIC(X2; Y), should be 1. Scores of the three components and the joint effect for 10 noiseless functions (Fig. 5) 
are listed in Table 2. All of the joint effects are close to 1 (0.9672~1.1675). This indicates that the value of MIC(X1; 
X2; Y) calculated with ApproxCharateristicMatrix_3D is credible, while the value of MIC(X; Y) calculated with 
ApproxMaxMI30 has been widely accepted. From all of the above, we deduce that MIC(X1; X2; Y) can capture 
a wide range of interactions, not limited to specific function types. That is, MIC(X1; X2; Y) has the property of 
generality.

Informative genes of synergy pairs discovered by MIC(X1; X2; Y). We employ MIC(X1; X2; Y) to 
detect pair-wise synergic genes in three real-world datasets. The literature resources, sample size, number of 
genes, and the number samples of each class in each dataset are summarized in Table 3.

Four popular gene selection methods, including MIC(X; Y), minimum-redundancy maximum-relevancy 
(mRMR)34, support vector machine recursive feature elimination (SVM-RFE)35,36 and TSG2, are chosen to com-
pare with MIC(X1; X2; Y). The MIC(X; Y) estimator (setting a =  0.6 and c =  5) of Reshef et al.30 is available at 
http://www.exploredata.net/, MIQ-MRMR is available at http://home.penglab.com/, and an R Package imple-
mentation of SVM-RFE is available at http://www.uccor.edu.ar/paginas/seminarios/software/SVM-RFE.zip. The 
TSG algorithm from our previous report2 is available upon request.

Each reference method ranks the top 200 genes (Top200s) for each dataset (Top200s are shown in the 
Supplementary Material Table S1-S3). The Top200s identified by different reference methods are compared with each 
other. We can observe significant overlaps between the Top 200s selected by the four reference methods, as shown 
in Figs 6, 7 and 8. This indicates that a considerable number of similar informative genes can be detected by these 
reference methods. MIC(X; Y) is an individual-gene-filter method and can only highlight genes that are individually 
discriminant. Although mRMR, SVM-RFE and TSG are not individual-gene-filter methods; the Top200s selected by 
them have considerable similarities to the Top200s selected by MIC(X; Y). This indicates that these methods can effi-
ciently discover genes that are individually discriminant, but not specific to the genes have pair-wise synergy effects.

Now, we employ MIC(X1; X2; Y) to detect pair-wise synergic genes. MIC(X1; X2; Y) ranks the top 117, 117 
and 110 pair-wise genes for Prostate, DLBCL and Lung1, respectively. After removing repeated genes, we obtain 
three Top200s (Top200s are shown in the Supplementary Material Table S1–S3). We compare our MIC(X1; X2; Y) 
results with the results from four above mentioned reference selection methods. Clearly, the Top200s selected by 
MIC(X1; X2; Y) has little overlap with the Top200s selected by the others (Figs 9, 10 and 11). We, therefore, deduce 

Figure 3. Schematic of getting superclumps partition for three variables. The points with the same color 
belong to the same superclump.

http://www.exploredata.net/
http://home.penglab.com/
http://www.uccor.edu.ar/paginas/seminarios/software/SVM-RFE.zip
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Figure 5. Ten noiseless functions with Y = f (X1, X2). Y is binarized with median, green and red dots represent 
Y= 1 and Y= 0, respectively.

Function Domain of X1 Domain of X2 Y = f(X1, X2) MIC(X1; X2; Y) MIC(X1; Y) MIC(X2; Y) Joint effect

A [0, 1] [0, 1] x1+ x2 0.3667 0.3817 0.3798 1.1283

B [0, 1] [0, 1] x1−x2 0.3793 0.3824 0.3663 1.1280

C [0, 1] [0, 1] ABS(x1− x2) 0.8222 0.1287 0.1281 1.0790

D [0, 1] [0, 1] x1× x2 0.3215 0.4134 0.4144 1.1493

E [0, 1] [0, 1] x1/x2 0.3835 0.3804 0.3653 1.1292

F [5, 23.3] [5, 23.3] 10x
1+ 10x

2 0.2390 0.4657 0.4628 1.1675

G [0, 1] [0, 1] ABS(1000x
1− 1000x

2) 0.4555 0.3386 0.3381 1.1322

H [0, 1] [0, 1] ABS(ABS(x1− 0.5)− ABS(x2− 0.5)) 0.7080 0.1295 0.1298 0.9672

I [0, 3.13] [1.5, 4.75] LOG2(ABS(SIN(x1)− COS(x2))) 0.2853 0.3824 0.4274 1.0950

J [0, 3] [0, 3] SIN(x1)− SIN(x2) 0.3044 0.3848 0.3832 1.0723

Table 2.  Mean scores of the three components and the joint effect for 10 noiseless functions (n = 1000, 
1000 replicates).

Figure 4. Y completely determined by the synergy between X1 and X2. X1 and X2∈ [10, 30], ′X1 and ′X2 result 
from binarization vector of X1 and X2, respectively. Y =  ′ − ′X X1 2 (n =  1000). Green and red dots represent Y =  1 
and Y =  0, respectively.
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that MIC(X1; X2; Y) can discover new synergic genes and that the other four reference feature selection methods 
can only discover genes that are individually discriminant.

Synergic gene justification. We initially validate these synergic genes according to their prediction perfor-
mance with a supported vector classifier (SVC). SVC is available at http://prtools.org/ software/. Fig. 12, illustrates 
the 10-fold cross-validation prediction accuracies using genes from Top1 to the Top200 selected by MIC(X1; X2; Y),  
as well as by MIC(X; Y), MRMR, SVM-RFE and TSG. MIC(X1; X2; Y) receives comparable accuracies. This indi-
cates that these synergic genes have sufficient ability to distinguish tissue and cancer types, from the perspective 
of machine learning.

Do the synergic genes selected by MIC(X1; X2; Y) have any biological relevance to tissue or cancer type? This is 
particularly relevant considering that even a random set of genes may be a good predictor of cancer sample defi-
nition37. Therefore, we further validated these synergic genes, using the Prostate dataset as an example, according 
to GO annotation and OUgene database.

We used the GATHER system38 (http://gather.genome.duke.edu/) to query GO annotations associated with 
the Top200s selected by the five methods, as shown in Fig. 13. Although there is little overlap between the genes 
selected by MIC(X1; X2; Y) and the genes selected by the four reference methods (Figs 9, 10 and 11), synergic 
genes share the same four heavily marked terms with genes that are individually discriminant (Fig. 13). These 
four heavily marked GO terms are “cellular macromolecule metabolism,” “nucleobase, nucleoside, nucleotide 
and nucleic acid metabolism,” “protein metabolism,” and “regulation of nucleobase, nucleoside, nucleotide and 
nucleic acid metabolism”.

The current version of OUgene, a disease associated, over-expressed and under-expressed gene database, 
includes 7,238 gene entries, 1,480 diseases entries, and 56,442 PubMed links. We ranked the Top200 synergic 
genes out of the 12,600 genes in the Prostate dataset using MIC(X1; X2; Y). Of these Top200, 67 tumorigenesis 
genes were queried against OUgene, and 18 of them have been reported related to prostate cancer39–56 (Table 4).

Combined synergic and individual effect genes to improve the prediction performance. The 
MicroArray Quality Control (MAQC)-II project provided benchmark datasets for the development and validation 

Dataset No. of Genes No. of samples No. of samples in class I No. of samples in class II Reference

Prostate 12600 102 52 50 74

Lung 12533 181 150 31 76

DLBCL 7129 77 58 19 77

Table 3.  Three binary-class gene expression datasets.

Figure 6. Overlaps among the Top200s selected by MIC(X; Y), MRMR, SVM-RFE and TSG in the Prostate 
dataset. 

http://prtools.org/
http://gather.genome.duke.edu/
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of microarray-based predictive models57. We use the Breast Cancer dataset from MAQC-II to further evaluate the 
reliability of MIC(X1; X2; Y). This dataset is used to predict the pre-operative treatment response (pCR) and estro-
gen receptor status (erpos). It was originally grouped into two groups: a training set containing 130 samples (33 
positivesand 97 negatives for pCR, 80 positives and 50 negatives for erpos), and a validation set containing 100 

Figure 7. Overlaps among the Top200s selected by MIC(X; Y), MRMR, SVM-RFE and TSG in the DLBCL 
dataset. 

Figure 8. Overlaps among the Top200s selected by MIC(X; Y), MRMR, SVM-RFE and TSG in the Lung 
dataset. 
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samples (15 positives and 85 negatives for pCR, 61 positives and 39 negatives for erps). Raw probe data (CEL files) 
for a set of Affymetrix Human Genome U133A Array microarray assays were obtained from GEO (GSE20194). 
The microarray chip had probe sets for 22283 features, which were normalized and summarized using the 
Robust Multi-array Average (RMA) method58 on perfect match probes only. Sequential forward selection  

Figure 9. Overlaps between the Top200 selected by MIC(X1; X2; Y) and the Top200s selected by MIC(X; Y), 
MRMR, SVM-RFE and TSG in the Prostate dataset. 

Figure 10. Overlaps between the Top200 selected by MIC(X1; X2; Y) and the Top200s selected by MIC(X; Y), 
MRMR, SVM-RFE and TSG in the DLBCL dataset. 

Figure 11. Overlaps between the Top200 selected by MIC(X1; X2; Y) and the Top200s selected by MIC(X; Y), 
MRMR, SVM-RFE and TSG in the Lung dataset. 

Figure 12. Prediction accuracy of five feature selection methods combined with SVC Classifier over three 
datasets. 
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(SFS) is used to select individually discriminant genes and synergic genes with MIC(X; Y) and MIC(X1; X2; Y),  
respectively: (i) Rank the genes separately by MIC(X; Y) or MIC(X1; X2; Y); (ii) select the Top200 genes (Listed 
in supplemental material Table S4–S7), and conduct 10-fold cross-validation (CV10) for the training sets based 
on SVC. Accuracy was denoted as CV10w (w =  1, … . 200); (iii) the genes with the highest CV10 accuracy were 
selected as informative genes for validation. We use the accuracy and Matthew correlation coefficient (MCC) to 
evaluate the predictive power of the analysis.

=
+

+ + +
×Accuracy TP TN

TP TN FP FN
100%

(7)

=
× − ×

+ × + × + × +
MCC TP TN FN FP

TP FN TN FP TP FP TN FN
( ) ( )

( ) ( ) ( ) ( ) (8)

Here TP, TN, FP, FN denote true positives, true negatives, false positives and false negatives respectively. Greater 
accuracy and MCC represent better prediction ability of a model.

As shown in Table 5, for Breast erops, the accuracies of individual model and synergic model are 89% and 
90%, the MCCs are 0.77 and 0.79, respectively. If we integrate the two models, the accuracy and MCC of com-
bined model are improved into 92% and 0.83, respectively (Better results may be achieved while the redundancies 
among genes are removed). Similar improved effects are observed in the “Breast pCR” dataset analysis. These 
results demonstrate that synergic genes selected by MIC(X1; X2; Y) enhance the individually discriminant model 
for improving prediction performance.

Discussion
We scanned the Top200s genes selected by MIC(X1; X2; Y) on Prostate and Breast cancer datasets, and summa-
rized three representative patterns of pair-wise synergy and their corresponding theoretic distribution (Fig. 14). 
Pattern I (Fig. 14A,B,F) results from the typical synergy of Fig. 4, Pattern II (Fig. 14C,D,G) results from the func-
tion y =  x1–x2 (Fig. 5B), and Pattern III (Fig. 14E,H) results from the function y =  |x1 – x2| (Fig. 5C). These patterns 
offer an efficient tool to infer pathogenic mechanism, even to provide a quantitative model, of pair-wise synergy 
genes. For Pattern I, Gene A and Gene B both could be on-off oncogenes (Fig. 14A) or tumor suppressor genes 
(Fig. 14B) which inhibit each other. For Pattern II, one could be an oncogene, and the other could be a tumor 
suppressor gene. Pattern III is similar to Pattern I, but Gene A and Gene B both could be non on-off oncogenes. 
The results indicate that although the synergy pattern is diversified in real-world datasets, the MIC(X1; X2; Y) 
method can explore them well. For the pair-wise synergy ERBB2-PAPSS1, they have been widely reported to 
correlate with breast cancer59–62, as well as the ENO1- PTP4A2 pair63–66. For the BRF2-LIPIN1 pair, BRF2 is related 
to tumor angiogenesis67. LIPIN1 has been reported to correlate with non-tumorous diseases such as rhabdomy-
olysis68, Type 2 diabetes69, metabolic syndrome70 and acute myoglobinuria71. Recently, LIPIN1 was reported to 
regulate breast adenocarcinoma cell proliferation rate72. For the SDC4-LINC01278 pair, SDC4 has been reported 
to correlate with tumors73, but LINC01278 has not. For the RGS9-DIAPH2 pair, neither of them has been reported 
to correlate with cancer. However, MIC(X1; X2; Y) suggests that LINC01278, RGS9 and DIAPH2 are important 
informative genes for prostate tumors, and should be given proper attention.

Figure 13. GO annotations for the Top200s selected by different methods in the Prostate dataset. Deeper 
colors of one point in the figure means the terms covered with more genes. We have removed the terms in which 
the sum of genes number is less than 25 across all methods.
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“MIC is a great step forward, but there are many more steps to take”32. In this article we took such a step—
the extension of two variables to three variables which consider pair-wise interaction. Based on “exploring 
various binning strategies with different number of bins”, Reshef et al.30 employed a clump (points in the same 

Genes Related tumors

ABCB1, AMACR, CAV1, CCND1, CSF2, DPT, E2F3, 
ETV4, GOT2, GREB1, HBP1, HCLS1, HMGA1, PAX2, 
SFRP1, SOX9, TRAF4, ZNF143

Prostate

ABCA4, CASC3, CD81, COMP, MAP1LC3B, PPP3CA, 
SLN, TFAP2C, TRO Breast cancer

DSC2, EDG4, FBLN1, GALNT3, KRT10, NDN Ovarian carcinomas

CTSE, DNAJA1, LY6E Pancreatic cancer

NR2F6, TERF2, TPP1 Colorectal cancer

PCBP2, RAF1 Glioma

COL6A1, CYP2A13 Lung cancer

PPP2R5C leukemia

PPP6C Hepatocellular carcinoma

AGXT Lymphomas

DIO2 Thyroid carcinomas

DYRK2 Lung adenocarcinomas

FGFBP1 Gallbladder cancer

PROP1 Pituitary adenoma

PITX3 Liposarcoma

RFP Oligodendroglioma

CDKN1C Adrenal adenoma

VAV1 Ovarian carcinomas, Leukemia

JAG1 Breast cancer, Cervical cancer

PHGDH Breast cancer, Cervical cancer

HYAL1 Breast cancer, Laryngeal carcinoma, Pancreatic cancer

NCAM1 Sarcoidosis, Leukemia, Lymphomas

PPP2R2A Squamous cell carcinoma, Leukemia, Esophageal cancer, Lung cancer

GATA2 Breast cancer, Leukemia, Neuroblastoma, Choriocarcinoma

THBS2 Breast cancer, Adenocarcinoma, Colorectal cancer, Ovarian carcinomas

WNT5A Breast cancer, Leukemia, Pancreatic cancer, Ovarian carcinomas, Melanoma

TGM2 Adenocarcinoma, Neuroblastoma, Pancreatic cancer, Ovarian carcinomas, 
Lung cancer, Hepatocellular carcinoma, Melanoma

GSTP1
Squamous cell carcinoma, Leukemia, Lymphomas, Ovarian carcinomas, 
Lung cancer, Hepatocellular carcinoma, Melanoma, Colon cancer, 
Glioblastoma multiforme, Astrocytoma, Osteosarcoma

BAI1 Carcinoma

PTP4A3 Carcinoma

TGFBR3 Carcinoma

Table 4.  The 67 cancer related genes out of the Top200 selected by MIC(X1; X2; Y) in the Prostate dataset.

Dataset Model Number of genes Validation accuracy Validation MCC

Breast

erpos

Individual model, genes selected by MIC(X; Y) 8 89% 0.77

Synergic model, genes selected by MIC(X1; X2; Y) 34 90% 0.79

Combined model, genes selected by MIC(X; Y) and MIC(X1; X2; Y) 42 92% 0.83

Candidate model in reference 51 6 87% 0.73

Best model in reference 51 316 90% 0.79

Breast

pCR

Individual model, genes selected by MIC(X; Y) 59 82% 0.36

Synergic model, genes selected by MIC(X1; X2; Y) 32 81% 0.35

Combined model, genes selected by MIC(X; Y) and MIC(X1; X2; Y) 91 84% 0.37

Candidate model in reference 51 206 72% 0.30

Best model in reference 51 40 73% 0.38

Table 5.  Results of independent test for erpos and pCR of Breast cancer.
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clump to be a unit) partition technique to reduce computing time and improve estimation accuracy of MI in a 
two-dimensional space. This technique does not work in a three-dimensional space, because the definition of 
clump/superclump has changed. We re-defined superclumps as “points in the same superclump to be a unit in the 
same class, with the rank of x2-axis” for considering three variables as a whole, and designed a novel algorithm 
illustrated in Fig. 3 to overcome this barrier. However, complicated diseases such as cancer are often related to col-
laborative effects involving interactions of multiple genes. Multivariate analysis, just as Anastassiou group11,15–17, 
Park et al.19 and Shiraishi et al.20 did, is going to be the trend. An extension from MIC(X1; X2; Y) to MIC-based 
multivariate association networks is therefore still desire.
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