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Abstract. The intracompartmental sorting and func- 
tional consequences of ectopic expression of the six 
vertebrate actin isoforms was investigated in different 
types of cultured cells. In transfected fibroblasts all iso- 
actin species associated with the endogenous microfila- 
ment cytoskeleton, even though cytoplasmic actins also 
showed partial localization to peripheral submembra- 
nous sites. Functional and structural studies were per- 
formed in neonatal and adult rat cardiomyocytes. All 
the muscle isoactin constructs sorted preferentially to 
sarcomeric sites and, to a lesser extent, also to stress- 
fiber-like structures. The expression of muscle actins 
did not interfere with cell contractility, and did not dis- 
turb the localization of endogenous sarcomeric pro- 
teins. In sharp contrast, ectopic expression of the two 
cytoplasmic actin isoforms resulted in rapid cessation of 

cellular contractions and induced severe morphological 
alterations characterized by an exceptional outgrowth 
of filopodia and cell flattening. Quantitative analysis in 
neonatal cardiomyocytes indicated that the levels of ac- 
cumulation of the different isoactins are very similar 
and cannot be responsible for the observed isoproteins- 
specific effects. Structural analysis revealed a remodel- 
ing of the cytoarchitecture including a specific alter- 
ation of sarcomeric organization; proteins constituting 
the sarcomeric thin filaments relocated to nonmyo- 
fibrillar sites while thick filaments and titin remained 
unaffected. Experiments with chimeric proteins 
strongly suggest that isoform specific residues in the 
carboxy-terminal portion of the cytoplasmic actins are 
responsible for the dominant negative effects on func- 
tion and morphology. 

T 
HE six vertebrate actin isoforms constitute a family 
of closely related proteins expressed in a complex de- 
velopmental- and tissue-specific fashion (Vandekerck- 

hove and Weber, 1979; Herman, 1993). On the basis of 
their isoelectric point, three types of actins were defined: 
a-, 13-, and "y-actins (Garrels and Gibson, 1976). Each iso- 
actin is encoded by a separate gene (Vandekerckhove and 
Weber, 1978). According to their amino acid sequences and 
their tissue distributions (Vandekerckhove and Weber, 
1981), these isoforms have been grouped into muscle ac- 
tins (a-skeletal and a-cardiac (Paterson and Eldridge, 1984; 
Otey et al., 1988; Ruzicka and Schwarz, 1988), a-vascular, 
and ~-enteric (Skalli et al., 1986; McHugh and Lessard, 
1988a; Hartman et al., 1989) and the ubiquitous 13-cyto- 
plasmic and 7-cytoplasmic actins (Vandekerckhove and 
Weber, 1981; Otey et al., 1986). All the actin isoforms are 
composed of 374 or 375 amino acids and display more than 
93% identity at the amino acid level. When mature a-cardiac 
actin is taken as reference, a-skeletal actin differs merely 
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in four, a-vascular, and ~t-enteric actins in five residues. 
More heterogeneity is found between the cytoplasmic and 
the muscle isoforms: [3-cytoplasmic and 7-cytoplasmic ac- 
tins differ from a-cardiac actin in 22 and 21 residues, re- 
spectively. 

Ever since the discovery of actin isoforms, only scarce 
information has been gathered concerning possibility of 
functional diversity among isoactins in vivo and in vitro. 
Studies of intracellular isoaetin distribution have been ham- 
pered by the scarcity of isoform specific anti-actin antibodies. 
Differential isoactin distribution has mainly been investi- 
gated using antibodies specific for either myofibrillar or 
nonmyofibrillar isoactins (Lubit and Schwarz, 1980; Her- 
man et al., 1981; Pardo et al., 1983; Sawtell and Lessard, 
1989; DeNofrio et al., 1989; Eppenberger-Eberhardt et al., 
1990). Most of these studies are consistent with the conclu- 
sion that muscle actin is always localized in the sarcomeres 
of striated muscle cells, while the cytoplasmic actin isopro- 
teins are found in the stress fibers of nonmuscle cells as 
well as in the ruffling membrane regions of motile cells. The 
[3-cytoplasmic actin was found transiently concentrated at 
sites close to ruffling membranes and lamellae near the 
edge of wounds inflicted to monolayer cell cultures (Hook 
et al., 1991; Herman, 1993) represent another example of 
actin isoforms sorting. Furthermore, the 13- to 7-actin ratio 
in C2 myoblasts was changed by stable expression of addi- 
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tional cytoplasmic actin genes and a change in the cellular 
shape was observed indicating an actin isoprotein specific 
effect on these stable transfected cell lines (Schevzov et al., 
1992). 

Thus, even though these observations provide only cir- 
cumstantial evidence, a functional diversity has been in- 
ferred from these data on isoprotein localization. Only a 
few biochemical studies have reported isoprotein specific 
behavior in vitro (Weeds, 1982; Hennessey et al., 1993). 
Profilin binds selectively to cytoplasmic actin (Oshima et al., 
1989), and the polymerization characteristics of the non- 
muscle actins are similar but not identical to those of mus- 
cle actin (Gordon et al., 1977; Kabsch and Vandekerckhove, 
1992). These effects have been suggested to result from se- 
quence variations in the actin NH2 terminus (Rubenstein, 
1990). 

An insight into actin function was obtained from studies 
with transgenic Drosophila flies bearing a heterologous ac- 
tin gene in place of the Act88F actin gene. These studies re- 
vealed that, in addition to mutation in the actin itself which 
affect contractility, the level of expression and the stoichio- 
metry of actin and other contractile proteins also play an 
important role for the assembly and function of sarco- 
meres (Sparrow et al., 1993; Hennessey et al., 1993). The 
study of actin proteins expressed ectopically in mammalian 
nonmuscle cell lines has encountered many difficulties, 
mainly due to the induction of lethal or grossly aberrant 
phenotypes. 

In order to circumvent the limitations inherent to these 
procedures, we developed a transient expression system in 
neonatal (NRC) 1 in adult rat cardiomyocytes (ARC). In 
culture, especially the ARC represent an exceptional cy- 
toarchitecture composed of functional myofibrils coexist- 
ing with, but spatially distinct from, a well developed non- 
muscle-type cytoskeleton. Therefore, they are a well-suited 
cellular system to study the sorting characteristics of myo- 
fibriUar and cytoplasmic contractile isoproteins (Soldati and 
Perriard, 1991; Eppenberger-Eberhardt et al., 1990; Jacob- 
son and Piper, 1986; Messerli et al., 1993a). 

We used this system to investigate the consequences of 
the ectopic expression of the six vertebrate actin isoproteins 
and two chimeric actins. Here, we show evidence that func- 
tional heterogeneity exists between the different isoactins. 
In addition, our results emphasize the independence of the 
three filamentous systems composing myofibrils. 

Materials and Methods 

Cloning Procedures 
Full-length cDNA clones encoding the chicken a-cardiac actin gene was ob- 
tained from Dr. Bruce Paterson (National Cancer Institute, NIH, Bethesda, 
MD), and full-length eDNA clones encoding the human a-skeletal actin, 
rat ~/-enteric actin, rat a-vascular actin, rat ~-cytoplasmic actin, and human 
[3-cytoplasmic actin were kindly provided by Dr. P. Gunning (Children's 
Medical Research Institute, Wentworthville, N. S. W., Australia) and Dr. 
James L. Lessard (Children's Hospital Medical Center, Cincinnati, OH) 
(Paterson and Eldridge, 1984; Eldridge et al., 1985; Gunning et al., 1983; 
McHugh and Lessard, 1988b; Ponte et al., 1984; Brown et al., 1990). 

The cDNAs described above were subcloned into the eucaryotic ex- 
pression vector pSCT-Gal-X556 (provided by Dr. Sandro Rusconi, Insti- 

1. Abbreviat ions  used in this paper: ARC, adult rat cardiomyocytes; NRC, 
neonatal rat cardiomyocytes; PFA, paraformaldehyde. 

tute of Biochemistry, University of Fribourg, Fribourg, Switzerland) or in 
pSCT1 (provided by Dr. Beat Schafer, Kinderspitai, Z0rich, Switzerland). 
These vectors are based on the pSP64 plasmid, and are composed of a cy- 
tomegalovirus promoter, a T7 RNA polymerase promoter, an SV-40 ori- 
gin of replication, the gene encoding resistance to ampicillin, and a rabbit 
13-globin genomic sequence containing an intron, splice sites, and a poly(A) 
addition signal; pSCT1 contains a polylinker in place of the Gal sequence 
found in pSCT-Gal-X556. The plasmid containing the luciferase eDNA 
gene under the control of the CMV promoter was constructed in pSCT (a 
kind gift of Dr. P. Spielhofer, Molecular Biology I, University of Z~irich, 
Ztirich, Switzerland). 

Each actin isoform was modified by adding an epitope-tag at the 
COOH-terminus of the protein using the PCR technique (see Table I) 
which resulted in removal of the entire 3' untranslated mRNA sequence. 
The sequences of the different tags used were derived from the VSV-G 
protein cDNA sequence (Gallione and Rose, 1985) as described before 
(Soldati and Perriard, 1991). The sense (5') primers were specific for each 
isoacfin cDNA, containing a sequence of 30 nucleotides matching the 5' 
end region of the eDNA and a Hind111 restriction site used in subsequent 
cloning steps. Three different anti-sense (3') primers were designed, each 
containing the last 30 coding nucleotides of the common actin 3' end se- 
quence, followed by a proline codon, by a nucleotide sequence encoding 
0, 5, or 11 amino acids of the epitope-tag (called no-tag, -T5, and -Tl l ,  re- 
spectively) and finally a stop codon and a restriction site. Most of the PCR 
products were cloned between the first HindlII site and the PvulI site of 
pSCT-Gal-X556; the clone a-skeletal actin-T5 was subcloned between the 
HindIII and StuI sites of pSCT-GaI-X556, and the clone a-skeletal no-tag 
between the HindII1 and EcoRV sites of pSCT1. The 13-cytoplasmic actin 
was at first subcloned into pDirect vector (PCR-Direct Cloning System, 
Clontech Laboratories, Palo Alto, CA) using specific primers. Then the 
HindllI fragment of this subclone was then cloned in pSCT1 at the HindlII 
position. The two chimeric actins were constructed in pSCT. The chimeric 
actin a-card/'y-cyto consists of the first 83 amino acids of a-cardiac actin and 
amino acids 84-375 of ~-cytoplasmic actin followed by the T l l  VSV-G 
epitope; the chimeric actin ~/-cyto/a-card has an inverse combination, with 
the first 83 amino acids of ~-cytoplasmic actin fused to the C-terminal amino 
acids 84-375 of a-cardiac acfin followed by the T l l  VSV-G epitope. 

In Vitro Expression 
The actin cDNA constructs were transcribed and translated using the TnT 
coupled reticulocyte lysate system (Promega Biotee, Madison, WI). 
[35S]Methionine-labeled products were analyzed on 12% SDS-PAGE, fol- 
lowed by blotting on Nitrocellulose and autoradiography of the dried 
membrane. 

Assembly Competence of Actin Carrying the VSV-G 
Epitope Tag 
Radioactively labeled actins were produced by in vitro transcription-trans- 
lation, followed by partial purification consisting in dialysis and ultracen- 
trifugation in an airfuge. Their concentration remained under the critical 
concentration required for polymerization, so that an excess of pure a-skel- 
etal G-actin (gift from Dr. U. Aebi, Biozentrum, Basel, Switzerland) was 
added before incubation in polymerization conditions (Solomon and Ruben- 
stein, 1987). The resulting actin filaments were isolated by ultracentrifuga- 
tion and analyzed by radioactivity measurement and SDS-gel electrophore- 
sis, followed by autoradiography, and immunoblotting against the VSV-G 
epitope. 

Preparation and Cultivation of ARC and 
Neonatal Cardiomyocytes 
Adult ventricular cardiac muscle cells were isolated from 2-mo-old Sprague- 
Dawley-Janovas rats and cultured as already described (Claycomb and 
Palazzo, 1980; Eppenberger-Eberhardt et al., 1990) including the follow- 
ing modifications: after isolation, the cells were sedimented by centrifuga- 
tion at 75 g for 2 min and washed twice in Joklik medium containing final 
concentrations of 0.25 and then 0.5 mM CaC12. The cells were plated in 6 cm 
Falcon dishes with 4 ml of conditioned medium (Claycomb and Lanson, 
1984) complemented with 20 mM creatine (Sigma Chemical Co., St. Louis, 
MO). The medium was renewed after 2 d, and exchanged for medium 199 
(Amimed AG, Basel, Switzerland) supplemented with 20% fetal calf se- 
rum (Sandoz, Basel, Switzerland), 1% penicillin-streptomycin (GIBCO 
B R L  Gaithersburg, MD), 10 mM cytosine arabino-furanoside (ICN Bio- 
chemicals, Cleveland, OH), and 20 mM creatine 7 d after plating. 
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For the preparation of neonatal cultures, hearts of newborn rats (1-2-d 
old) were dissociated with collagenase (Worthington Biochemical Corp., 
Freehold, N J) and cultured as described in maintenance medium contain- 
ing 2% horse serum (Sen at al., 1988). 

Microinjection and Transfection 
The microinjections in ARCs were carried out as previously described 
(SchMer and Perriard, 1988), using a Zeiss Axiovert 100 microscope cou- 
pled to an Eppendorf micromanipulator 5171 and an Eppendorf microin- 
jector 5242 (Eppendorf Ger~itebau, Hamburg, Germany). DNA of actin 
constructs cloned in the expression vector pSCT were introduced in one of 
the two nuclei of beating AR C  cultured for 8-10 d by microinjection of 2 
nl of a 0.1 mg/ml vector solution (0.2 pg/nucleus). 

The neonatal cardiomyocytes were transfected 24 h after seeding ac- 
cording to an established protocol with 5 ixg of DNA per 1 x 106 cells per 
60 mm dish (Chen and Okayama, 1987) and washed with isotonic Tris- 
buffered salt solution after 48 h. For determination of the efficiency of 
transfection the cells were stained both for the expression of the trans- 
fected construct and for the sarcomeric marker myomesin. 20 fields of du- 
plicate cultures were monitored for myomesin and expression of the trans- 
fected actin and the percentage was determined in percentage of total 
myomesin-expressing cells and the percentage of transfected cells ranged 
from 7 4 %  of the total myomesin-positive cells. 

Beating Test 
Areas containing 250 ARC were selected on the culture dishes; about 90 
beating ARC cultured for 8 d were microinjected with one of the actin 
construct. After 24-30-h incubation, the cells were recorded by video mi- 
croscopy, and finally fixed and stained against the VSV-G epitope. The 
immunofluorescence pictures were matched to the recorded images of the 
live cells. Due to technical limitations and to the mechanical stress imposed 
by the injection, the number of AR C  expressing the tagged actin repre- 
sents 5-30% of the injected cells. The beating activity of the culture at the 
time of video recording represents the ratio of beating AR C  outside of the 
area defined for microinjection. ARC in culture have irregular beating ac- 
tivities, periods of vigorous and frequent contractions following periods of 
weak beating. Thus, the number of expressing cells able to beat not only 
depends on the expression of the actin construct, but is also influenced by 
the general beating activity of the culture. A correction is introduced in 
the form of the following formula: (a:x) : y = z where z is the corrected 
beating activity of microinjected cells (in percent), the ratio (a:x) is the ex- 
pressing cells able to beat (a, absolute number) versus the number of ex- 
pressing cells (x), and y the beating activity of the culture (in percent, rela- 
tive number). 

Antibodies and Immunofluorescence Labeling 
The immunofluorescence labeling was carried out as already described 
(Messerli et al., 1993a). Briefly, the cells were washed, fixed for 10 min at 
room temperature in 3% paraformaldehyde (PFA) buffered in PBS and 
permeabilized in 0.2% Triton X-100. The cells were then incubated with 
the primary antibody (2-4 h), and after washing extensively, with second- 
ary antibody for the same period. Finally the cells were washed in PBS, 
and mounted in a mixture of three parts of 0.1 M Tris-HC1 (pH 9.5) with 
seven parts of glycerol including n-propyl gallate (50 mg/ml) as an antifad- 
ing agent. 

The monoclonal anti VSV-G epitope antibody P5D4 (Kreis, 1986) as 
well as the affinity-purified polyclonal P4 antibody were a kind gift of Dr. 
Thomas Kreis (University of Geneva, Geneva, Switzerland). The mono- 
clonal antibody 8H8 against cardiac [3-MHC was a kind gift of Dr. Jean 
Leger (CNRS, Montpellier, France). The polyclonal anti VSV-G epitope 
#49 antibody (Soldati and Perriard, 1991), as well as the monoclonal anti- 
body B4 recognizing the M band protein myomesin (Grove et al., 1984), 
and the polyclonal antibody recognizing the heart C protein (B~ihler et al., 
1985) were raised in our laboratory. The monoclonal antibody T12 recog- 
nizing titin was purchased from Boehringer (Boehringer Mannheim Bio- 
chemica, Mannheim, Germany). The monoclonal antibodies a-sm-1 rec- 
ognizing a-vascular actin (Skalli et al., 1986), anti Troponin-T, CH1 anti 
Tropomyosin, and BM 75.2 recognizing a-actinin, and F-actin specific re- 
agent phalloidin-RITC recognizing all isoforms of actin, as well as the an- 
tibody against 13-galactosidase were purchased from Sigma Chemical Co. 
The secondary antibodies FITC-coupled anti-mouse IgG+ IgM, FITC-, and 
RITC-coupled anti-rabbit IgG, as well FITC- and RITC-coupled anti-  
mouse IgG, were purchased from Cappel and Pierce (West Chester, PA). 

Microscopy 
Photographs were taken with a Universal Zeiss microscope equipped with 
the objectives Neofluar 40x/0.75 or Planapo 63x/1.4 oil (Carl Zeiss Co.), 
a L1 mercury short arc lamp (Osram, Germany) and a Winder M35 cam- 
era using Kodak Ektachrome EPP 100 color reversal films. Other micro- 
graphs were taken with a confocal microscope consisting of a Zeiss Axio- 
phot fluorescence microscope with either a Zeiss Neofluar 40×/1.3 or 
Zeiss Planapo 63×/1.4 oil objective lens, a Bio-Rad MRC-600 confocal 
scanner (Bio-Rad Lasersharp Ltd, Oxfordshire, England), and a Silicon 
Graphics Personal Iris 4D/25 workstation (Silicon Graphics, Inc., Moun- 
tain View, CA). The software "Imaris" was developed in our laboratory 
(Messerli et al., 1993b) and is available from Bitplane AG (Ziirich, Swit- 
zerland). 

Immunoblot Analysis 
Identical sets of cultures were doubly transfected with exactly 5 wg/60 mm 
dish of the actin-tag plasmid DNA and in all cultures exactly 5 Ixg plasmid 
DNA containing the luciferase gene under the control of the same CMV 
promoter cloned in the same plasmid pSCT as used for the construction of 
the actin plasmids as internal control. Extracts were prepared by scraping 
the cells into a minimal volume (100 ~l/two dishes) of 2× sample buffer 
for a standard 10% SDS gel. The resolved proteins were blotted onto a 
nylon membrane (Hybond; Amersham), stained with Ponceau red, and fi- 
nally incubated with monoclonal antibody P5D4 against VSV-G protein 
(Kreis, 1986). The bound antibody was revealed with goat anti-rabbit IgG 
(H and L) conjugated to horse radish peroxidase (Cappel Laboratories, 
Malvern, PA) and developed with HzO~ and chloro-naphtol (not shown) 
or with the ECL blotting system (Amersham Corp.) for greater sensitivity. 

Luciferase Assay 
For determination of luciferase activity used to standardize the levels of 
expression of the actin isoproteins constructs in NRC the assay system 
from Promega Biotec (Madison, WI) was used. 

Results 

Generation and Characterization of Epitope Tagged 
Actin Isoproteins 
In order to follow the cellular sorting of the six vertebrate 
actin isoforms a VSV-G protein epitope was introduced at 
the 3' end of the respective eDNA coding sequences. The 
resulting constructs are listed in Table I in the Materials 
and Methods section. Since previous studies have shown 
that an epitope tag as short as 5 amino acids was well rec- 
ognized by the polyclonal antibody #49, while a slightly 
longer epitope of 11 amino acids was required for the rec- 
ognition by the monoclonal antibody P5D4 (Kreis, 1986; 
Soldati and Perriard, 1991), most isoactins were constructed 
with epitopes containing 5 as well as 11 amino acids. 

The assembly competence of "c-enteric-T11, ct-vascular- 
T l l ,  and ~-cyto-T11 actin isoproteins was assessed in vitro 
by co-polymerization (Solomon and Rubenstein, 1987) with 
purified a-skeletal G-actin. The resulting actin filaments 
were isolated by ultracentrifugation and analyzed by ra- 
dioactivity measurement, autoradiography and immuno- 
blotting. The results clearly revealed incorporation of 
radioactively labeled actin-tag in pelletable actin fila- 
ments, as detected both by scintillation counting and the 
presence of VSV-G epitope. Thus, actin-tag can assemble 
in vitro with purified rabbit a-skeletal muscle actin; how- 
ever, the cytoplasmic actins appeared to have a somewhat 
reduced capacity to co-assemble with the skeletal muscle 
actin (data not shown). 

In addition, co-assembly of the actin constructs with mi- 
crofilaments was also monitored in vivo after transient ex- 
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Table L Actin cDNA Constructs Used for the Experiments 

Name Description 

a-cardiac-T5, -T11 
a-skeletal-T5 
a-skeletal no tag 
a-vascular-T5, -TI 1 
3,-enteric-T5, -T 11 
~/-cyto-T5, -TI 1 
~-cyto no tag 
[3-cyto-T 11 
a-cardiac/3,-cyto 

~/-cyto/a-cardiac 

a-cardiac actin from chicken with 5 and 11 amino acids VSV-G epitopes 
a-skeletal actin from chicken with a 5 amino acids VSV-G epitope 
a-skeletal actin from chicken without VSV-G epitope 
a-vascular actin from rat with 5 and 11 amino acids VSV-G epitopes 
~/-enteric actin from human with 5 and 11 amino acids VSV-G epitopes 
~/-cytoplasmic actin from human with 5 and 11 amino acids VSV-G epitopes 
~/-cytoplasmic actin from human without VSV-G epitope 
[3-cytoplasmic actin from human with an 11 amino acids VSV-G epitope 
chimeric actin with amino acids 1 to 83 of a-cardiac fused to amino acids 84 to 375 of 3,-cytoplasmic with an 11 

amino acids VSV-G epitope 
chimeric actin with amino acids 1 to 83 of ~/-cytoplasmic fused to amino acids 84 to 375 of a-cardiac with an 1 l 

amino acids VSV-G epitope 

Compilation of the various constructs generated for this study. The methods, primers, and plasmids used are described in Materials and Methods. 

pression in chicken embryo fibroblasts (Fig. 1). The right 
column of micrographs (Fig. 1, b, d, f, h,  and k) presents 
the general organization of the actin cytoskeleton as re- 
vealed by phaltoidin staining, whereas the corresponding 
micrographs of the left column show the anti-epitope tag 
staining (Fig. 1, a, c, e, g, and l). None of the cells positive 
for one of the six actin isoforms carrying the VSV epitope 
showed any sign of disorganization of the actin cytoskele- 
ton. This was observed for (x-cardiac actin-T11 (Fig. 1, a 
and b), (x-skeletal-T5 (Fig. 1, c and d), s-vascular muscle 
actin-Tll (Fig. 1, e and f), ~/-enteric actin-Tll  (Fig. 1, g and 
h), B-cytoplasmic actin-Tll (Fig. 1, i and k), as well as for 
"y-cytoplasmic actin-T11 (not shown). Note however, that 
in addition to participate in the formation of the stress fi- 
bers, both cytoplasmic actins also displayed a partial local- 
ization at peripheral sub-membranous sites (B-cytoplasmic 
actin-Tll, Fig. 1, i and k; and ~/-cytoplasmic actin-Tll, not 
shown). Nevertheless, the overall co-localization of the 
phalloidin stain with the epitope tag-specific stain clearly 
confirms the in vitro assembly data and emphasizes that 
the tagged actin constructs are all able to assemble with 
the endogenous microfilaments. 

Expression of  the Various Actin Isoproteins in 
Neonatal Rat Cardiomyocytes Has Different Effects 
on the Cytoarchitecture 

Neonatal rat cardiomyocytes display the typical cytoarchi- 
tecture of cardiomyocytes already after short periods of 
culture. Myofibrils become apparent rather quickly with 
immunohistological staining and the cells start to beat af- 
ter the first day in culture. In cells cultured for 3-4 d only 
small portions of nonsarcomeric cytoskeleton remain, 
mostly located at the periphery of the cells. In order to test 
if the different actin isoproteins and among them the sar- 
comeric isoforms show preferential sorting to the sarco- 
meric parts of the cytoskeleton, NRC were transfected at 
day 1 with the cDNA constructs of the muscle and non- 
muscle tagged actins. The results in Fig. 2 show the trans- 
fected cells after immunostaining for the myofibrillar 
marker myomesin (right column of micrographs b, d, f, h, 
and k) and the left columns the same field of cells stained 
with the polyclonal antibody #49 for the VSV epitope. The 
expression of the various actins did not affect the staining 
pattern of the myofibrillar marker myomesin, indicating the 
presence of undisturbed M lines and very likely the pres- 

ence of intact thick filaments. All sarcomeric and smooth 
muscle isoforms localized in a typical myofibrillar pattern 
indicating that they participated in the formation of sar- 
comeres. This is evident for (x-cardiac actin-Tll (Fig. 2, a 
and b), (x-skeletal actin-T5 (not shown), (x-vascular actin- 
T l l  (Fig. 2, c and d), and ",/-enteric actin-T11 (Fig. 2, e and3'). 
The actins incorporated in all cells preferentially but not 
exclusively into sarcomeres, but also decorated nonsarco- 
meric cytoskeletal structures at the periphery of the cardi- 
omyocytes. As already shown in Fig. 1, it is once more evi- 
dent that the cytoskeleton of some rare contaminating 
nonmyocytic cells, such as the one in the upper left hand 
corner in Fig. 2 c which does not stain for the sarcomeric 
marker myomesin (see Fig. 2 d), homogeneously incorpo- 
rate the tagged actin. 

Unexpectedly, the cytoplasmic actins expressed in NRC 
showed a different behavior. While there was no difference 
in distribution of the sarcomeric marker myomesin com- 
pared to non transfected cells (Fig. 2, h and k) the cytoplas- 
mic actins showed an almost uniform diffuse localization 
to filamentous structures and to peripheral submembra- 
nous sites. Barely visible staining of sarcomeric patterns 
could only occasionally be observed (Fig. 2, g and i). The 
morphology of the cells was changed dramatically and 
filopodial processes were induced which did not occur in 
cells transfected with muscle actins. In summary, the ex- 
pression of additional cytoplasmic actins was accompanied 
by isoprotein specific effects on the cytoarchitecture of 
transfected NRC. 

Levels of  Expression of  Transfected Actins 
Are Very Similar 

Stable heterologous expression of actins in eucaryotic cells 
often is accompanied by problems of cell proliferation and 
vitality which was not observed in the transient expression 
experiments reported here. However, it is conceivable that 
the effects observed after heterologous expression depend 
on differences on the levels of accumulation of the differ- 
ent constructs, although they all were cloned into the same 
vector pSCT. The levels of expression of the actin isopro- 
teins were determined in cultures of neonatal cardiomyo- 
cytes transfected with the same plasmids as used in Fig. 1. 
Identical sets of cultures were doubly transfected with each 
of the actin-tag plasmids and the luciferase gene cloned a 
similar pSCT vector as internal transfection control. 
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The efficiency of transfection was determined in parallel 
cultures by immunofluorescence and values ranging from 
7-8% of cells expressing the tagged proteins were observed 
for all the constructs. The levels of expression of luciferase 

Figure 1. Incorporation of dif- 
ferent actins into the cytoskel- 
eton of chicken embryo fibro- 
blasts. Cells were transfected 
with the plasmids containing 
the different actin isoproteins 
labeled with the VSV epitope: 
et-cardiac-Tll (a and b), c~-skel- 
etal-T5 (c and d), u-vascular- 
T l l  (e and f),-/-enteric-Tll (g 
and h), and [3-cytoplasmic-Tll 
(i and k). Cells were stained 
for F-actin with phalloidin (col- 
umn of confocal single optical 
sections b, d, f, h, and k on the 
right) and the different heter- 
ologous actin isoproteins were 
visualized by staining their tag- 
epitope with the polyclonal anti 
VSV-G epitope antibody #49. 
The result with the -/-cyto- 
plasmic-T11 (not shown) was 
identical to the results with 
13-cytoplasmic-Tit (i and k). 
Bar, 20 ~m. 

from the internal control plasmid were determined in cul- 
ture extracts and samples representing identical activities 
of luciferase were analyzed by anti-tag immunoblotting. 
The result is shown in Fig. 3. The extract applied to lane 1 
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Figure 2. Differential behav- 
ior of muscle and cytoplas- 
mic actins expressed in NRC. 
NRC were transfected after 
1 d in culture with the plas- 
mids containing the different 
actin isoproteins labeled with 
the VSV epitope: a-cardiac- 
T l l  (a and b), ct-vascular-Tll 
(c and d), ~-enteric-Tll (e and 
J0, [3-cytoplasmic-Tll (g and 
h), and -,/-cytoplasmic-Tll (i 
and k). The cells were stained 
for the myofibrillar marker 
myomesin using the mono- 
clonal antibody B4 (right col- 
umn of confocal sections b, d, 
f, h, and k) and the heterolo- 
gous actins were visualized by 
staining their tag-epitope with 
the polyclonat anti VSV-G 
'epitope antibody #49. The re- 
sult with the a-skeletal-Tll  
(not shown) was identical to 
the results with c~-cardiac- 
T l l  (i and k). Bar, 20 ~m. 
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was from a culture transfected with a plasmid containing 
the 'v-cytoplasmic actin c D N A  without the epitope tag and 
served as control for immunological specificity. Although 
there is some background staining no band is visible in the 
region of actin. The other samples were derived from cul- 
tures transfected with et-cardiac actin-T11 (lane 2), or-vascu- 
lar ac t in-Tl l  (lane 3), 'v-enteric act in-Tl l  (lane 4), 13-cyto- 
plasmic actin-Tll (lane 5), and "V-cytoplasmic actin-Tll (lane 
6). In all lanes a clearly visible actin signal of similar strength 
was observed and clearly demonstrates that the levels of ac- 
cumulation of the different actin constructs are nearly iden- 
tical. This proves that the different effects described for the 
expression of the cytoplasmic actins are not due to differ- 
ences either in efficiency of transcription of the transfected 
plasmids, or in m R N A  stability, the translational rates or 
in stability of the translated proteins. The differential re- 
sponse is thus a qualitative feature of  the additionally ex- 
pressed actin isoproteins. 

Expression of Various Isoactins Has Distinct Impacts 
on Cardiomyocyte Contractility 

To determine whether the expression of  heterologous ac- 
tin constructs interferes with the beating ability of cardi- 
omyocytes,  a video microscopy system was used. For this 
analysis the c D N A  constructs encoding either a-cardiac-T11, 
'v-enteric-Tll,  or 'v-cyto-Tll  were microinjected into one 
of the two nuclei of beating A R C  cultured for eight days. 
The A R C  cells were chosen because their volume is about 
10-fold greater (Rothen, B., personal communication) as 
compared to NRC. These large cells tolerate additional ac- 
tins over a much wider range of expression, display nonsar- 
cometic and sarcomeric cytoskeleton simultaneously (Mes- 
serli at al., 1993a). They are also suitable for monitoring 
qualitative changes of cardiomyocyte physiology specifically 

1 2 3 4 5 6 Figure 3. The levels of accu- 
mulation in transfected cells 
of various tagged actin con- 
structs are nearly identical. 
Sister cultures of NRC were 
simultaneously transfected 
with each of the actin VSV 
cDNA constructs and a lu- 
ciferase plasmid serving as an 
internal transfection control. 
3 d after transfection a dish 
of cells was stained with an 
antibody against the epitope- 
tag while sister cultures were 
extracted with buffer and lu- 
ciferase activity was deter- 
mined. Samples representing 
identical luciferase activities 
were analyzed by anti-tag im- 

munoblotting. Lane 1 shows a sample derived from cells trans- 
fected with the -,/-cytoplasmic actin without tag. The other lanes 
show samples derived from cultures transfected with a-cardiac 
actin-Tll (lane 2), a-vascular actin-Tll (lane 3), "y-enteric actin- 
T11 (lane 4), 13-cytoplasmic actin-T11 (lane 5), and 5,-cytoplasmic 
actin-T11 (lane 6). The tagged actin signal is similar intensity for 
all action isoprotein constructs. Weak background staining is due 
to nonspecific reactions generated by components of the anti- 
body P5D4 ascites preparation. 

by correlating contractility (Table II) and cytoarchitec- 
ture. For  testing effects on contractility 0.2 pg of each con- 
struct was injected into cells which had previously been 
recorded to beat. After  24-30 h of incubation to allow ex- 
pression of  the injected actin constructs, the cells were 
viewed again by video microscopy to monitor  beating ac- 
tivity and then stained with the anti VSV-G epitope tag 
antibody in order to analyze the expression and localiza- 
tion of the heterologous actins. The immunofluorescence 
pictures were matched to the recorded images of the live 
cells, and Table I lists the effects of heterologous actin ex- 
pression on A R C  contractility. While most of  the cells ex- 
pressing 'v-enteric-T11 and et-cardiac-Tll resumed beating 
after microinjection, the A R C  expressing 'v-cyto-T11 did 
not recover and residual beating activity was observed 
only in one cell out  of 17 expressing cells (Table II). These 
results suggest that expression of exogenous cytoplasmic 
actin dominantly induces a loss of myofibrillar functions. 
This is compatible with the finding of the different pattern 
of integration into the myofibrils of NRC as shown in Fig. 
2. To assess the precise causes of this phenomenon,  a de- 
tailed structural analysis of the A R C  cytoarchitecture after 
ectopic expression of different actin isoproteins was per- 
formed. 

The Patterns of Incorporation of Ectopically Expressed 
Actins Are Stable 

The stress-fiber-like structures and growing myofibrils of 
regenerating A R C  have been shown to be dynamic struc- 
tures in terms of protein turnover (Messerli et al., 1993a). 
To monitor  whether this complex cytoarchitecture would 
support the stable incorporation of the "foreign" isoactins, 
time-course experiments were performed with the a-car- 
diac-T11, ct-vascular-Tll, 'v-cytoplasmic-T11, and 'v-cyto- 
plasmic-T5 actins. The immunofluorescence immediately 
and up to 4 h after microinjection was too weak to be re- 
corded by standard methods, but the staining became 
prominent in many injected cells as early as 6 h after mi- 
croinjection, and the tagged muscle isoactins were incor- 
porated uniformly in sarcomeres. The expression was maxi- 
mal after 10-12 h and as controlled at 18, 24, 40, 60, and 80 h 
remained unchanged for more than 3 d. Although we could 
not evaluate absolute levels of expression per cell, the use 
of identical immunofluorescence staining conditions fol- 
lowed by confocal microscopy enabled us to assess that all 
constructs gave rise to similar levels of expression, with a 
certain variation from cell to cell. We have not detected any 

Table II. Beating Test 

'y-cyto-T11 ",/-enteric-T11 

Number of microinjection 85 93 
Beating activity of the culture 80% 50% 
Number of expressing ARC 17 26 
Number of expressing ARC able to beat 1" 21 
Corrected beating activity of microinjected ARC 7% 100% 

The number of expressing ceils able to beat represents the cells microinjected with the 
plasmid DNA and monitored for beating activity and heterologous actin expression 24 
to 30 h after injection. Since not all noninjected cells were beating, the number of beat- 
ing cells expressing heterologous actin was corrected, by using the procedures de- 
scribed in Materials and Methods. 
* Represents a cell with some weak beating activity. 
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influence of the presence and length of the epitope tag on 
the isoactin sorting characteristics. In addition, the pattern 
of incorporation of the ectopically expressed actin con- 
structs was stable during the mentioned time window, in- 
dependently of the isoform used. 

The Expression of Heterologous Muscle 
Actin Isoforms Does Not Interfere with the Sarcomeric 
Organization of ARC 

Beating ARC cultivated for 8-10 d were injected with the 
different muscle isoactin constructs, incubated for an addi- 
tional 12-20-h period, and finally fixed and double stained 
with antibodies against the VSV-G epitope and antibodies 
specific to endogenous sarcomeric proteins. An average of 
2,000 beating cells were injected, in several experimental 
sessions, with each construct, and a total of about 600 ex- 
pressed the tagged actin. In each case, the additional mus- 
cle actin appeared to be preferentially incorporated in a 
cross-striated fashion into the sarcomere containing re- 
gions visualized by anti-myomesin staining (Fig. 4) similar 
to the observation in transfected NRC (see Fig. 2) even 
though incorporation into nonstriated filaments was less 
prominent in ARC. Crisper sarcomeric anti-actin VSV tag 
staining was observed with sarcomeric actin isoforms (Fig. 
4, a and c). A very similar pattern was obtained with 
-/-enteric actin (Fig. 4 b). With a-vascular actin (Fig. 4 d) 
an increased variability of incorporation between stress- 
fiber-like structures and sarcomeres was consistently ob- 
served, and the preferential incorporation into myoflbrils 
was not always observed (not shown). 

The effect of each heterologous muscle isoactin on the 
integrity of the thick and thin filaments was tested, as illus- 
trated in Fig. 4. The endogenous thick filament proteins 
investigated were myomesin (Fig. 4, a '  and d'), [3-MHC 
(Fig. 4 c'), and C protein (not shown). These stainings 
failed to reveal any disturbance of the thick filament sys- 
tem due to expression of an additional muscle isoactin. The 
same is true for the thin filament organization (not shown) 
which was examined using antibodies against tropomyo- 
sin, troponin-T, and endogenous a-vascular actin. In addi- 
tion, we monitored that the expression of muscle isoactins 
had no discernible influence on the localization of titin in 
the third filament system (Fig. 4 b ') and a-actinin in the Z 
line of the sarcomeres (not shown), as well as on the gen- 
eral F-actin cytoskeleton. 

Expression of Cytoplasmic Actins Induces a Dramatic 
Alteration of the Myocyte Cytoarchitecture, and Affects 
Thick and Thin Filaments Differentially 

Expression of -/-cytoplasmic (Fig. 5, a, c, e, and g; Fig. 6, a 
and b) or [3-cytoplasmic actin (Fig. 6 c) had a dramatic ef- 
fect on ARC, inducing a new phenotype. The shape of the 

transfected cells changed, and extreme flattening was ob- 
served. The overall thickness was determined by optical 
sectioning using a confocal microscope. On average, the 
mounted cells expressing muscle actin were 3-4-1xm thick, 
while the thickness of cells expressing cytoplasmic actin 
decreased to 1.7 Ixm. The difference of thickness of cells 
transfected with 13- or `/-cytoplasmic actin was not investi- 
gated in detail. Most strikingly, in cells expressing cytoplas- 
mic actins, many filopodia emerged at the cell periphery, 
where they were visible as thin "dendritic" extensions. 
Staining against the VSV-G epitope showed that these cel- 
lular processes were filled with the tagged heterologous 
actins. It is also remarkable that the heterologous [3- and 
-/-cytoplasmic actins appeared to almost completely avoid 
the central perinuclear region of the cell normally packed 
with myofibrils (Figs. 5, a-g, and 6, a-c). The phenotypic 
alterations were specifically induced by the expression of 
13-and -/-cytoplasmic actin, and did not occur in cells in- 
jected with any of the muscle actin cDNA constructs (over 
2,000 expressing cells were investigated). Injection of dif- 
ferent concentrations of constructs ranging from 0.02 to 
0.5 mg/ml led to different levels of expression, but had no 
detectable influence on the specificity of induced alter- 
ations. 

Since expression of cytoplasmic actin had such a pro- 
found effect on cell morphology, the distribution of endog- 
enous components constituting the thick and the thin fila- 
ments as well as of other proteins involved in sarcomeric 
organization were investigated. Phalloidin is known to 
stain filamentous actin in stress fiber-like structures and 
myofibrils, independently of the actin isotype. The thin fil- 
ament organization was completely altered. When cytoplas- 
mic actin was expressed the myofibrillar staining normally 
revealed with phalloidin disappears (Fig. 5 b), confirming 
that the sarcomeres have been depleted of F-actin. The to- 
tal F-actin pool was found in peripheral areas of the cell 
and in the newly induced filopodia, as shown by the bright 
staining in Fig. 5 b. Note that the noninjected control cell 
close to the one expressing cytoplasmic actin clearly shows 
a characteristic phalloidin staining of the sarcomeres and 
the stress fiber-like structures (Fig. 5 b). A major portion 
of the endogenous a-vascular actin reexpressed in some of 
the regenerating cardiomyocytes was also depleted from 
its normal location in the sarcomeres or the stress fiber- 
like structures, relocating mainly to peripheral sites (Fig. 5 
d) indistinguishable from the epitope tagged cytoplasmic 
actin isoform (Fig. 5 c). Troponin-T (not shown) and tro- 
pomyosin (Fig. 5 f) were also no longer sarcomerically or- 
ganized, but displaced to the cellular periphery and local- 
ized with the cytoplasmic actins while noninjected cells 
demonstrated cross-striated myofibrillar staining (Fig. 5 f). 

Since expression of tagged muscle actins did not induce 
any alteration of cellular morphology and beating activity, 

Figure 4. Muscle actins expressed in ARC associate preferentially with sarcomeric sites and do not interfere with the myofibrillar orga- 
nization. ARC cultured for 9 d were microinjected with a-cardiac-Tll (a), ",/-enteric-Tll (b), ct-skeletal-T5 (c), and ct-vascular-Tll (d). 
The different muscle actins were visualized with the polyclonal anti VSV-G epitope antibody #49 (a-d). The presence of sarcomeric M 
bands was visualized by myomesin staining with the monoclonal antibody B4 (a'  and d') and the thick filaments were stained for B-myo- 
sin heavy chain with the monoclonal antibody 8H8 (c'). The localization of titin is revealed with the monoclonal antibody T12 (b '). Note 
that not all cells are expressing heterologous actin (arrow, a' and d') and serve as controls for the specificity of the immunological detec- 
tion of the epitope-tag. Bars, 30 ~m. 
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Figure 5. Expression of cytoplasmic actin induces not only dramatic phenotypic changes, but leads to rearrangement of thin filament 
components. ARC cultured for 9 d were microinjected with the ~/-cyto-Tll (a-f) or with the ~/-cyto-no tag construct (g and h). After 
overnight incubation the cells were stained with the monoclonal anti VSV-G antibody P5D4 (a), or the polyclonal anti-VSV-G antibody 
#49 (c and e). The cell shown in g was simultaneously microinjected with ~/-cyto-no-tag actin and with the pSCT-f3-galactosidase con- 
struct. F-actin was revealed by phalloidin-RITC staining (b and h), endogenous smooth muscle actin by the monoclonal antibody et-sm-1 
(d), and tropomyosin was stained with the monoclonal anti-tropomyosin CH1 antibody (f). The cell in g was stained with an antibody 
against [3-galactosidase. Note the presence of nonexpressing cells (arrows in b, f, and h), showing sarcomerically organized actin (b) and 
tropomyosin (Jr). Bars: (a and g) 30 t~m; (c and d) 20 txm. 
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Figure 6. Expression of cytoplasmic actin isoproteins induces dramatic phenotypic changes in cardiomyocytes without affecting the 
thick filament organization. ARC cultured for 9 d were microinjected with the V-cyto-Tll construct (a and b) or 13-cyto-Tll (c). After 
further culture overnight, the cells were stained with the polyclonal anti VSV-G epitope antibody #49 (a-c). Myomesin was visualized 
with the monoclonal antibody B4 (a'  and c'), and B-myosin heavy chain with the monoclonal antibody 8H8 (b'). The phenotypic 
changes are characterized by an extreme induction of filopodia (marked by arrowheads), and the loss of actin in the myofibrillar region 
(long arrows). The nonexpressing cell serves as control (arrow, a '). Bars, 30 Ixm. 

it is reasonable to assume that the striking effects of both 
cytoplasmic actins on these parameters were not due to 
the epitope tag itself. To dispel any doubt that the combi- 
nation of the VSV epitope tag in combination with the 
-,/-cytoplasmic actin amino acid sequence was responsible 
for the rearrangement a double transfection was carried 
out. A ~/-cytoplasmic actin construct without the VSV-G 
epitope and a vector construct containing the [3-galactosi- 
dase reporter gene were coinjected into beating cardiomy- 
ocytes. Phalloidin staining (Fig. 5 h) revealed that some 
cells clearly showed a phenotype indistinguishable from 

the one described above and induced by the expression of 
the cytoplasmic epitope-tagged actin. In every case, such 
cells could be undoubtedly identified as cells that had been 
co-injected with both constructs, as revealed by the stain- 
ing against the [3-galactosidase reporter protein (Fig. 5 g). 
Therefore, we concluded that the presence of the VSV-G 
epitope tag in combination with cytoplasmic actins is not 
responsible for the alteration of cardiomyocyte cytoarchi- 
tecture. 

The immunostaining with antibodies to myomesin (Fig. 
6, a'  and c '), [3-MHC (Fig. 6 b ') and heart C protein (not 
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shown) demonstrated that these components of the thick 
filaments were not subjected to any detectable rearrange- 
ment, as most convincingly illustrated in Fig. 6 a '  where 
the injected cell and an adjacent noninjected control cell 
(Fig. 6 a ', arrow) showed identical myomesin staining pat- 
terns. Even in the induced filopodia, where the heterolo- 
gous actin concentration appears to be elevated, the myo- 
mesin pattern persisted. In addition to the thick filament 
associated proteins, the localization of the Z line compo- 
nent a-actinin and of titin remained unchanged in cardi- 
omyocytes expressing cytoplasmic actins (not shown), in- 
dicating that the third filament system was intact and 
probably anchored at the persisting Z line. Thus the ex- 
pression of cytoplasmic actin appears not to influence the 
organization of the thick filaments, the titin filaments nor 
the Z disks of the sarcomeres. 

Co-expression of Various Actin Constructs 

Simultaneous expression of muscle actin constructs such 
as a-cardiac-T5 with a-vascular-T11 (Fig. 7 a), and a-car- 
diac-Tll with ~/-enteric-T5 (not shown) gave rise to pref- 
erential sarcomeric association, clearly indicating that the 
combined expression of two different muscle isoactin con- 
structs does not destroy the cytoskeletal organization. This 
is also an indication that the quantity of additionally ex- 
pressed actin does not prevail over the quality. Since the 
expression of cytoplasmic actin led to the disappearance of 
endogenous actin from the sarcomeres, it is conceivable 
that simultaneous expression of muscle and cytoplasmic 
actin constructs would prevent the myofibrillar sorting of 
the muscle actin. Therefore, ARC were simultaneously in- 
jected with a-cardiac and ~-cytoplasmic constructs. As 
shown in Fig. 7 a', expression of ~/-cytoplasmic actin pre- 
vented the co-expressed a-cardiac actin bearing the epitope 
from being sorted to the sarcomeres, although myomesin 
was still present in sharply defined M bands (not shown). 
a-Cardiac actin was distributed in the cytoplasm in a man- 
ner resembling the localization of ~-cytoplasmic actin, in- 
dicating again the dominant negative effect induced by the 
expression of cytoplasmic actin. 

Expression of Chimeric Actin Constructs 
Indicates That the Carboxy-terminal Portion of 
Cytoplasmic Actin is Responsible for the 
Dramatic Changes Observed 

As a preliminary attempt to identify the part of cytoplas- 
mic actin responsible for the altered phenotype, two dif- 
ferent chimeric actins consisting of the a-cardiac actin se- 
quence from chicken and the ~/-cytoplasmic actin sequence 
from rat were constructed, bearing the 11-amino acids 
VSV-G epitope at their carboxy termini. In the first con- 
struct referred to as a-cardiac/~/-cyto, the sequences en- 
code the first 83 amino acids of a-cardiac actin and the car- 
boxy-terminal portion of the ~/-cytoplasmic actin. The 
second construct referred to as ~/-cyto/a-cardiac, contained 
sequences encoding the amino terminal portion of "y-cyto- 
plasmic actin fused to the residues 84-375 of the a-cardiac 
actin. Expression of "y-cyto/a-cardiac in ARC showed that 
this chimeric actin distributes in a way similar to muscle ac- 
tin (compare Fig. 7 b with 4, a-d), giving rise to a mainly 
sarcomeric staining and a less pronounced incorporation 

into the stress-fiber-like structures. In contrast, the chi- 
meric actin a-cardiac/~/-cyto induced morphological alter- 
ations similar to that seen with cytoplasmic actins (com- 
pare Figs. 7 c with 5 and 6). 

These results once more underscore the isoprotein spec- 
ificity of the dominant morphological changes observed, 
and strongly suggest that the carboxy-terminal portion of 
the cytoplasmic actins, which is identical in ~- and ~-cyto- 
plasmic actins but differs in 14 amino acids from the a-car- 
diac and a-vascular actins, 15 residues from ~/-enteric and 16 
residues from a-skeletal actins, may be in part responsible 
for the dominant effects on the sarcomeric organization. 
More work is needed to determine the critical residues in 
the cytoplasmic actins. 

Discussion 

Little is known about the functional differences among the 
six vertebrate isoactins, and their biological significance 
remains to be established. The high degree of evolutionary 
conservation of the amino acid sequences likely implies 
high similarity of the three-dimensional structures of the 
actin molecules and the conservation of sites essential for 
actin polymerization and for interactions with actin-bind- 
ing proteins. Conversely, the strict temporal and spatial 
regulation of actin isoforms during development giving 
rise to characteristic patterns of tissue-specific expression 
suggests that the actin isoproteins are functionally distinct 
molecules; the isoform-specific amino acid changes in the 
primary sequences may favor specific interactions. 

The ARC system is ideal to study biogenesis of cytoar- 
chitecture in that, following initial degeneration of the sar- 
comeric organization, after one week in culture the ceils re- 
cover and spontaneous beating resumes; the regenerated 
myofibrils coexist with a richly structured nonsarcomeric 
cytoskeleton (Soldati and Perriard, 1991; Messerli et al., 
1993a). The ARC, as a consequence of cellular hypertro- 
phy (Eppenberger et al., 1994) have the additional advan- 
tage of being very big and extremely flat cells and are thus 
ideally suited for the analysis by microscopic methods. The 
myofibrils in these ceils are dynamic structures in terms of 
proteins turnover and incorporate newly expressed pro- 
teins or mutants. In addition, the ARC system is also 
suited to molecular physiology studies, allowing to monitor 
precisely the effects of expressed heterologous proteins on 
contractility. 

The polymerization competence of epitope-tagged ac- 
tins was first assessed using an in vitro polymerization as- 
say and by their incorporation into the microfilament cy- 
toskeleton of chicken embryo fibroblasts (Fig. 1). Additional 
strong evidence for functionality of the cardiac actin carry- 
ing the same VSV-G epitope tag comes from transgenic 
Drosophila, homozygotic for human a-cardiac actin carry- 
ing the VSV-11-mer epitope, which are able to fly (in col- 
laboration with Dr. C.-A. Schoenenberger, Biozentrum, 
Basel, Switzerland). The behavior of the six vertebrate ac- 
tin isoforms and two chimeric actins was then investigated 
first in NRC and then in ARC by monitoring effects on 
cell physiology and morphology, in correlation with their 
respective intracellular distributions. Each one of the mus- 
cle aetin isoproteins interacted preferentially with the 
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Figure 7. The COOH-terminal region of cytoplasmic actin is responsible for the dominant negative phenotypic changes. ARC cultured 
for 9 d were simultaneously microinjected with the a-cardiac-T5 and a-vascular-Tll constructs (a) or with the ~-cytono tag and a-car- 
diac-T11 constructs (a '). After 30-h incubation, the cells were stained with the polyclonal anti VSV-G epitope antibody #49. Other ARC 
were microinjected with the chimeric actin -y-cyto/ct-cardiac (b), and the chimeric actin ct-cardiac/~/-cyto (c), and were stained with the 
polyclonal anti VSV-G epitope antibody #49 (b and c). The sarcomeres were visualized by myomesin with the monoclonal antibody B4 
(b'  and c'). Bars, 30 Ixm. 

myofibrillar cytoskeleton giving rise to sarcomeric pat- 
terns without altering the cellular morphology and physi- 
ology. Expression of either [3- or "t-cytoplasmic actin lead 
to dramatic dominant effects. The usual spontaneous beat- 
ing activity of ARC was blocked and filopodial appendices 
were induced at the periphery of the cells. Most of the 
newly expressed cytoplasmic actin is found in these in- 
duced structures. 

The 3'-untranslated region of a-cardiac and [3-cytoplas- 
mic actins were recently shown to be responsible for the 
differential localization of their respective mRNAs (Kis- 

lauskis et al., 1993; Hill and Gunning, 1993). As our cDNA 
constructs lack most of their 5'- and their entire 3'-untrans- 
lated regions, the results demonstrate that these sequences 
cannot be solely responsible for the intracompartmental 
sorting of their translated products. If the intracellular lo- 
cation of the proteins is important for maintaining func- 
tional cytoarchitecture, the process will likely turn out to 
be controlled at many levels. The direction of mRNAs to 
the site of assembly of the corresponding protein by their 
3' untranslated mRNA sequences might facilitate adjust- 
ment to major physiological changes, and assembly of cel- 
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lular components could occur specified by the protein se- 
quences. 

In addition to causing cessation of beating, expression of 
cytoplasmic isoactins induced a severe and selective loss of 
actin thin filaments and associated proteins from the myo- 
fibrils. These effects were also observed upon expression 
of the chimeric construct containing amino acids 84-375 of 
the cytoplasmic actin. This strongly suggests that the dra- 
matic phenotypic changes can be attributed to the presence 
of this fragment which contains 14 of the highly conserved 
amino acid differences between muscle and cytoplasmic 
actins. Assuming a three dimensional structure similar to 
the one published for the sarcomeric actin (Kabsch et al., 
1990), six of these changes concern amino acids which are 
exposed on the surface of the molecule. None of them rep- 
resent a main change in polarity, and four of the differences 
are found in the 13-sheet cluster of the subdomain 3. Con- 
sidering the actin-actin contact sites, residue 287 belongs 
to the contact site 286-288 and residue 201 is adjacent to 
contact site 202-204 along the long-pitch helix, and two 
other exchanges, residues 267 and 272, are in the loop 264- 
273 which is supposed to form the hypothetical trimeric 
contact with the opposite strand (Kabsch et al., 1990). 
These sequence elements need not uniquely specify prop- 
erties for actin filament assembly but could also be respon- 
sible for the interaction with actin binding proteins which 
might be important mediators for this effect. For example 
preferential interaction of ezrin and an ezrin binding com- 
ponent with B-cytoplasmic actin mediating the binding of 
the complex to membranes has recently been demonstrated 
(Shuster and Herman, 1995). Another actin binding com- 
ponent that may be involved in the stability of the thin fila- 
ment is tropomodulin, which binds to pointed ends of actin 
in sarcomeric thin filaments (Gregorio and Fowler, 1995). 
Ectopic expression of pure actin isoforms probably results 
in unbalanced composition of the cellular actin pool. It is 
hence possible that differential isoactin specific stabiliza- 
tion of monomeric and/or polymerized isoactins could fi- 
nally lead to radical thin filament destabilization and re- 
distribution of all of their constituents. 

In sharp contrast to the thin filaments, the myosin thick 
filaments and associated proteins appeared to be much more 
stable against the expression of cytoplasmic actins. The pres- 
ence of ordered thick filaments in the absence of thin fila- 
ments implicates the existence of a structural network keep- 
ing the thick filaments in place. This rather stable structure, 
also called the third filament system, is built of titin which 
is anchored to the Z and M lines, and could act as a frame 
for the maintenance of myofibrils. Titin, which is expressed 
early during myogenesis before myofibrillar assembly is 
completed (Ftirst et al., 1989; Wang et al., 1988; Handel et 
al., 1990), has emerged as a candidate for a control ele- 
ment of filament assembly (Labeit et al., 1992). This tem- 
poral priority in myofibrillogenesis may reflect the need of 
a structural frame, in which more labile components such 
as actin filaments and thin filament binding proteins can 
be later added and adjusted. In addition, the cardiomyo- 
cytes lack the possibly stabilizing component nebulin which 
may render the thin filaments of skeletal muscle insensi- 
tive to this type of reorganization. 

In support of our results, it has been reported in other in 
vivo systems that the thin and thick filaments can be as- 

sembled independently from each other. In transgenic 
Drosophila, where one of the two systems has been 
"knocked out", the remaining filaments assume a pseudo 
myofibrillar organization (Hennessey et al., 1993). 

It has been shown that a change in the ratio of synthesis 
of the ~/-¢-actin isoproteins leads to an alteration of cellu- 
lar morphology (Schevzov et al., 1992), thus indicating that 
the relative steady state isoactin concentrations can have 
important consequences. It can also be speculated that these 
isoprotein specific effects may be mediated by some actin 
binding components rather than directly by the isoactin 
themselves. It remains to be investigated whether similar 
phenomena participate in tissue damage in the heart mus- 
cle. Also, it is tempting to postulate that the alterations of 
sarcomeric structures observed in this study likely under- 
score fundamental mechanisms that operate in the process 
of myofibrillogenesis during cell differentiation as well, 
and that such investigations will open a very informative 
line of research. 

We are very much indebted to Dr. H. M. Eppenberger and his group, es- 

pecially Dr. M. Eppenberger-Eberhardt for transmitting the know-how of 

the adult rat cardiomyocyte culture. Dr. M. Messerli is gratefully acknowl- 

edged for providing help with confocal microscopy, E. Perriard-Mathys, S. 

Keller, and Dr. M. Komiyama for invaluable help with many experiments, 

as well as the other members of our laboratory. We are also indebted to 
Drs. E. M. Furter-Graves, C.-A. Schoenenberger, and M. Komiyama for 

the critical reading of the manuscript. 

The work was supported by grant 31.277556/89 and 31.37537/93 of 

the Swiss National Science Foundation and a predoctoral training grant 

from ETH. 

Received for publication 25 October 1994 and in revised form 1 Septem- 

ber 1995. 

References 

B~ihler, M., H. Moser, H. M. Eppenberger, and T. Wallimann. 1985. Heart 
C-protein is transiently expressed during skeletal muscle development in the 
embryo, but persists in cultured myogenic cells. Dev. Biol. 112:345-352. 

Brown, C. W., K. M. McHugh, and J. L Lessard. 1990. A cDNA sequence en- 
coding cytoskeletal gamma-aetin from rat. Nucleic Acids Res. 18:5312-5312. 

Chen, C., and H. Okayama. 1987. High-efficiency transformation of mamma- 
lian cells by plasmid DNA. Mol. Cell. Biol. 7:2745-2752. 

Claycomb, W. C., and M. C. Palazzo. 1980. Culture of the terminally differenti- 
ated adult cardiac muscle cell: a light and scanning electron microscope 
study. Dev. Biol. 80:466-482. 

Claycomb, W. C., and Lanson, N. 1984. Isolation and culture of the terminally 
differentiated adult mammalian ventricular cardiac muscle cell. In Vitro. 20: 
647-651. 

DeNofrio, D., T. C. Hoock, and I. M. Herman. 1989. Functional sorting of actin 
isoforms in microvascular pericytes. J. Cell Biol. 109:191-202. 

Eldridge, J., Z. Zehner, and B. M. Paterson. 1985. Nucleotide sequence of the 
chicken cardiac alpha actin gene: absence of strong homologies in the pro- 
moter and Y-untranslated regions with the skeletal alpha actin sequence. 
Gene. 36:55-63. 

Eppenberger, H. M., C. Hertig, and M. Eppenberger-Eberhardt. 1994. Adult 
rat cardiomyocytes in culture: a model to study the plasticity of the differen- 
tiated cardiac phenotype at the molecular and cellular level. Trends Cardio- 
vase. Med. 4:187-192. 

Eppenberger-Eberhardt, M., I. Flamme, V. Kurer, and H. M. Eppenberger. 
1990. Reexpression of a-smooth muscle actin isoform in cultured adult rat 
cardiomyocytes. Dev. Biol. 139:269-278. 

Farst, D. O., M. Osborn, and K. Weber. 1989. Myogenesis in the mouse em- 
bryo: differential onset of expression of myogenic proteins and the involve- 
ment of titin in myofibril assembly. J. Cell Biol. 109:517-527. 

Gallione, C. J., and J. K. Rose. 1985. A single amino acid substitution in a hy- 
drophobic domain causes temperature-sensitive cell-surface transport of a 
mutant viral glycoprotein. J. Virol. 54:374-382. 

Garrels, J. I., and W. Gibson. 1976. Identification and characterization of multi- 
ple forms of actin. Cell 9:793-805. 

Gordon, D. J., J. L. Boyer, and E. D. Korn. 1977. Comparative biochemistry of 
non-muscle actins. J. Biol. Chem. 252:8300-8309. 

Gregorio, C. C., and V. M. Fowler. 1995. Mechanism of thin filament assembly 
in embryonic chick cardiac myocytes: Tropomodulin requires tropomyosin 

The Journal of Cell Biology, Volume 131, 1995 1772 



for assembly. J. Cell BioL 129:683-695. 
Grove, B. K., V. Kurer, C. Lehner, T. C. Doetschmanl J.-C. Perriard, and H. M. 

Eppenberger. 1984. A new 185.000-daltons skeletal muscle protein detected 
by monoclonal antibodies. J. Cell BioL 98:518-524. 

Gunning, P., P. Ponte, H. Okayam, J. Engel, H. Blau, and L. Kedes. 1983. Isola- 
tion and characterization of full-length eDNA clones for human alpha-, 
beta-, and gamma-actin mRNAs: skeletal but not cytoplasmic actins have an 
amino-terminal cysteine that is subsequently removed. MoL Cell. BioL 3: 
787-795. 

Handel, S. E., M. L. Greaser, E. Schultz, S.-M. Wang, J. C. Bulinski, J. J.-C. Lin, 
and J. L. Lessard. 1990. Chicken cardiac myofibrillogenesis studied with an- 
tibodies specific for titin and the muscle and nonmuscle isoforms of actin and 
tropomyosin. Cell Tissue Res. 263:419-430. 

Hartman, A. L., N. M. Sawtell, and J. L. Lessard. 1989. Expression of actin iso- 
forms in developing rat intestinal epithelium. J. Histochern. Cytochem. 37: 
1225-1233. 

Hennessey, E. M., D. R. Drummond, and J. C. Sparrow. 1993. Molecular genet- 
ics of actin function. Biochern. J. 282:657-671. 

Herman, I. M. 1993. Actin isoforms. Curr. Opin. Cell BioL 5:48-55. 
Herman, I. M., N. J. Crisona, and T. D. Pollard. 1981. Relation between cell ac- 

tivity and the distribution of the cytoplasmic actin and myosin. J. Cell BioL 
90:84-91. 

Hill, M. A., and P. Gunning. 1993. Beta and gamma actin mRNAs are differen- 
tially located within myoblasts. J. Cell BioL 122:825-832. 

Hook, T. C., P. M. Newcomb, and I. M. Herman. 1991.13-actin and its mRNA 
are localized at the plasma membrane and the regions of moving cytoplasm 
during the cellular response to injury. J. Cell BioL 112:653-664. 

Jacobson, S. L., and H. M. Piper. 1986. Cell cultures of adult cardiomyocytes as 
models of the myocardium. J. MoL Cell. CardioL 18:6614578. 

Kabsch, W., and J. Vandekerckhove. 1992. Structure and function of actin. 
Annu. Rev. Biophys. BiornoL Struct. 21:49-76. 

Kabsch, W., H. G. Mannherz, D. Suck, E. Pai, and K. C. Holmes. 1990. Atomic 
structure of the Actin:DNase I complex. Nature (Lond.). 347:37--44. 

Kislauskis, E. H., Z. Li, R. H. Singer, and K. L. Taneja. 1993. Isoform-specific 
3'-untranslated sequences sort a-cardiac and ~/-cytoplasmic actin messenger 
RNAs to different cytoplasmic compartments. J. Cell BioL 123:165-172. 

Kreis, T. E. 1986. Microinjected antibodies against the cytoplasmic domain of 
vesicular stomatitis virus glycoprotein block its transport to the cell surface. 
EMBO J. 5:931-941. 

Labeit, S., M. Gautel, A. Lakey, and J. Trinick. 1992. Towards a molecular un- 
derstanding of titin. EMBO J. 11:1711-1716. 

Lubit, B. W., and J. H. Schwarz. 1980. An antiacfin antibody that distinguishes 
between cytoplasmic and skeletal muscle actin. Z Cell Biol. 86:891-897. 

McHugh, K. M., and J. L. Lessard. 1988a. The development expression of the 
rat c~-vascular and ~,-enteric smooth muscle isoacfins: isolation and charac- 
terization of a rat -/-enteric actin cDNA. MoL Cell. BioL 8:5224-5231. 

McHugh, K. M., and J. L. Lessard. 1988b. The nucleotide sequence of a rat vas- 
cular smooth muscle alpha-actin eDNA. Nucleic Acids Res. 16:4167. 

Messerli, J. M., M. E. Eppenberger, B. Rutishauser, P. Schwarb, P. von Arx, S. 
Koch-Schneidemann, H. M. Eppenberger, and J.-C. Perriard. 1993a. Re- 
modeling of cardiomyocyte cytoarchitecture visualized by 3D confocal mi- 
croscopy. Histochemistry. 100:193-202. 

Messerli, J. M., H. T. M. van der Voort, E. Rungger-Br~indle, and J.-C. Perri- 
ard. 1993b. Three-dimensional visualization of multi-channel volume data: 
the amSFP algorithm. Cytornetry. 14:725-735. 

Oshima, S., H. Abe, and T. Obinata. 1989. Isolation of profilin from embryonic 
chicken skeletal muscle and evaluation of its interaction with different actin 
isoforrns. J. Biochern. 105:855-857. 

Otey, C. A., M. H. Kalnoski, J. L. Lessard, and J. C. Bulinski. 1986. Immunolo- 
calization of the gamma isoform of nonmuscle actin in cultured cells. J. Cell 

BioL 102:1726-1737. 
Otey, C. A., M. H. Kalnosky, and J. C. Bulinski. 1988. Immunolocalization of 

muscle and nonmuscle isoforms of actin in myogenic cells and adult skeletal 
muscle. Cell MotiL Cytoskeleton. 9:337-348. 

Pardo, J. V., M. F. Pittenger, and S. W. Craig. 1983. Subcellular sorting of isoac- 
tins: selective association of 3,-actin with skeletal muscle mitochondria. Cell 
32:1093-1103. 

Paterson, B. M., and J. D. Eldridge. 1984. Alpha-cardiac acfin is the major sar- 
comeric isoform expressed in embryonic avian skeletal muscle. Science 
(Wash. DC). 224:1436-1438. 

Ponte, P., S. Y. Ng, J. Engel, P. Gunning, and L. Kedes. 1984. Evolutionary con- 
servation in the untranslated regions of aetin mRNAs: DNA sequence of a 
human beta-actin eDNA. Nucleic Acids Res. 12:1687-1696. 

Rubenstein, P. A. 1990. The functional importance of multiple actin isoforms. 
Bioessays. 12:309-315. 

Rozycki, M. D., J. C. Myslik, C. E. Schutt, and U. Lindberg. 1994. Structural as- 
pects of actin-binding proteins. Curt. Opin. Cell Biol. 6:87-95. 

Ruzicka, D. L., and R. J. Schwartz. 1988. Sequential activation of c~-actin genes 
during avian cardiogenesis: vascular smooth muscle a-actin gene transcripts 
mark the onset of cardiomyocyte differentiation. J. Cell Biol. 107:2575-2586. 

Sawtell, N. M., and J. L. Lessard. 1989. Cellular distribution of smooth muscle 
actins during mammalian embryogenesis: expression of the c~-vascular but 
not the v-enteric isoform in differentiating striated myocytes. J. Cell Biol. 
109:2929-2937. 

Schiller, B. W., and J.-C. Perriard. 1988. Intracellular targeting of isoproteins in 
muscle cytoarchitecture. J. Cell Biol. 106:1161-1170. 

Schevzov, G ,  C. Lloyd, and P. Gunning. 1992. High level expression of trans- 
fected 13- and ~/-actin genes differentially impacts on myoblast cytoarchitec- 
ture. J. Cell Biol. 117:775-785. 

Sen, A., D. Preston, S. A. Henderson, R. D. Gerard, and K. R. Chien. 1988. 
Terminally differentiated neonatal rat myocardial cells proliferate and main- 
tain specific differentianted functions following expression of SV 40 large T 
antigen. J. Biol. Chem. 35:19132-19136. 

Shuster, C. B., and I. M. Herman. 1995. Indirect association of ezrin with 
F-actin: isoforrn specificity and calcium sensitivity. J. Cell Biol. 128:837--848. 

Skalli, O., P. Ropraz, A. Trzeciak, G. Benzonana, D. Gillessen, and G. Gabbi- 
ani. 1986. A monoclonal antibody against a-smooth muscle actin: a new 
probe for smooth muscle differentiation. J. Cell Biol. 103:2787-2796. 

Soldafi, T., and J.-C. Perriard. 1991. Intracompartmental sorting of essential 
myosin light chains: molecular dissection and in vivo monitoring by epitope 
tagging. Cell. 66:277-289. 

Solomon, L. R., and P. A. Rubenstein. 1987. Studies on the role of acfin's 
N-methylhistidine using oligodeoxynucleotide-directed site-specific mutagen- 
esis. J. Biol. Chem. 262:11382-11388. 

Sparrow, J. C., D. R. Drummond, E. S. Hennessey, J. D. Clayton, and F. B. 
Lindegaard. 1993. Drosophila actin mutants and the study of myofibrillar as- 
sembly and function. Soc. Exp. Biol. Syrnp. 46:111-129. 

Vandekerckhove, J., and K. Weber. 1978. At  least six different actins are ex- 
pressed in a higher mammal: an analysis based on the amino acid sequence 
of the amino-terminal tryptie peptide. J. MoL BioL 126:783-802. 

Vandekerekhove, J., and K. Weber. 1979. The complete amino acid sequence of 
actins from bovine aorta, bovine heart, bovine fast skeletal muscle, and rab- 
bit slow skeletal muscle. Differentiation. 14:123-133. 

Vandekerckhove, J., and K. Weber. 1981. Actin typing on total cellular ex- 
tracts. Eur. J. Biochern. 113:595-603. 

Wang, S.-M., M. L. Greaser, E. Schultz, J. C. Bulinski, J. J.-C. Lin, and J. L. 
Lessard. 1988. Studies on cardiac myofibrillogenesis with antibodies to titin, 
actin, tropomyosin, and myosin. J. Cell Biol. 107:1075-1083. 

Weeds, A. 1982. Aetin-binding proteins-regulators of cell architecture and mo- 
tility. Nature (Lond.). 296:811-816. 

von Arx et al. Functional Diversity ofActin lsoforms 1773 


