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Abstract. cDNA clones for murine 92 kD type IV 
collagenase (gelatinase B) were generated for the de- 
termination of its primary structure and for analysis of 
temporal and spatial expression in vivo. The mouse 
enzyme has 72 % sequence identity with the human 
counterpart, the major difference being the presence of 
a 16-residue segment absent from the human enzyme. 
In situ hybridization analyses of embryonic and post- 
natal mouse tissues revealed intense signals in cells of 
the osteoclast cell lineage. Clear expression above 
background was not observed in macrophages, poly- 
morphonuclear leukocytes, monocytes, or epithelial 
ceils which have been shown to express the gene in 
vitro in cell cultures. Expression of the gene was first 
observed at early stage of cartilage and tooth develop- 
ment at E13, where signals were seen transiently in 

surrounding mesenchymal cells. At later developmen- 
tal stages and postnatally strong expression was seen 
in large cells at the surface of bones. These cells were 
presumably osteoclasts as their location correlated 
with that of TRAP positive cells. Signals above back- 
ground were not observed in a number of other tissues 
studied. The results represent the first demonstration 
of a highly osteoclast specific extracellular proteinase. 
The results suggest that during normal development of 
embryonic organs the 92-kD type IV collagenase does 
not have a major role in basement membrane degrada- 
tion, but is rather mainly used for the turnover of 
bone matrix, possibly as a gelatinase required for the 
removal of denatured collagen fragments (gelatin) 
generated by interstitial collagenase. 

T 
YPE IV coUagenases (gelatinases) belong to a family 
of mammalian extracellular metalloproteinases which 
are the products of related genes (5, 46). The metallo- 

proteinases share several structural and functional proper- 
ties, and all of them exhibit the capacity to degrade one or 
more of the molecules that constitute the extraceUular ma- 
trix. The enzymes are secreted as zymogens, they have a 
Zn2+-binding site, and they are inhibited by specific tissue 
inhibitors of metalloproteinases (TIMPs) 1 (5, 46). The 
metalloproteinase family contains at least nine genetically 
distinct members: two interstitial collagenases which de- 
grade fibrillar collagens of types I, II, and HI (13-15), three 
stromelysins (3, 6, 24, 43) with activity against collagens 
with interrupted triple helices and some noncollagenous pro- 
teins, matrilysin (pump-l) a small proteinase with a wide 
range of substrates including fibronectin, laminin, casein, 
gelatin and proteoglycans (5, 30, 47), macrophage metallo- 
elastase with activity against elastin (38), and the 72-kD (9, 
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16, 21, 33) and 92-kD (26, 44) type IV coUagenases (gelatin- 
ases A and B, respectively) which degrade type IV collagen 
and denatured collagen (gelatin). The metalloproteinases 
presumably play an important role in tissue remodeling dur- 
ing embryonic development and in other conditions where 
matrix degradation occurs, such as in inflammation and tu- 
mor invasion. 

The two type IV coUagenases cleave native type IV colla- 
gen, a specific component of basement membranes, in the 
triple-helical region into 1/4- and 3/4-size fragments and 
they possess high activity against gelatin (11, 26). Addition- 
ally, both enzymes have been shown to be able to degrade 
native type V and VII collagens. The 72-kD type IV col- 
lagenase has also been shown to cleave type X collagen 
which is present in cartilage (46). However, neither enzyme 
degrades type I collagen, proteoglycan, or laminin. The high 
activity against gelatin has led to the hypothesis that the type 
IV coUagenases play a role in the removal of denatured colla- 
gen fragments after cleavage of native collagen by the other 
metalloproteinases. 

The question as to why two distinct type IV collagenases 
with seemingly identical substrate specifically are required 
is now beginning to become unraveled. It has previously 
been shown that the secretion of the two enzymes is not coor- 
dinately regulated in cultured cells (44, 48), and also that 
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their genes differ substantially with respect to regulation of 
gene expression (17, 18). In vivo both enzymes are likely to 
be important for tissue remodeling during embryonic mor- 
phogenesis. Increased proteinase activity has earlier been 
implicated in embryonic development (7). Using in situ hy- 
bridization, we have recently shown that the 72-kD enzyme 
is expressed primarily in mesenehymal cells during mouse 
development (31). In contrast, ectodermal and endodermal 
cells, with the exception of salivary gland, generally showed 
no expression. The high expression of the 72-kD type IV col- 
lagenase in mesenchymal cells indicates that this enzyme has 
a general role in the remodeling of extraceHular matrix, not 
only in the degradation of the basement membrane type IV 
collagen, but probably also in the removal of denatured pro- 
teolytic fragments of fibrillar collagen molecules (gelatin). 
Knowledge about the physiological role of the 92-kD type IV 
collagenase is still limited, but it is known to be secreted by 
cultured lung alveolar macrophages, polymorphonuclear 
leukocytes, trophoblasts, and keratinocytes (4, 15, 22, 26, 
34). Therefore, this enzyme might be used by macrophages 
and leukocytes for their penetration through the extracellular 
matrix and by trophoblasts during embryonic implantation. 
The expression of the 92-kD type IV collagenase in keratino- 
cytes in vitro also suggests that it is used for the turnover of 
subepithelial basement membranes. 

Both type IV collagenases have gained particular attention 
for their association with invasive tumor processes indicat- 
ing that the tumor cells require the enzymes for the degrada- 
tion of basement membranes during dissemination and for- 
marion of metastasis. A number of cultured tumor cells have 
been reported to secrete type IV collagenases, and recently 
numerous immunostainlng and in situ hybridization studies 
have demonstrated activation of their genes in tumor tissues. 
Expression of the 92-kD type IV collagenase has been shown 
in maerophages located at the invading tumor front of human 
squamous cell (28) and colon carcinoma (29) by in situ hy- 
bridization and by immunostaining in breast carcinoma (42). 
In squamous cell carcinoma expression of the 92-kD enzyme 
has also been detected in the tumor cells themselves. The ex- 
pression pattern of the 72-kD type IV collagenase is different 
in that expression, as judged by in situ hybridization, occurs 
in fibroblasts adjacent to the tumor front (27-29, 42), while 
the antigen is mainly localized by immunostaining to the tu- 
mor cells at the front of the invading tumor mass (2, 25). 

To explore the physiological role of the 92-kD type IV col- 
lagenase, we have cloned the murine enzyme, determined its 
primary structure and studied its spatial and temporal ex- 
pression during mouse development by in situ hybridization. 
Intense expression was observed in osteoclasts at sites of 
bone formation. Despite transient expression at embryonic 
days 12-13 in some mesenchymal cells, expression above 
background was not observed in macrophages or any other 
cells in numerous tissues studied. 

isolated from total RNA by the Poly A Track mRNA Isolation System 
(Promega, Madison, WI). 

Construction of cDNA Clones 
The cDNA clones were generated from polyadenylated RNA using the PCR 
method. The sequence for the PCR oligonucleotide primers were based on 
the sequence of the mouse 92-kD type IV collagenaxe gene (Munaut, C., 
P. Huhtala, P. Reponen, and K. Tryggvason, unpublished results) and the 
RACE (rapid amplification of cDNA ends) technique (12). The first cDNA 
strand was synthesized with the Moloney murine leukemia virus (M-MLV) 
reverse transcriptase enzyme (BRL) using either specific primers or a "hy- 
brid" primer consisting of oligo(dT) (17 bases) linked to a unique 18-base 
oligonucleotide ("adaptor") primer (5'-GACTCGAGTCGACATCGATTT- 
T1TFFI-I°I'Vi'FI'I't:3 ') (12). PCR amplification followed directly using 
the mRNA-cDNA hybrid as a template and the ~laptor primer which binds 
to the 3' end of the eDNA and the specific primer from the 5' end of the 
template. Four overlapping cDNA clones generated with this method were 
compared by electrophoresis on an agarose gel and subcloned into the T-vec- 
tor, derived from the Bluescript plasmid (23). The cDNA clones were se- 
quenced from both strands by the dideoxynucleotide chain termination 
method (37) with Sequenase (USB). Either universal primers or specific 
primers were used, and the sequence was compared to the sequence from 
genomic clones. 

Preparation of Ttssue Sections 
The embryonic age of the hybrid mice (CBA x C57BL) was set according 
to the day of the vaginal plug, which was designated day 0. Different organs 
or whole embryos from 12-d embryos to l i d  postnatal mouse pups were 
dissected under a stereo microscope in PBS, fixed in 4% paraformaldehyde 
in PBS (pH 7.2) at +4°C overuight, dehydrated and embedded in paraffin 
wax. Sections of 7 ~ thickness were placed on silanized glass slides, dried 
overnight at +37"C, and stored in tight boxes at +4°C until use. 

In Situ Hybridization 
For the preparation of RNA probes the M92KD-2 cDNA clone was cut with 
Smal and EcoRl restriction enzymes (SmaI site between nucleotides 191% 
1918, see Fig. 1) and the 323 bp fragment was cloned into pSP64 and pSP65 
plasmid vectors (Promega). The pSP64 (sense) and pSP65 (antisense) plas- 
mid vectors were linearized with EcoR/and ~ restriction enzymes, 
respectively, and the [35S]-uridine S'-triphosphate (+1,000 Ci/nmol, Amer- 
sham) labeled RNA-probes were transcribed using a transcription kit 
(Promega). The labeled probes were precipitated with ethanol, dissolved 
in hybridization buffer, and used at 50,000-60,000 cpm/~d. The in situ hy- 
bridization was carried out according to Wilkinson and Green (45). In brief, 
the dcparaflinized sections were p r ~ a t e d  with proteinase K (Sigma Chem. 
Co., St. Louis, MO), hybridized with the labeled probes in a humid cham- 
ber overnight at 50°C, and washed under high-strin~ncy conditions. The 
dried slides were dipped in autoradiographic emulsion (Kodak NTB2) and 
exposed for 10 d at 10°C. After dcvelopiug the film, the sections were 
stained with hematoxylin and mounted. 

Tartrate Resistant Acid Phosphatase Staining 
"fiu'trate resistant acid phosphatase (TRAP) stalnin~ was performed accord- 
ing to Thompson (41). Briefly, the dcparaffiniTed slide~ were incubated in 
50 mM tartrate in acetic buffer at 37"C for 2 h. Then, the sections were 
incubated in an acid pbosphatase substrate buffer (25 % Michaelis acetate 
buffer, 0.16% pararusaniline, 0.16% NaNO2, 0.05% naphtol AS-BI phos- 
phate), pH 5.0 with 20 mM tartrate at 37"C for 60 rain, washed in distilled 
water, and mounted. 

Materials and Methods 

Isolation of RNA 
For the preparation of cDNA, polyadanylated RNA was isolated directly 
from cultured mouse keratinocytes and 7-d old mouse skulls and leg bones. 
The mRNA was isolated directly from cultured cells with a slight modifica- 
tion of the Fast Track RNA isolation kit method (Invitrogen). Total-RNA 
from the 7-d old mouse tissues was first isolated by the acid guanidinium 
thiocyanate-phenol-chlomform extraction (8) and the mRNA was further 

Results 

Nucleotide Sequence and Comparison of the Mouse 
and Human Amino Acid Sequence 
The 3152 bp sequence of the four overlapping cDNA clones 
generated in this study contained 19 bp encoding a 5' end un- 
translated region, a 2,190 bp open reading frame and 943 bp 
of a 3' end untranslated sequence (Fig. 1). The sequence was 
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Figure 1. Partial map of the mouse 92-kD type IV collagenase cDNA clones, nucleotide sequence, and predicted amino acid sequence. 
On top, overlapping eDNA clones and p~u'tial restriction map. Below, nucleotide and amino acid sequences. The first line shows the nucleo- 
tide sequence starting from the transcription initiation site. The second line shows the predicted amino acid sequence. The third line shows 
the amino acid sequence of the h-m:~n preproenzyme (44) with identical residues depicted by ( - )  and differing residues by one-letter 
code. Missing amino acids or nucleotides are illustrated by shaded boxes. The numbering of amino acids is shown starting from the first 
residue of the prepropeptide. The open box depicts the region of the cDNA used for the in situ hybridization probe and the polyadenylation 
signals (AATAAA) are underlined. The nucleotide sequence reported in this paper has been submitted to the GenBank='/EMBL Data Bank 
with accession number Z27231. 
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verified by comparison with the sequence of the mouse gene 
(Munaut, C., P. Huhtala, P. Reponen, and K. Tryggvason, 
unpublished) and the mouse eDNA sequence reported while 
this work was in progress (40). The DNA sequence eluci- 
dated in the present study differs slightly from the reported 
sequence in that there are two differences in the predicted 
amino acid sequence. In the translated sequence the codon 
for residue 514 is GCC for alanine, not CCC for proline, and 
the codon for residue 711 is CCT for proline, not CAT for 
histidine. Furthermore, the present sequence contains an 
ACA codon for threonine 278, instead of ACG, the ACT 
codon for threonine 459 instead of ACA and the GAT codon 
for aspartate 654 instead of GAC. The two differences ob- 
served in the untranslated sequences were a lack of a C at 
position - 5  in the 5' end UTR and base 2607 was T not A. 
The presently elucidated eDNA sequence was identical to 
the exon sequences in the gene (Munaut, C., P. Huhtala, P. 
Reponen, and K. Tryggvason, unpublished). However, the 
differences from the reported sequence (40) could be due to 
variations within species. 

The mouse amino acid sequence contains several differ- 
ences from the human enzyme. The most striking difference 
is the presence of a 16-residue segment (residues 481--496, 
Fig. 1) absent from man. This segment is located in the mid- 
die of 48-residue sequence which distinguishes the primary 
structure of the human 92-kD type IV collagenase. The se- 
quence is contained in exon 9. Additionally, the human en- 
zyme lacks amino acid residues corresponding to Set-38, 
and residues 459-460 and 708-714. 

Localization of 92 kD ~ IV CoUagenase Expression 
during Mouse Development by In Situ Hybridization 
The in situ hybridization analyses revealed a remarkably cell 
and stage specific expression pattern in both embryonic and 
postnatal mouse tissues. No expression was observed in any 
tissues before El2 (data not shown). All control sections hy- 
bridized with the sense probes were also negative (data not 
shown). 

In El2 embryos intense expression was detected in the 
limb buds in the mesenchymal cells around the developing 
cartilages of radius and ulna (Fig. 2, a and b). Similar stain- 
ing pattern was detected around the incisor tooth germs in 
the El3 mandible (Fig. 3 a). This expression was quite in- 
tense and uniform in several layers of condensed mesen- 
chymal cells which were TRAP negative (data not shown). 
However, the expression was transient and it appeared to be 
restricted to early stages of development. No expression was 
observed in any other tissues at this stage. 

In El4 embryos intense expression of 92 kD type IV col- 
lagenase was detected in single cells in the center of the max- 
illary and mandibular processes (Fig. 3, b-e). During ad- 
vancing embryonic development and postnatally the number 
of positive cells increased and they were localized through- 
out the mandibular and maxillary bones which form by in- 
tramembranous ossification (Fig. 4 a). Large numbers of 
positive cells were localized at the site of endoehondral 
ossification beneath the condylar cartilage (Fig. 4 b). 
Numerous positive cells were localized at the bone surface 
around the growing tooth germs where bone resorption takes 
place (Fig. 4, c-e). 

In the developing forelimbs single positive cells were 
localized in the perichondrium of the digits at El5 (Fig. 2, 

c and d). Similarly, in El6 forelimbs positive cells were pres- 
ent at many sites in the perichondrium/periosteurn and in ad- 
dition large aggregates of single positive cells were apparent 
in the growth plates at sites of endochondral ossification 
(Fig. 2, e and f ) .  All other tissues in the limbs such as skin 
and muscle were devoid of signals above sense probe back- 
ground. 

Adjacent sections of the jaws and bones were analyzed 
with enzyme histochemical staining for TRAP which is a 
marker of osteoclasts. The distribution of TRAP positive 
cells adjacent to the bone closely resembled that of the single 
cells expressing 92 kD type IV collagenase (Fig. 5). 

Expression of 92 kD type IV collagenase was examined in 
a variety of other tissues at different stages during develop- 
ment and postnatally. In the embryo expression was detected 
around the clavicle of an El4 embryo (Fig. 6, c and d) while 
signals above background level were not detected in skin, 
mammary gland, or kidney (Fig. 6). Also, salivary gland 
which expresses the 72-kD type IV collagenase (31) and 
brain were negative (not shown). After birth signals were 
seen in the bone marrow of adult mice, presumably os- 
teoclasts (Fig. 7, e and f ) .  However, signals above back- 
ground were not observed postuatally e.g., in lung, heart, or 
intestine. 

Discussion 

The results of this in situ hybridization study showing ex- 
pression of 92 kD type IV collagenase in mesenchymal cells 
around early development of cartilage and in single cells lin- 
ing embryonic and postnatal bone, sharply contrast with cur- 
rent views on its tissue distribution and biological role. In 
previous studies 92 kD type IV collagenase activity has been 
shown to be secreted by cultured peripheral blood polymor- 
phonuelear leukocytes and monocytes, as well as by cytotro- 
phoblasts and alveolar macrophages in vitro (4, 5, 15, 20, 22, 
26, 44). These cells, which are capable of migrating through 
connective tissue barriers, have been speculated to use the 
enzyme for the degradation of basement membrane and stro- 
real collagens. The demonstration of 92 kD type IV col- 
lagenase expression in cultured keratinocyt~s (34) also sug- 
gested that the enzyme is normally needed for basement 
membrane turnover. 

The present in situ hybridization results indicate different 
physiological roles for the 92-kD type IV collagenase than 
previously anticipated. Thus, during embryonic develop- 
ment and until 9 d postnatally, high expression was observed 
in osteoclasts, while it could not be detected above back- 
ground levels in any epithelial cells of skin, lung, intestine 
or kidney, and not either in subepithelial mesenchymal cells. 
Therefore, this enzyme is not likely to play a major role in 
the normal turnover of basement membranes. Furthermore, 
clear signals were not observed in tissues usually rich in 
monocytes/macrophages such as liver, lung or intestine, 
even at 9 d postuatally. Only in bone marrow scattered cells, 
possibly representing the monoeyte/macrophage/osteoclast 
lineage, were positive. Our interpretation of the present 
results is that the biological function of 92 kD type IV col- 
lagenase during embryogenesis is primarily to degrade the 
extracellular matrix around the growing cartilage and in the 
developing bone. These tissues are rich in type I, II, and IH 
collagens and they also contain collagen types V, VI, VIII, 
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Figure 2. Expression of 92 kD type IV collagenase during limb development. (A and B) El2 fore limb. The mesenchymal cells around 
the radius and ulna show expression of 92 kD type IV collagenase. (C and D) In the El5 fore limb expression is detectable around the 
cartilage (white arrow). Single cells in the periehondrium of the metacarpal cm~age as well as at the tips of the digits intensely express 
92 kD type IV collagenase. In the El6 fore limb (E and F), the expression of 92 kD type IV collagenase is very intense in the ossifying 
regions of the long bones. Also the perichondrium and the periosteum show some expression (arrows). (A, C, and E) bright field; (B, 
D, and F) dark field. Bar, 400 #m. 

IX, X, XI, and XII, but not the basement membrane type 
IV collagen (for review see 36). Although the actual sub- 
strate of the 92 kD type IV collagenase is not known, it 
seems plausible that the enzyme acts as a gelatinase involved 

in the removal of denatured collagen fragments (gelatin) 
formed by the action of interstitial coUagenases that are 
considered the only enzymes capable of degrading collagen 
fibres which contain interstitial collagens. Once cleaved into 
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Figure 4. Expression of 92 kD type IV collagennse during fetal and posmatal development of the jaw. (A) In the E18 man&'ble, the 92-kD 
type IV collagenase gene expression is intense throughout the developing bone of the mandible. The developing teeth are completely nega- 
tive. (B) Higher magnification of the condylar process. (D and E) 11 d postnatal mandible with incisor tooth. The expression in the bone 
is most intense at the resorptive surface around the growing tooth germ. (C) Magnification of the tip of the incisor. The area of the bone 
through which the incisor is about to erupt shows especially intense 92 kD type IV collagenase expression, c, condylar process; i, incisor; 
m, molar; Mc, Meckers cartilage. (A, B, C, and D) bright field; (E) dark field of D. Bar, 200 #m. 

Figure 3. Localization of 92 kD type IV collagenase expression by in sire hybridization in the head of El3 (A) and El4 (B, C, D, and 
E) mouse embryos. (A) Transverse section through the anterior part of the lower jaw. Intense expression is seen in the mesenchyme around 
the incisor tooth germ. (B and C) Sagittal section of El4 anterior embryo hybridized with antisense (B) and control sense (C) probes. 
All tissues are negative for 92 kD type IV collagenase, except in the central areas in the upper and lower jaw where spots of strong expression 
can be seen. The spots are localized to single cells in the developing jaw bones (D and E) in the area where the first ossification can be 
seen at 15 d p.c. (A and D) bright field; (B, C, and E) dark field, i, incisor; t, tongue. Bar, 400/~m. 
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Figure 5. Identification of osteoclasts in the fore limb by TRAP staining and colocalization with 92 kD type IV collagenase expression. 
(A and D) TRAP-stained osteoclasts (red) are evident in the epiphyseal plate in the bone of 2-wk-old mouse forelimb. (B) In situ hybridiza- 
tion of an adjacent section to A shows intense expression of 92 kD type IV collagenase in cells with similar distribution as osteoclasts 
(arrows). (C and F) Negative in situ hybridization control of an adjacent section to B with sense probe. D, E, and F are magnifications 
of A, B, and C, respectively, b, bone; hc, hypertrophic chondroeytes. Bar, 100 #m. 

two 1/4 and 3/4 size triple-helical fragments, the collagen 
fragments denature at body temperature and can subsequently 
be degraded further by the gelatinases. 

The highly restricted spatial and temporal expression indi- 
cates two major functions of the 92-kD type IV collagenase 
during embryonic development. First, at El2 and El3, the 
earliest stages of expression, signals were only observed in 

TRAP negative mesenchymal cells around the developing 
cartilages and tooth germs. This expression was restricted 
only to early stages of development suggesting that the en- 
zyme functions in the removal of gelatin at the growing end 
of the cartilage and tooth allowing their rapid growth. Sec- 
ond, the localization of expression to cells on the surface of 
the developing bones from El4 onwards implies a specific 
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Figure 6. Expression of 92 kD 
type IV coUagenase in various 
tissues during mouse develop- 
ment. (A and B) El4 skin with 
hair follicle, (C and D) El4 
clavicula, (E and F) El6 
mammary gland, (G and H) 
El8 kidney hybridized with 
antisense probe, and (I and J) 
E 18 kidney hybridized with 
control sense probe. Skin with 
hair follicle, kidney, and mam- 
mary gland do not show ex- 
pression of the 92-kD type IV 
collagenase gene above sense 
control background. In the 
clavicula, one of the earliest 
ossification centers, spots of 
expression are seen in the 
periosteum which presumably 
represent osteoclasts. (A, C, 
E, G, and I) bright field; (B, 
D, E H, and J) dark field. Bar, 
200 ~m. 

role of the enzyme in the resorption of bone, presumably in 
the removal of gelatinous polypeptides. The localization of 
these positive cells showed close correlation with osteoclasts 
which were localized in adjacent sections by staining for 

TRAP which is generally considered a marker of osteoclasts 
(41). Our preliminary observations (unpublished) in older 
bones indicate that TRAP positivity in the osteoclasts does 
not always correlate with 92 kD type IV collagenase expres- 
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Figure 7. Expression of 92 kD 
type IV collagenase in various 
postnatal and adult tissues. (A 
and B) 9D postnatal lung, 
(C and D ) 9D postnatal heart, 
(E and F) adult bone marrow, 
(G and H) adult intestine. The 
lung, heart, and intestine do 
not show signals for 92 kD 
type IV coUagenase gene ex- 
pression above sense control 
background (not shown). The 
bone marrow (E and F) from 
the adult femur shows some 
single cells expressing the 92- 
kD type IV coUagenase gene. 
(A, C, E, and G) bright field; 
(B, D, F,, and H) dark field. 
Bar, 200 gm. 

sion. Hence, the 92-kD enzyme expressing cells may repre- 
sent only a subpopulation of cells in the osteoclast cell lin- 
eage. Metalloproteinase activity has been suggested to occur 
in osteoclasts (10) but our study is the first to demonstrate 
the expression of a metalloproteinase highly specific for os- 
teoclasts. Although it has not yet been demonstrated, it is 
likely that osteoclasts secrete interstitial collagenases which 
are presumably essential for dissolution of the collagen 
fibrils. Lysosomal cathepsins have also been proposed to par- 
ticipate in the extracellular degradation of bone matrix (10). 

Surprisingly, with the exception of bone marrow, clear ex- 
pression of the 92-kD type IV collagenase above background 
was not observed in tiffs study in embryonic or postnatal tis- 
sues normally containing macrophages. The question there- 
fore rises, whether findings showing that macrophages, 

monocytes, and polymorphonuclear leukocytes secrete the 
enzyme in vitro have any relevance to the situation in vivo. 
It is possible that although transcripts are absent from mac- 
rophages of normal tissues, they possess the potential to ex- 
press the 92-kD type IV coLlagenase e.g., upon stimulation 
by cytokines. In fact, we have shown by in situ hybridization 
that macrophages located adjacent to invading cells of hu- 
man tumors of skin (28), colon (29), and ovary (I) express 
the gene. The enzyme antigen has also been localized 
specifically to macrophages in human breast cancer by 
monoclonal antibodies (42). Furthermore, there is evidence 
that the 92-kD type IV collagenase is involved in other patho- 
logical processes such as periodontal inflammation (19, 39) 
and wound healing (35) where the activity may be present 
in macrophages. Hence, the absence of signals in macro- 
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phages of the normal mouse tissues presently studied may 
simply reflect the quiescent state of the cells. Since os- 
teoclasts, like macrophages, have their origin in hematopoi- 
eric cells, it can be speculated that cells of the hematopoietic 
cell lineage can in certain situations be induced to express 
the 92-kD type IV collagenase gene. The localiTation of 92- 
kD type IV collagenase mRNA by in situ hybridization in tu- 
mor cells of human squamous cell carcinoma (28), but not 
of colon cancer (29), also indicates that the gene may be in- 
duced in malignant transformation of some tissues. 

Several studies have indicated that the 92-kD type IV col- 
lagenase is critical for the invasion of cytotrophoblasts dur- 
ing embryonic implantation. Presence of the enzyme has 
been shown in these cells by zymography and their invasion 
into extracellular matrix could be inhibited by specific anti- 
bodies (4, 20). We have also shown by in situ hybridization 
analysis that the 92-kD type IV collagenase gene is ex- 
pressed solely in the trophoblast population (Reponen, P., C. 
Sahlberg, I. Thesleff, and K. Tryggvason, unpublished 
data). These observations suggest that the 92-kD type IV 
collagenase also has a key role in the degradation of the 
maternal extracellular matrix by the extraembryonic tropho- 
blast cells. 

In conclusion, the results of the present study suggest that 
during normal morphogenesis, the 92-kD type IV col- 
lagenase is mainly secreted by osteoclasts where it is used 
for bone remodeling. However, the enzyme can also be in- 
volved in physiological tissue remodeling by extraembryonic 
trophoblasts during embryonic implantation and in patho- 
logical states such as tumor invasion and inflammation 
where it may be secreted by macrophages. The expression 
pattern of the 92-kD type IV collagenase differs completely 
from that of the 72-kD enzyme the expression of which has 
been shown to be widely distributed mainly in mesenchymai 
tissues during development of all organs (31). The 72-kD en- 
zyme is intensely expressed in osteoblasts 02) ,  but we do 
not know whether it is expressed by osteoelasts also. This 
question can be studied in isolated osteoclasts. Both enzymes 
have similar substrate speeificities, but the restricted distri- 
bution of the 92-kD enzymes implies the requirement for the 
availability of a gene transcribing a type IV collagenase 
(gelatinase) for a more specific purpose. 
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