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Abstract

In controlling animal behavior the nervous system has to perform within the operational limits set by the requirements of
each specific behavior. The implications for the corresponding range of suitable network, single neuron, and ion channel
properties have remained elusive. In this article we approach the question of how well-constrained properties of neuronal
systems may be on the neuronal level. We used large data sets of the activity of isolated invertebrate identified cells and
built an accurate conductance-based model for this cell type using customized automated parameter estimation
techniques. By direct inspection of the data we found that the variability of the neurons is larger when they are isolated
from the circuit than when in the intact system. Furthermore, the responses of the neurons to perturbations appear to be
more consistent than their autonomous behavior under stationary conditions. In the developed model, the constraints on
different parameters that enforce appropriate model dynamics vary widely from some very tightly controlled parameters to
others that are almost arbitrary. The model also allows predictions for the effect of blocking selected ionic currents and to
prove that the origin of irregular dynamics in the neuron model is proper chaoticity and that this chaoticity is typical in an
appropriate sense. Our results indicate that data driven models are useful tools for the in-depth analysis of neuronal
dynamics. The better consistency of responses to perturbations, in the real neurons as well as in the model, suggests a
paradigm shift away from measuring autonomous dynamics alone towards protocols of controlled perturbations. Our
predictions for the impact of channel blockers on the neuronal dynamics and the proof of chaoticity underscore the wide
scope of our approach.
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Introduction

To ensure survival in an unforgiving world, some essential

motor patterns, e.g., for heartbeat, breathing or digestive

movements, need to be sustained within tight operational limits.

To what extent these limits on the functional output imply similar

tight limits on the properties of the neuronal circuits is a

challenging question because it entails many technical and

conceptual difficulties. There are two extreme scenarios of how

control of cellular properties may be accomplished. In one

scenario the neuronal properties are fully genetically determined

as in the notion of identified neurons [1–3]. In the other proposed

scenario, the same operational limits may be achieved in many

different ways, while allowing corresponding neurons in different

individuals to be almost entirely different in their biophysical

composition [4–6]. The biological reality for the control of cellular

properties likely lies between these limit scenarios. It therefore

seems advisable to approach this question with quantitative

techniques that will help determine how the composition of the

neural currents is produced and how it is maintained throughout

protein turnover and changing conditions. Here, we aim to

quantify how tightly cellular parameters may be controlled, by

combining electrophysiology and detailed modeling of an

identified neuron.

Due to its excellent experimental accessibility and stability, and

the vast existing literature for many of its properties, the

stomatogastric system of the lobster is well suited for approaching

this question. It has been shown that the pyloric rhythm is very

consistent from animal to animal [4,7] during development of body

size [8], under natural [9] and artificial perturbations [10], and even

after decentralization [11–13]. Furthermore, the cells generating this

rhythm exhibit stereotyped dynamics and can be identified by visual

inspection of intracellular recordings and comparison to simulta-

neous extra-cellular recordings of identified nerves.

Neuronal circuits may be more variable in mammalian systems

and the answers to our questions of how robust target dynamics

are achieved are likely to vary among different systems depending

on their function and their ensuing accuracy requirements. The

heartbeat, for example, may be more tightly controlled than

digestive movements. However, mammalian neurons can often

also be clearly characterized by their stereotyped dynamical

properties [14] and genetic signature [15] and in many respects

questions pertaining to cortical function can be analogous to

similar questions in simpler pattern generators [16] like the pyloric
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system. Furthermore, while the specific detailed requirements of

different systems may be different, it is likely that general principles

exist that govern the way unlearned rhythmic behaviors are

produced. It is these principles that we are trying to uncover.

We approached the question of which neuronal properties are

controlled (and therefore most consistent across preparations) by

analyzing the dynamics of isolated lateral pyloric (LP) neurons of

the lobster. Like other neurons in this network, the LP is a

conditional burster, requiring modulatory input from higher

centers to burst [17]. Its biophysical and dynamical properties

have been studied extensively [18–21]. In our analysis we followed

a two-pronged approach: First, we acquired data from isolated LP

neurons in many different conditions and analyzed the observed

dynamics directly, continuing earlier work on LP [22].

We then used the extensive data obtained in the first phase to

build an accurate conductance based model of the LP neuron

which we explored numerically. The structure of conductance

based neuron models is motivated by the biophysics underlying

membrane potential generation by ionic channels. Using this type

of model should, therefore, allow us to predict neuron behavior

beyond a mere mimicry of the target data used. This predictive

power has made conductance based neuron models the gold

standard for data-driven model development in computational

neuroscience and recommended them for our purposes.

Conductance based models are notoriously hard to adjust to

observed data. Therefore, we chose to use automated fitting

(parameter estimation) techniques both for finding the kinetic

parameters of conductances from sets of voltage clamp data

[18,19,23,24] and for estimating parameters of the model as a whole

when aiming to replicate our own large sets of current clamp data.

In earlier comparative work on parameter search methods for

H-H neuron models [25], good performance was found for genetic

algorithms [26] and simulated annealing [27,28] and no

significant performance differences between these two types of

optimization algorithm was observed. In the work presented here,

we chose to use simulated annealing over genetic algorithms

guided by the long-term perspective of using the developed

parameter estimation technology online in the future.

Models of the LP neuron of the lobster and crab have a long

tradition and were developed in roughly three independent strains.

One strain is based on voltage clamp recordings of identified

isolated LP cells in the crab [18,19,23] which were assembled into

an early LP neuron model [24]. This model was used with several

variations in subsequent work [21,29,30]. A second strain of

models was based on voltage clamp data from unidentified

cultured stomatogastric neurons of the lobster [31] which were,

with modifications, assembled into an LP neuron model [32] that

became the basis of several later studies as well [33–37]. The later

models differed from the original model [32] mainly by changes in

the Ih current. The third group of models were more abstract

models based on the Hindmarsh-Rose equations [20,38–40].

All existing models were successful in illustrating different

aspects of CPG function while (necessarily) neglecting others. In

particular, predicting the effect of perturbations on the dynamics

of isolated LP neurons proved difficult with the existing models.

The model developed here builds on the existing models and aims

at extending them to allow accurate model behavior over a wider

range of conditions. The question of how much this increased

range of accuracy improves the predictive power of the model for

increasingly severe perturbations will be addressed in the sections

on parameter sensitivity below.

In the remainder of this work we also analyze the origin of the

irregular dynamics observed in the LP membrane potential over a

wide range of conditions. To this end we are using our model as a

proxy system to learn about the neurons it describes. This

approach allowed us higher mathematical confidence in our

numerical results than the direct non-linear time series analysis

used previously. We find that the model is chaotic over a wide

range of conditions and that the chaoticity typically persists even if

parameters of the model are changed.

Results

To characterize the difference among identified neurons of

the same type we isolated 6 LP neurons from the lobster

stomatogastric ganglion and compared their activity. We inspected

a wide dynamic range of the neurons activity by injecting DC

currents ranging from 24 to +2 nA, a range that is likely to

encompass the inputs that LP neurons may encounter when in the

intact network.

Properties of isolated LPs
When the LP is embedded in the pyloric circuit, its burst

durations, burst frequency and duty cycles are quite consistent

from one preparation to the next [7,8,10]. It is, however, not clear

how much of this consistency is due to a corresponding consistency

in the cellular properties, how much is due to properties of the

synaptic connections or general network connectivity, how much is

due to cellular- and network-level regulatory mechanisms and how

much is due to non-linear dynamical interactions between the

neurons in the network. To approach these questions, we sought to

investigate the properties of LP neurons that have been isolated

from the rest of the network by blocking all synaptic glutamatergic

inputs into the neuron with a pharmacological blocker (PTX) and

by photoablation of other neurons (see Methods). We analyzed the

isolated LP neurons from 6 different animals. Following isolation

the typical activity of the LP neuron is irregular spiking with

occasional hyperpolarization as shown in the representative

example in Figure 1A (see also [39]). The intervals between

hyperpolarization events vary as well as their amplitudes, the

former effect also clearly visible in the traces of spike density

functions (SDFs) for the different LPs (Fig. 1B). The inter-spike

interval (ISI) distributions shown in Figure 1C reveal an

approximately three-fold variation in the mean ISI (see Table 1).

The long tail on the right of the histograms contains the intervals

that correspond to hyperpolarization events. The spike timing

characteristics of all observed neurons were typical for irregularly

firing neurons with wide power spectra that are lacking clear peaks

(Fig. 1D). The evolution of spiking activity as illustrated by the

return map (Fig. 1E) shows rather different durations of

hyperpolarization events and maximal as well as typical spike

densities for individual neurons. The distributions of ISIs show

similar variability in their skewness and kurtosis (Table 1). The

implications for the reproducibility of properties of LP neuron

dynamics will be discussed in more detail below.

Under natural conditions, LP cells are embedded in a network

and constantly receive many, mainly inhibitory, inputs. The

condition of complete autonomous dynamics in isolation is

accordingly rather unnatural for these cells. Therefore, it is

actually more relevant to examine them under the influence of

current injections. From a dynamical systems point of view it

appears equally important to probe the neurons, seen as

dynamical systems, in a large area of the state space to gain a

meaningful overview over their (dis)similarities. Here we started

with a simple protocol of constant DC current injections that

roughly mimics the slow inhibitory currents and release from such

currents encountered by the LP neurons through graded

inhibitory synapses [17,41] in their natural mode of operation.

Dynamics of Identified Neurons
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Dynamical Properties of isolated LPs
As much as the neurons differ while in isolation, and possible

reasons for that will be discussed below, once studied with DC

current injections, the neurons reveal more consistent features. For

instance, the dynamical profile of the different LPs is rather similar

(Fig. 2). It manifests itself primarily in a typical transition from

regular bursting with short bursts when strongly hyperpolarized to

progressively longer bursts then irregular bursting and eventually

tonic spiking. A quantification of these observations is shown in

Figure 3. The average inter-spike interval (ISI) within bursts

(Fig. 3A) gradually increases with increasing IDC in the deeply to

moderately hyperpolarized regime (24 to 21 nA) it levels out and

starts decreasing for positive current injections, see also [22]. The

inter-burst interval (IBI) shown in Figure 3B (only analyzed in the

range of current injections where clear bursting was present) has a

clear decline for increasing IDC while the burst duration always

Figure 1. Properties of isolated LP neurons without current injections. The framed panels show data from the LP model for comparison. A)
Example of the membrane potential time series of an isolated LP neuron. Irregular spiking is interspersed with occasional hyperpolarization events. B)
The SDFs of six isolated LPs show a quite variable range of activities. The sixth data set, here and in the following panels, was the one used for the
model fitting. C) Histograms of the inter-spike intervals for the different LP neurons. The median for each distribution is given on the top right of the
panels. D) The frequency spectrum of the LPs as calculated with an FFT of the SDFs shows a wide distribution of frequencies without marked peaks in
all LPs. This is indicative of irregular spiking neurons. E) SDF return maps of the isolated LPs with embedding delay Dt = 100 ms. The condensed areas
are the irregular spiking regions and the larger loops the hyperpolarization events followed by the high frequency burst onset.
doi:10.1371/journal.pone.0002627.g001
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increased with decreasing hyperpolarization (Fig. 3C). Finally, the

burst frequency (Fig. 3D) increased as the membrane potential was

increasingly less hyperpolarized in three out of the six experiments.

For two others it didn’t change significantly and for one it decreased.

This mixed result makes the change in burst frequency as a function

of current injection the least consistent of the observed trends even

though we would like to argue that some tendency to increase on

average seems to exist. A summary of all observed correlations and

the corresponding P values is shown in Table 2.

Even though the specific values of the properties are different

among the different LPs, the changes of these variables in response to

different current injections are fairly consistent. This consistency of

changes, or ‘‘trends’’, rather than absolute values, raises the question

of what kind of restrictions may be imposed on which properties of

the LP neurons and how tightly these restrictions may have to be to

allow for consistency of trends. We chose to explore this question by

studying a data-driven model of the isolated LP neuron.

Table 1. Dynamical properties of isolated LP neurons in
control conditions.

Experiment Mean SD Skewness Kurtosis

1 160.0 50.4 0.89 3.5

2 81.5 50.2 3.70 21.4

3 46.6 35.7 5.89 46.4

4 204.3 76.2 1.43 5.1

5 115.7 33.7 3.63 28.3

6 46.7 20.8 1.16 7.1

The distributions of inter-spike intervals of different LP neurons differ in terms
of mean and standard deviation (also compare to figure 1C) on a similar order
of magnitude as on higher order statistics like the skewness and kurtosis. The
skewness is, however, always positive which is consistent with a typical burst
shape in the LP neuron [46].
doi:10.1371/journal.pone.0002627.t001

Figure 2. Membrane potential of six isolated LP neurons subject to current injection of 24, 23, 22, 21, 0, and 1 nA (A–E) and 24,
22.6, 21.2, 0.2, 1.6, and 3 nA (F). The specific activity of neurons at given injection levels varies considerably. The overall transition from short
bursts to increasingly longer and less regular bursts to irregular and eventually tonic spiking is, however, well preserved. The data used for model
development is shown in panel A.
doi:10.1371/journal.pone.0002627.g002
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Model parameter estimation
Rather than building a model specifically designed to shed light

on the question of preserved trends in neuron properties we aimed

at building a general conductance-based model of the LP neuron

that replicates LP neuron dynamics over a wide range of

conditions. In particular, to avoid bias, the above-mentioned

consistent trends were not used as a selection criterion during the

model development.

Previous reports [18,19,24,31,32] have focused on the match of

models to voltage clamp data and current clamp data in control

conditions. In contrast, we required that the response to DC

current injections, as well as the transient behaviors when current

is introduced and when the cell is released from injections, are

matched by the model. The extent to which this requirement

restricts the model sufficiently to allow the prediction of, e.g., the

action of ion channel blockers, is not obvious and, therefore, part

of our investigation.

In preliminary studies we tested different types of data sets and

eventually selected a long, uninterrupted recording of the

membrane potential of an isolated LP cell in response to current

Figure 3. Dynamical properties of LP neurons from 6 lobster preparations. All properties are measured during 20 s constant DC current
injections IDC of different levels (x axes). A) Average ISI of spikes within bursts, B) intervals between the end of a burst to the beginning of the next
burst (inter-burst interval, IBI), C) Burst duration and D) burst frequency as measured from burst onset to burst onset. All properties exhibit a fair
amount of variability between preparations while the general trend of the dependence on current injection is better conserved. The intra-burst ISI
increases with IDC up to IDC = 0 nA, then decreases, the IBI decreases with increasing IDC, and the burst duration increases with increasing IDC. The burst
frequency does not show a very clear trend.
doi:10.1371/journal.pone.0002627.g003

Table 2. Correlation of dynamical properties with current injection.

Experiment Intraburst Interburst Burst Burst

Intervals (R, P) intervals (R, P) duration (R, P) frequency (R, P)

1 0.7522, 0.0076 20.9593, ,0.001 0.8484, 0.0078 0.9876, ,0.001

2 0.9397, ,0.001 20.9413, ,0.001 0.8375, 0.0095 20.7038, 0.0514

3 0.6102, 0.0462 20.9657, ,0.001 0.8041, 0.0161 0.7510, 0.0317

4 0.8572, ,0.001 20.9898, ,0.001 0.8193, 0.0128 0.9721, ,0.001

5 0.9572, ,0.001 20.9924, ,0.001 0.9228, 0.0011 20.7779, 0.0230

6 0.5450, 0.0829 20.8114, 0.0145 0.7781, 0.0230 20.3149, 0.4915

Pearson’s R correlation of the dynamical properties with the current injection level. The correlation of each of the variables in Figure 3 with the current injection level
was calculated (R) and is tabulated with the P value for testing the hypothesis of no correlation against the alternative that there is a non-zero correlation.
doi:10.1371/journal.pone.0002627.t002
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steps of 20 s duration and equidistant levels from 24 nA to +1 nA

in steps of 0.5 nA, which is a realistic physiological range for the LP

cell. LP cells typically become silent at stronger hyperpolarizations

and suffer depolarization block and potentially cell damage for

stronger depolarizations. The current steps were separated by 20 s

of autonomous behavior without current injection. The 20 s time

scale of steps was chosen based on the typically observed duration

of transient behavior of LP in response to current steps which were

on the order of 10 s.

In automatic parameter estimation (fitting) procedures the

quality of any given model, i.e., a given set of parameters, is

assessed by a so-called cost function. The choice of the appropriate

cost function is one of the major factors in determining the success

of the parameter estimation. For building our conductance based

model of the LP cell we developed a cost function consisting of

three main components (see the Methods): (i) The Euclidean

distance of normalized SDF waveforms, (ii) the absolute difference

of the integrals of the SDFs, and (iii) the Euclidean distance of the

moving average of the membrane potentials. The three compo-

nents were evaluated over 40 s time steps and then combined in a

weighted sum to an overall performance measure (cost function).

The weights were chosen by manual inspection such that the

normalized SDF contributed typically approximately 90%, the

integral of the SDF about 9% and the moving average of the

membrane potential about 1% to the overall cost. These

contributions reflect our initial hypothesis of which dynamical

properties may matter most for the correct function of the LP

neuron in the circuit: The pattern of bursting, measured by the

normalized SDF, is functionally most important. Only if this is

almost equally well reproduced by two models, we consider the

overall spike rate, i.e., the spiking frequency within bursts, as a

secondary criterion - hence the 10 fold less weight for the integral

of the SDF. If this is also equally well-reproduced (another 10 fold

reduction of weight) we would choose the model whose membrane

potential waveform, reflected by the moving average of the

membrane potential, is closer to the observed data.

During the parameter estimation procedure the model is

compared to the data simultaneously in 10 sliding windows of

40 s width. The composite cost function values from all windows

are summed before examination by the optimization algorithm

thus allowing trade-offs between improvement in some of the

windows and deterioration in others. As each time window

contains exactly 20 s of data with current injection and 20 s of

data in control conditions, these trade-offs correspond to trade-offs

between different current injection levels .

Due to the fact that the model was not compared to the full data

set during each annealing step, there is no measure of absolute cost

or performance. To assess whether suggested parameter changes

improved model performance we compared a model with

modified parameters to a model with the original parameter set,

but otherwise in the exact same conditions.

In each given step, parameters were randomly chosen to be

adjusted with probability pperturb. The size of suggested parameter

changes was adjusted according to the observed sensitivity of the

model to changes in the parameters at any given time and the total

range of parameter values was hard-limited to specific intervals

(see Methods).

In the final form of the algorithm we adjusted 20 parameters

(see Table 3, which also contains the final parameter values after

optimization).

The activity of isolated LP neurons is highly irregular in a wide

range of conditions. The main difficulty in using such irregular

(potentially chaotic) activity patterns for parameter estimation is the

problem of proper alignment, which is aggravated by the nature of

spikes in neuronal data. Our smoother cost function already partially

addresses this problem. In addition we built on earlier work on

similar problems [42–44] and introduced a simulated electrical

coupling between the data and the model, see also [45]. This

coupling term enforces a certain degree of synchronization of the

slow dynamics allowing for a more objective assessment of model

performance. During the parameter estimation procedure, the

coupling strength is then systematically reduced.

The evolution of parameter values during the fitting procedure

is illustrated in Figure 4. All parameters eventually converged to

stable values helped by the continuous gradual reduction of

annealing temperature and target lateral cost, which was

governing the parameter-change step sizes (see Methods). The

simultaneous stepwise reduction of the coupling strength between

data and model has the somewhat opposite effect of encouraging

more changes in parameters because reducing the coupling

strength induces appropriate compensatory parameter adjust-

ments. It is noteworthy that the cost function increased slightly in

the later stages of the procedure seemingly indicating that the

procedure did not converge properly. This is, however, again due

to the decreasing coupling strength which induces higher cost

function values that in turn are only partially compensated by the

subsequent parameter changes. The fitting procedure was

terminated when the coupling reached small values in physiolog-

ical terms and the parameters became stable.

By visual inspection, the final model exhibits dynamics very

similar to the dynamics of LP neurons (Fig, 1A, 2A compared to 5A).

For a realistic comparison to in vitro electrophysiological recordings

we added weak low-frequency noise to the LP neuron model (see

Methods for details) in all analyses except for the calculation of

Lyapunov exponents. Visible deviations from the LP data used for

developing the model seem well within the range of the observed

variability between different LP neurons (compare to Fig. 2).

Dynamical properties of the LP model
As shown in Figure 1, the direct membrane potential, the

histogram of ISIs, the power spectrum and the SDF return map of

the model are within the range of those observed in biological LPs.

Table 3. Parameter values that were adjusted during the parameter estimation procedure and their final values.

Conductances gCaT gCaS gKCa gA gh gleak,a gleak,s

11.23 mS 6.428 mS 149.7 mS 72.08 mS 1.142 mS 0.1004 mS 0.06211 mS

Other Ca CICa kCa Vshift gw Cs Iscale

11.48 nF 505 M/As 17.3 Hz 29.343 mV 0.4017 mS 5.439 nF 1.223

M current gM VmM smM kmM VkmM skmM

26.13 mS 226.99 mV 25.957 mV 0.1387 Hz 260.58 mV 213.26 mV

doi:10.1371/journal.pone.0002627.t003
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Note, however, the slight differences in the actual amplitude and

width of the spikes as seen in the soma compartment (compare

Fig. 1A). This effect is not unexpected because the membrane

potential does not directly enter the cost function in the parameter

estimation procedure. The relative similarity of the spiking-

bursting waveform of the membrane potential to the experimental

observations is on the contrary, rather surprising considering this

lack of constraint by the cost function.

Encouraged by the positive outcome of the basic dynamical

profile of the model we then turned to our question of specific

trends in the properties of neuron dynamics. Figure 6 compares

the dynamical properties of the fitted model to the properties

observed in the LP neuron whose data was used in the fit. All

trends are reproduced and the burst duration and -frequency are

even quantitatively close to those of the biological neuron.

A more rigorous test of the fitting are the ISI return maps of the

biological LP and the model LP at three different current injection

levels, shown in Figure 7. The figure shows the dependence of

each ISI on its preceding spike and the map’s structure is

indicative of the underlying bursting-spiking dynamics. During

tonic spiking the shape of the map is a triangular cloud (Fig. 7A)

that turns into a V-shape structure in the bursting regime at larger

hyperpolarizations. This V-shape map indicates that a portion of

short ISIs are followed by longer ISIs and vice versa [46]. The

reproduction of correct ISI return maps was not required from the

model and only examined after the model was completely

developed. Apparently, the fitting procedure in combination with

the constraints posed by the overall structure of a conductance-

based model with experiment based current kinetics were sufficient

to enforce this neuron ‘‘signature’’ [46].

We have reproduced the general dynamical properties and the

characteristic changes of dynamical properties in response to

current injections in our model. We can now address our original

questions of how sensitive the model, and, therefore, presumably

the neurons, are to changes in their parameters. For clarity, we will

focus the following discussion on maximal conductances of ionic

currents even though the analysis was performed for all 69

parameters listed in Tables 3 and 4.

Sensitivity in terms of the cost function
Our first test of sensitivity was to determine the effect of

parameter changes on the model dynamics quantified in terms of

our cost function. We changed the parameters of the model one at

a time and, using our cost function, compared the model output

with the changed parameter to the original model, over 10 s time

windows. The parameters were changed on a logarithmic scale to

ensure fine initial stepping and, at the same time, sufficient

coverage of potentially very large parameter ranges. Each trial was

terminated if either the cost function (same as in the fitting

procedure; see Methods) exceeded 100 or the parameter was

changed 10-fold (multiplicative parameters) or by 650 mV

(additive voltage parameters).

Figure 4. Evolution of 10 of the 20 estimated parameters (see text) during the fitting procedure. Parameters tend to converge to a final value
aided by a slow decrease of the size of explored parameter changes over the extent of the whole fitting procedure. The two bottom right panels show the
composite cost function after each accepted parameter change (second to last panel) and the strength of the simulated electrical coupling (last panel, see
Methods). The strong oscillations in the cost function are due to the model being compared to a different partial data set at each step of the parameter
estimation procedure. The increase of the cost function in the late stages of the procedure are due to reductions in coupling strength which can only be
partially compensated by the subsequent compensatory parameter changes and does not indicate a lack in convergence. In a sense, the stronger
coupling earlier in the procedure feigns error function values that are lower than what can actually be achieved at lower coupling. The data displayed
encompasses 4?105 simulated seconds and was produced in approximately 100 CPU days on an AMD Athlon 2200+ based platform.
doi:10.1371/journal.pone.0002627.g004
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For sufficiently small steps, the cost function grows approxi-

mately linearly with the size of the parameter change. We,

therefore, fitted the cost as a linear function of the parameter

change in % (multiplicative parameters), or mV (additive voltage

parameters). We added points to the fit incrementally until the

standard error of the linear regression reached a maximum of 0.1.

The resulting parameter sensitivities of the model expressed in

terms of the slope of the linear regression are shown in Figure 8A for

5 different hyperpolarization levels of the model neuron. As

expected, different parameters can have very different effects. For

instance, the parameter gCaS has very little influence on the measured

output (order of magnitude lower than the next more important one)

Figure 5. Predictions of the model for blocking selected currents. A) Model membrane potential time series in control conditions. B) With the
sodium conductance blocked, the membrane potential of the model continues to oscillate in ‘spike-less bursts’ in analogy with earlier observations in
the pyloric system [49] C) When the A current is blocked (gA = 0) the model continues almost normal activity with slight changes in the burst
frequencies and the locus of transition from bursting to spiking.
doi:10.1371/journal.pone.0002627.g005

Figure 6. Intraburst ISI (A), inter-burst intervals (B), burst durations (C) and bursting frequency (D) of the fitted LP (blue), the model
(red) and the average of all measured LP neurons (black) in comparison. The error bars mark the standard error. The model and the
experiment correspond very well with the exception of slightly less fast spiking within bursts in the model. For most current injections the model
properties also fall well within the range of data observed in the different experiments.
doi:10.1371/journal.pone.0002627.g006
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while the three most influential parameters are gM (spike rate

adaptation in the axon compartment), gVV (coupling between

compartments) and gCaT (transient calcium current). Not surprisingly,

these parameters all play an important role in shaping the bursting

dynamics, the two former regulating the influence of spikes on the

burst termination, and the latter shaping the overall slow dynamics of

the soma compartment that seems to be responsible for bursting (see

Fig. 5B and the discussion relating to this below). There also are quite

large differences of the effects of changing individual parameters at

different DC current levels. Generally, the sensitivity to parameter

changes is small for high depolarization and hyperpolarization levels,

while it is large at intermediate levels of current injection. An

exception to this rule are the leak conductance of the axon gleak,a and

the sodium conductance gNa which have a flatter sensitivity profile

with respect to current injections.

One may argue that the large cost function for some of the

parameters and the corresponding large sensitivity to these

parameters may be due to changes in timing and ensuing

alignment problems as we discussed for the fitting procedure

above. To address this problem we repeated the analysis with a

simulated one-directional electrical coupling (gcoupl = 100 nS, from

the fixed model to the model with changed parameter), similar to

the procedure of the model fitting. If the difference between the

models is not too big, the coupling aligns the two models’ slow

bursting dynamics. This mechanism ensures that models that are

very similar are not costed as being extremely dis-similar just

because their bursts do not align. The corresponding sensitivity

results are shown in Figure 8B. Comparing the uncoupled and

coupled results, we notice that introducing the coupling not

surprisingly reduced the overall sensitivity: the maximal sensitivity

Figure 7. Return maps of ISIs in the biological LP and the model LP at three levels of current injection (indicated on the left of the
panels). The characteristic V-shape structure of the LP neuron [46] is well reproduced.
doi:10.1371/journal.pone.0002627.g007
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was 4213 per percentage change (4213/%) without coupling and

745/% with coupling (for gM in both cases); the minimal sensitivity

was 2.949?1024/% without and 1.712?1024/% with coupling (for

gCaS). Also, the sensitivity became more consistent across

depolarization and hyperpolarization levels such that sorting by

increasing parameter sensitivity at a current injection level of 0 nA

causes all other levels to be almost perfectly ordered as well (this

same order was used in both panels of Figure 8). Both changes

indicate that some of the observed large sensitivity in the

uncoupled case was indeed due to high cost functions induced

by mis-alignment of the slow dynamics of the perturbed and

unperturbed models. From an electrophysiological point of view

the results obtained with the coupling are, therefore, probably

more relevant and realistic.

Tolerance level in terms of the cost function
A different way of looking at the sensitivity to parameter changes is

to look for the maximal interval around the ‘‘right’’ parameter value

for which the cost function does not exceed a predefined threshold

value. For our analysis we selected the approximate final average

cost value of the fit to the data as a threshold, which was 70. The

results are shown in Figure 9 for three different DC current

injections, 22 nA (A), 0 nA (B), and +2 nA (C). Overall, the tolerance

intervals for individual parameters vary considerably from [20.1%,

0.8%] for gM at 0 nA current injection to no detectable restriction

(tested up to 1/10 and 10 times original value) for gCaS in all

conditions. The conductances are ordered according to the width of

their tolerance interval at 0 nA current injection in ascending order

from the left to the right. As in the sensitivity analysis above, gM, gCaT,

and gVV are the most important parameters, i.e., need to be

controlled most tightly, and gCaS is the least important.

The parameter gVV of coupling between compartments describes

the interaction of currents by passive electrical conductance along

the neuropil. The observed high importance of this parameter in

the model indicates that the fact that the currents are not all co-

located in one electrical compartment - an experimental fact

indicated by the strongly attenuated spikes - is relevant for the

neuronal dynamics.

Contrary to common intuition, we find the Ca induced

potassium current, gKCa, and the A current, gA, in the range of

low sensitivity as well. We have to keep in mind that the measure

of sensitivity employed so far is determined by the choice of the

cost function. We will see below that the apparent low importance

of gKCa and gA will change if we consider the above-mentioned

more robust trends in the LP neuron dynamics.

Sensitivity in terms of general dynamical trends
As we described above, the LP neuron dynamics are variable

across different animals while preserving some general statistical

properties or more precisely, trends in such properties. In

particular, the trend of how intra-burst ISIs, inter-burst intervals,

burst duration, and, to lesser extent, burst frequency change as a

function of DC current injection seems conserved across all

analyzed LP neurons. One possibility may, therefore, be that this

trend is what needs to be tightly controlled rather than the specific

dynamics, a requirement that led to the very high sensitivities to

some parameter changes in the previous section. To follow this

idea, we systematically generated LP neuron model data for DC

current injections from 24 to 20.5 nA in steps of 0.5 nA and with

the usual, weak low-frequency noise. This data was obtained for

the original model and for models in which one parameter at a

time was changed in increasing steps (see Methods for details). For

each parameter value we performed a linear regression for the 4

characteristics as a function of the hyperpolarization level. We

continued changing a given parameter until one of the following

conditions was fulfilled: (i) The characteristic trend had changed

sign, (ii) the linear regression had an error greater than the

absolute value of the parameter, or (iii) the hard upper or lower

limit for the parameter value (10 fold change and 1/10 of the

original value, respectively) was reached.

Table 4. Parameters that were not subject to fitting during the main parameter estimation procedure.

ICaT VmCaT smCaT VhCaT ShCaT kmCaT khCaT VkhCaT skhCaT

15 mV 29.8 mV 240 mV 3.2 mV 45 Hz 20 Hz 215 mV 210 mV

ICaS VmCaS smCaS kmCaS

29.13 mV 24.431 mV 60.86 Hz

IKCa cmKCa VmKCa1 smKCa1 VmKCa2 smKCa2 chKCa1 chKCa2 kmKCa

2.5 mM 0 mV 223 mV 216 mV 25 mV 0.7 mM 0.6 mM 600 Hz

khKCa f

35 Hz 0.6 mV/mM

IA VmA smA VhA shA kmA khA1 khA2 Vkha2

212 mV 226 mV 262 mV 6 mV 140 Hz 50 Hz 3.6 Hz 240 mV

skhA2 VaA saA

212 mV 7 mV 215 mV

Ih Vmh smh Vkmh skmh kmh

270 mV 8 mV 2110 mV 221.6 mV 0.33 Hz

Vx VNa VKd VKCa VA Vh VM Vleak

50 mV 272 mV 272 mV 272 mV 220 mV 280 mV 250 mV

other RT/F gNa gKd PCa [Ca]out [Ca]0

11.49 mV 715 mS 143 mS 1.56 1/mM 15120 mM 0.02 mM

The values for the parameters that were not subject to fitting in the main procedure were taken from the literature or from separate fits to voltage clamp data taken
from the literature, see Methods.
doi:10.1371/journal.pone.0002627.t004
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Figure 10 illustrates our findings. Panel A shows the intervals for

each conductance parameter, in which the original trend of the

intra-burst ISIs remained unchanged. They can be interpreted as

the allowed variability in parameter space in the direction of each

particular parameter for which this LP neuron characteristic is

conserved. Panel B and C illustrate the underlying data. In each

sub-panel the intra-burst ISI is plotted versus the DC current

injection for models with the marked percentage change in the

value of the gCaT conductance. For example, the first panel in B is

for a model with gCaT augmented by 0.1% and the last panel in B is

a model with gCaT augmented by 323.97%. The non-integer

numbers are due to the logarithmically increasing step size used

(see Methods). One can clearly see that the dependence of the

intra-burst ISI on the current injection IDC is initially a linear

increase which gets flatter the larger gCaT becomes and eventually

‘‘flips over’’ at +130.77% (arrow). Similarly, decreasing gCaT leads

to changes in the dependence and eventually a flip at

246.15%(arrow). These limit values of the tolerance are used to

create the bar in Figure 10A. The same analysis was carried out

for all other maximal conductances resulting in the remaining

tolerance bars shown in Figure 10A.

A corresponding analysis was used for the inter-burst intervals

(Fig. 11A), burst duration (Fig. 11B), and burst frequency

(Fig. 11C). Overall, the burst duration and, presumably as a

consequence, the burst frequency are the most fragile among the

four investigated properties, indicated by smaller tolerance bars for

some of the parameters. Unlike the above results using the cost

function, the restrictions on gKCa and gA are of a similar order of

magnitude as those on the other parameters here. This is signaling

that the influence of gKCa and gA on the model dynamics is

comparable in importance to the influence of other parameters.

The conductances are ordered according to their allowed range

with respect to the intra-burst ISI results in Figure 10. Clearly, with

the exception of gKCa and gVV for burst frequency and burst duration,

and gh for burst frequency, the overall order from the most restricted

to the least restricted parameters is the same for the four analyzed

properties. From the exceptions we conclude that the coupling

between compartments gVV plays an important role for regulating the

burst frequency and burst duration, presumably indirectly affecting

the former by changing the latter. Similarly gKCa is more important

for burst frequency and burst duration than for the IBI and intra-

burst ISI, which confirms its role in burst termination and thus burst

duration. It is somewhat surprising that the influence of gh on the

burst frequency is stronger than average but its influence on the IBI

and on the burst duration is weaker than average, even though these

three properties are strongly inter-dependent. This deserves further

investigation in future work.

In summary, the analysis of robustness intervals has revealed that

the model is overall much more robust when only the preservation of

trends of parameters is required. The possible ranges of parameter

values lie between 617% in the most restrictive cases to virtually

unlimited (tested up to 1/10 and 10 times the original value) changes

in the least restricted ones. The smaller robustness to changes in gCaT,

gM for all properties and gKCa and gVV for both burst duration and

frequency, as well as, gh for burst frequency alone, indicates that these

parameters are the most important for the bursting dynamics of the

LP neuron. Parameters like the slow Ca conductance gCaS and the

leak conductance of the axon gleak,a do not seem to matter for these

aspects of the neuron dynamics at all.

Implications of parameter variability for the estimation
procedure

Optimally, there exists a ‘true’ set of parameters, i.e., a set of

parameters that reflects the biological reality. This set would

correspond to a global minimum of 0 cost and would eventually be

found by the estimation procedure. Subsequent repeats of

parameter estimation with initial parameter sets close to the ‘true’

set would then lead to the same 0 cost solution. The situation is,

however, typically more complicated with many local minima of

the cost function. These minima can be well defined (steep) or

rather variable with respect to some parameters (shallow). If there

is a structural model-misspecification there may not even be a

unique global minimum and if it exists it may be far from 0. To

assess the situation for our LP model and parameter estimation

method we conducted a set of numerical experiments in which a

slightly changed parameter set was readjusted using the parameter

Figure 8. Sensitivity of the model to changes in conductance parameters in terms of the composite cost function. The bars (z axis)
mark the rate of increase in the ‘‘lateral cost function’’ between the original model and a model with an incrementally changed parameter (x axis) at
various levels of hyperpolarization (y axis). A) cost function increase rate for two uncoupled models measured over 10 s. B) cost function increase rate
between models that were coupled with a one-directional ohmic coupling of 100 nS (analogous to the situation during fitting to experimental data).
The conductances were ordered such that the IDC = 0 nA row in B) is in increasing order. For each parameter, the sensitivity to parameter changes is
larger for intermediate IDC values and lower for strong de- or hyperpolarization. Note the logarithmic scale on the z axis implicating that the changes
in sensitivity are quite drastic. Observed sensitivity ranged from 2.949?1024/% to 4213/% in (A) and 1.712?1024/% to 745/% in (B). The coupling not
only considerably reduces the apparent sensitivity, but also makes the measurement more consistent across current injection levels: Unlike in (A) the
order of sensitivities in (B) remains almost the same for the different current injection levels IDC.
doi:10.1371/journal.pone.0002627.g008
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estimation procedure. We started by changing one parameter, the

transient Ca conductance gCaT, and fitted the model again to the

original experimental data. In three trials we adjusted one, two or

three of the parameters of the model simultaneously.

The results of these refits are shown in Figure 12A. The

maximal conductance of the transient calcium current gCaT was

changed by 30% upwards or downwards and the model was fitted

again to the experimental data allowing changes in gCaT only (I), in

gCaT and gA, (II) and in gCaT, gA and gKCa, (III).

Instead of refitting to the experimental data, the model can

alternatively be fitted to its own control output without change in

gCaT (Fig. 12B). While fitting back to the experimental data is closer

Figure 9. Tolerance regions for parameters based on the comparison of the model to itself using the composite cost function. Each
bar marks the range of parameter change for which the ‘‘lateral cost function’’ between a perturbed and an unchanged model did not exceed 70, a
typical value of cost between model and data at the end of the fitting procedure. Parameters were tested up to a 10 fold increase and 10 fold
decrease. The parameters are ordered in increasing tolerance for IDC = 0 nA (B). Tolerances for some parameters are clearly increased for IDC = 22 nA
(A) and IDC = 2 nA (C). Overall tolerance ranged from about 0.1% (e.g., gCaT) change to 900% change (gCaS). Most parameters are well-constrained with
allowed tolerances of a few percent.
doi:10.1371/journal.pone.0002627.g009
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to the biological reality, using the model’s own output has the

advantage of revealing more about the sensitivity of the model to

parameter changes per se. In the case of fitting to the model there is

an objectively ‘‘correct’’ solution (the original model) for the

estimation procedure. Therefore, it is not necessary to consider

trade-offs between different aspects of the cost function that may

create many different local minima. The panels in Figure 12B

correspond to the panels in A. Like in A, all experiments show a

return of the perturbed gCaT towards its original value.

Not surprisingly, the refit arrives in both cases (A and B) closest

to the original parameter value if only the one parameter that was

changed is adjusted ((I) in A and B). As more parameters are

adjusted concurrently, the solution becomes less unique and a

different parameter set (with almost equal cost) is obtained. Note

that the cost function is so sensitive that it does not converge to 0

even though the resulting parameter in Figure 12B (I) is equal to

the original value for all practical purposes. However, when 3

parameters are adjusted some variation appears in the other

parameters while the cost function returns to its original low value

((III) in A and B). This indicates that there is a fairly wide

parameter region of viable model solutions with similar perfor-

mance. The variability in gA appears somewhat larger than in gKCa

which corresponds to the observation of a greater sensitivity of the

model to changes in gKCa observed directly. It is noteworthy,

however, that the upward and downward changes in gCaT trigger

the same direction of compensatory changes in the other

Figure 10. Model tolerance against parameter changes with respect to general trends in intra-burst ISI as a function of the current
injection IDC. (A) The bars show parameter ranges in which the trend of intra-burst ISI as a function of the current injection IDC is preserved. (B)
Examples for increases of the gCaT parameter. Each small panel shows the intra-burst ISI as a function of IDC for a given change of gCaT (in % of the
control value) as noted within the panels. The trend of the intra-burst ISI remains monotonically increasing until a +130.77% change in gCaT (arrow).
(C) Examples for decreases of gCaT. Here the trend changes for a 46.15% decrease of gCaT. The size of the bars in (A) was determined by the % change
in each parameter for which the trend changed (like in examples B and C; marked with an asterisk), for which the trend is lost (the linear regression
used to detect a trend has a large error; marked with an ‘x’), or for which the maximal change of an approximately 10 fold increase or decrease is
reached (no mark). The lower bound on gNa marked by the bullet was defined by the complete cessation of spiking altogether. The large tolerance
intervals found demonstrate that most parameters do not change or destroy the intra-burst ISI trend. The model is remarkably robust with respect to
this general property.
doi:10.1371/journal.pone.0002627.g010
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conductances in both fits to the data and to the model’s own

output (compare the blue, cyan, magenta, and green curves in the

upper panels of column (III) in A and B) . The results are

consistent with the sensitivity analysis insofar that the sensitivity to

changes in gA and gKCa are on the low end of the spectrum and of a

very similar order of magnitude and, therefore, the constraints on

the values of gA and gKCa are similar and less stringent than for gCaT.

Chaoticity
It has been reported previously that the membrane potential

dynamics of the LP neuron of the lobster have a wide irregular,

potentially chaotic, regime [20,39]. Proving chaoticity by directly

analysing experimental data has its limitations, however. Using

our model, that has qualitatively the same dynamical character-

istics as the biological system, we can bypass the technical

problems of estimating Lyapunov exponents from a limited set of

noisy experimental data. To test whether our model has one or

more chaotic region(s) and how wide it (they) is (are), we calculated

the spectrum of global Lyapunov exponents of the model at

different hyperpolarization levels. We used a renormalization

based method employing the analytical Jacobian of the model

equation to calculate the exponents (see Methods for details).

Figure 13A shows the 4 largest Lyapunov exponents as a function

of the somatic DC current injection IDC. For IDC,21.2 nA the

largest Lyapunov exponent is 0 indicating that there is no chaotic

dynamics present. For IDC between 21.2 nA and 1.1 nA the

maximal Lyapunov exponent is positive - an indication of chaotic

dynamics. Notably, there seem to be two regions of chaos which

Figure 11. Model tolerance intervals for preserved inter-burst interval trend (A), Burst frequency trend (B), and burst duration
trend (C). Burst duration and burst frequency are somewhat more delicate which is reflected in smaller tolerance intervals. Overall the tolerances to
parameter changes are, however, remarkably large ranging from a 617% change (gVV in B) to 290% and +900% change for many parameters and
preserved property trends. (Parameters were sorted in Figures 10 and 11, such that the tolerances are increasing in Figure 10). The marks (‘x’, ‘*’ and
bullet) indicate the criterion for the boundary of the tolerance bar as in Figure 10.
doi:10.1371/journal.pone.0002627.g011
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Figure 12. Refitting the model after a 30% change in the gCaT conductance. A) The model was fitted to the data, after the transient calcium
conductance gCaT was increased (red) or decreased (black) by 30%. I) Top panel, the evolution of gCaT and bottom panel the cost function during this
re-fitting exercise. During the fit, only gCaT was allowed to change. II) Same as (I) but gA was released for fitting (magenta and cyan for up and down
change of gA respectively). III) In addition to gCaT and gA, gKCa was allowed to be fitted (blue and green). B) Parameter and cost function evolution as in
(A), while the model was fitted to its own output data. The colors and the panel arrangement are the same as in (A).
doi:10.1371/journal.pone.0002627.g012

Dynamics of Identified Neurons

PLoS ONE | www.plosone.org 15 July 2008 | Volume 3 | Issue 7 | e2627



we may identify as chaotic bursting (IDCM[21.2,20.2]nA and

chaotic spiking (IDCM[0.2,1.1]nA), divided by a narrow window of

apparently non-chaotic behavior around 0 nA.

Following our interest in how generic this observation is with

respect to changes in parameters we analyzed the changes in the

Lyapunov spectrum at two characteristic IDC levels, IDC = 20.5 nA

Figure 13. A) The 4 largest Lyapunov exponents of the LP neuron model as functions of the current injection IDC. The largest exponent
is 0 outside the interval [21.2,1.2]nA and in a small region around 0 nA. The positive maximal Lyapunov exponent in the two intervals in between
indicates two wide regions of chaoticity. From inspecting the raw data we can identify the dynamics in the two regions to be chaotic bursting for
IDCM[21.2,20.2]nA and chaotic spiking for IDCM[0.2,1.1]nA. The larger, black symbols are the published exponents that were calculated directly from a
long recording of an isolated LP neuron at IDC = 0 [20]. B) Persistence of chaoticity or non-chaoticity for changes in conductance parameters. The
upper row shows the 4 largest Lyapunov exponents as a function of the percentual parameter change in gCaT (left), gCaS (middle), and gleak,s (right) at
IDC = 20.5 nA. The largest Lyapunov exponent is positive for an overwhelming number of parameters indicating that chaoticity typically persists at
IDC = 20.5 nA even if parameters are changed. However, there are some exceptional parameter values (black arrowheads) for which the largest
Lyapunov exponent is not unambiguously greater than 0 indicating that the corresponding models are non-chaotic. In the non-chaotic region of
IDC = 23 nA the largest Lyapunov exponent is 0 for most parameter values and the models are thus non-chaotic. Again, there are some exceptions of
isolated parameter values with different model behavior (grey arrowheads).
doi:10.1371/journal.pone.0002627.g013
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(well in the chaotic bursting regime with one positive Lyapunov

exponent) and IDC = 23 nA (in the regular bursting regime where

all non-trivial Lyapunov exponents are negative). Some illustrative

examples (for parameters gCaT, gCaS, and gleak,s) are shown in

Figure 13B. The chaoticity is a typical property of the neuron

models at IDC = 20.5 nA as only few parameter values lead to all-

negative Lyapunov exponents (black arrowheads mark candi-

dates). Similarly, non-chaotic dynamics is typical for IDC = 23 nA

with only a few examples of positive Lyapunov exponents (grey

arrowheads). The situation is similar for all the other conductances

(data not shown).

To quantify this observation we classified the models arising

from different parameter sets into 3 categories: a) clearly chaotic

(the first Lyapunov exponent is positive and at least 5 times larger

in amplitude than the Lyapunov exponent closest to 0) b) probably

chaotic (the first Lyapunov exponent is positive and at least 2 times

larger in amplitude than the Lyapunov exponent closest to 0 but

not 5 times larger), c) (probably) non-chaotic (all other cases). For

all 11 conductance parameters tested on a range from 220% to

+20% parameter change, we observe at IDC = 20.5 nA: 89.1%

clearly chaotic, 4.3% probably chaotic, and 6.4% non-chaotic

models. At IDC = 23 nA we observed in contrast: 4.1% clearly

chaotic, 9.1% probably chaotic, and 86.8% non-chaotic models.

While ‘‘counting results’’ of this type have to be taken with a grain

of salt (see [47] for an in-depth discussion), we would like to argue

that this result indicates that at IDC = 20.5 nA chaoticity is a

typical trait of the models which are close to our model in

parameter space. By the same token, models similar to ours are

typically non-chaotic at IDC = 23 nA.

When comparing the different parameters, we again notice that

the value of gCaT has a much larger impact on the dynamics than

the value of the slow Ca conductance gCaS which seems to have no

impact on the chaoticity of the neuron model at all (Fig. 13B left

and middle). This is consistent with the ultra-low sensitivity of the

model to the value of gCaS with respect to the cost function and the

measurement of general trends.

When comparing the range of 620% change in parameters to

our sensitivity results above we notice that changes of this

magnitude are mid-way between the high sensitivity with respect

to the cost function and the low sensitivity for the general trends.

This matches the observation that only few models differ with

respect to chaoticity within this range while the overall majority of

models are consistent.

It is noteworthy that the parameters that led to non-chaotic

behavior at IDC = 20.5 nA as well as the parameters leading to

chaos at IDC = 23 nA do not seem to cluster but are interspersed

with parameter sets that generate the ‘typical behavior’. This

indicates that the parameter region of models with a given

property (like chaoticity) is highly complex. There always seem to

be close-by parameters that lead to a different model, confirming

similar observations in a recent related work [48].

Model predictions
Models can allow predicting future experimental results and the

design of new experiments and thus provide insights that are

otherwise impossible. In the case of our conductance based model

of an identified cell, the structural similarity of the model to the

biological system in how ionic currents combine to generate a

membrane potential waveform should allow us to predict the

effects of manipulations of individual conductances.

A well-known phenomenon in the pyloric circuit is, that slow

oscillations of neurons persist even when action potential

generation is completely blocked with TTX [49]. To simulate

the action of TTX we set the maximal conductance gNa of our

model neuron to 0 and tested the usual range of DC steps (Fig. 5B).

We observed dynamics that were similar to the observation in the

biological preparation (cf. [49], Fig. 1D), even though the latter

was obtained in the intact circuit. In particular, the slow waveform

of the regular and irregular bursting patterns with additional small

oscillations within long bursts remains intact independently of the

blockage of spiking. This is a clear indication that irregularities of

the burst duration do not depend on an interaction between spike

generation currents and slower burst generating currents.

In a similar way, we can block any of the currents in the model.

An attractive candidate, due the availability of relatively specific

drugs, is the IA current. In Figure 5C, the maximal conductance gA

of this current is set to 0. Unlike in the previous ‘‘numerical

experiment’’ of blocking INa, blocking IA has less disruptive effects

on the neuron dynamics. With the naked eye the overall activity

patterns appear almost unchanged with tendency to slightly less

irregularities in bursts. When analyzed with the statistical measures

(Fig. 14) we see clear trends of smaller intra-burst ISIs, smaller IBIs

and smaller burst durations when IA is blocked. The two latter

effects result in a higher burst frequency. Interestingly, while the

trends of the first three quantities remain similar to the original

model, the burst frequency changes its trend and increases with

less depolarization for gA = 0 while it decreases in control

conditions. In recent work the effect of blocking IA with 4-

aminopyridine (4 AP) in the intact circuit was investigated [10].

While direct comparisons of circuit results and results for an

isolated cell are difficult, we do note that in both cases the burst

frequency of the LP neuron increases. For the burst shape measure

B as defined in [10], results are less clear. Its change in the

experiments was not significant and its change in the model is of

similar magnitude but in a different direction (at IDC = 25 nA we

observed B = 0.439 in control and B = 0.264 with gA = 0). Overall

these predictions seem to be consistent with existing experimental

knowledge. A more definitive answer will need a more careful

study of the action of ion channel blockers in isolated LP neurons.

Discussion

With the progress in our understanding of neuronal systems and

the development of new and more quantitative experiments it is

becoming possible to ask not only whether variability in

electrophysiological properties of neurons exists, but also how

large it is and what it means for neuronal function. The most

direct methods for studying this question involve massive

experimentation with large numbers of animals. The use of

computer modeling may be a way to aid experiments and augment

the obtained results. Here we used an approach for automated

parameter estimation in data driven models and investigated the

variability of neuron properties and underlying parameters with

the resulting models.

Clearly, a prerequisite for such an effort is the existence of

accurate models that replicate the behavior of neurons adequately.

Even though phenomenological, in a strict sense, conductance

based neuron models are structurally close enough to the actual

neuron membrane processes to raise the expectation that they may

provide such models and allow predictions beyond a mere

mimicry of the observed membrane potential dynamics. Never-

theless, contrary to the first impression of a rather mature field

given the large number of available conductance based models of

various cells, the computational neuroscience at this level - the

description of typical activity patterns of identified cells and the

prediction of activity changes in response to perturbations - seems

to still be in its early stages. For instance, one may reasonably

expect that a well-tuned and accurate conductance based model
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would predict the changes in neuron activity if one of the ionic

currents was blocked. Many existing models, however, seem to

struggle to perform such a task. Even though a few models have

been more successful [50–54] these often are either extremely

detailed [52–55], or the result of a decade long production of

models involving several generations of researchers and their

hand-tuning efforts [50,51]. Both seem impractical for future data-

driven models in computational neuroscience. Using data fitting or

automatic parameters estimation techniques for building data-

driven models of elements of the nervous system, in particular

neurons, is becoming more and more popular [45,56–62]. The

specific requirements of these efforts differ quite substantially,

however, and many challenging technical problems remain. In

particular, if the experimental knowledge about morphology and

channel kinetics exists only partially, there still seems to be no

simple standard procedure to build a predictive H-H model to a

given set of observations. The main open problems of automated

parameter estimation for HH models lie in three areas - what data

to use (data set), how to measure the similarity of model output

and observed neuron activity (cost function), and what algorithm

to use for optimization (algorithm). In making these difficult

choices it may be very important to take into account the function

of the neuron under consideration. Our results suggest that in

some cases, like for the isolated LP neurons considered here, the

properties that define an identified cell or a certain class of neurons

can be less obvious than the spike shape, burst shape, absolute

spiking or bursting frequencies. Some of the most salient properties

of the observed neuron dynamics may be the characteristic

changes of a property in response to certain types of stimulations

(bifurcations) rather than their values during any given stationary

activity (the attractor(s)). In the study presented here, the most

salient property was the characteristic transition from bursting to

spiking depending on hyperpolarization and the ensuing typical

change in burst duration and inter-burst interval. In other neurons

it may be certain response characteristics to PSPs and other

response properties. Our choices for the particular method

employed here were informed by the direct comparative analysis

of data from isolated LP neurons as well as the existing literature

on the lobster STG. We observed that characteristic trends of

change in neuron properties in response to different levels of de-

and hyperpolarization appear to be more consistent then absolute

values for those properties. This is an interesting observation in its

own right and after some thought seems very plausible. After all,

LP neurons have to function within a network in which they

constantly receive (dominantly inhibitory and slowly modulating)

input. A consistent response to such inputs may be much more

relevant than consistent dynamics in isolation.

For our model building procedure this insight prompted us to

use a data set containing a wide range of dynamics at different

levels of current injection. This also seemed appropriate from a

dynamical systems point of view because it is a priori not clear how

much the dynamics in one region of state space and under one

stimulus condition can reveal about other regions and for other

stimuli. This is particularly true if two conditions are separated by

Figure 14. Predictions for the effect of selectively blocking the A current – IA (red lines) compared to the control condition (black
lines). The expectation is for unchanged trends in the intra-burst ISIs, the IBIs, and the burst duration (A–C) whereas the burst frequency is expected
to change in the hyperpolarized regime from decreasing with less hyperpolarization to increasing (D). In absolute values we would anticipate
reductions in intra-burst ISIs, the IBIs, and the burst duration (A–C) and an increase in burst frequency (D). In light of our observations of consistency
of neuron properties in biological LP neurons we would expect more predictive value for the prediction on the trends than for the prediction on
absolute values.
doi:10.1371/journal.pone.0002627.g014
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a bifurcation in the system’s dynamics. For the model of the LP

neuron developed here, using a wide range of data and an

appropriate cost function led to a faithful reproduction of the

observed trends in neuron properties without the necessity of

explicitly referring to these properties during the model develop-

ment.

Our choice for the cost function was driven by the common

consensus that the neurons in the STG mainly communicate based

on bursts of spikes even though there have been suggestions for a

more fine-grained picture where the timing of spikes within bursts

becomes relevant [63]. In support of our choice we observed that

the spiking patterns within bursts are reasonably controlled in spite

of the more coarse-grained cost function.

The third choice, the optimization algorithm, seems less

important than one might naively expect. Comparative studies

have shown that both simulated annealing and genetic algorithms

typically perform well. Our choice of simulated annealing over

genetic algorithms was inspired by ideas for potential online fitting

procedures.

With the choices made, our automatic parameter estimation

procedure for a model of the LP neuron of the lobster, resulted in

a successful model with some predictive power. At the same time

there still remains some room for improvement. Nevertheless, we

have collected more evidence that automatic parameter estimation

does hold the promise of moving the focus from conceptual models

to experiment-based, and therefore more powerful, data-driven

models in the future.

The analysis of the experimental data and the model revealed

additional insights into the variability of LP neurons. By inspection

of the data at many different levels of current injections we

observed that the variability across neurons in a given condition

(current injection) may merely reflect a shift of the dynamical

patterns of activity across conditions (current injections). An

example of this effect is the wide variability found between the

individual LP neurons at IDC = 0 nA current injection. Activity

patterns at 0 nA injection in one neuron are often more similar to

patterns at 20.5 nA in other neurons than at the corresponding

0 nA injection level. This ‘‘shift effect’’ could be explained by

different leak currents due to additional leaks caused by the

electrode insertion into the neuron membrane. A similar effect has

previously been observed in the leech heartbeat network. In this

case, the HN3,4 neurons were thought to be non-bursting when

recorded intra-cellularly [64]. However, when recorded extra-

cellularly, i.e., without any damage to the membrane, they turned

out to be bursting cells [65]. Translated to the case at hand this

may signify that the LP neurons may actually be much more

similar than it would appear from intra-cellular recordings of the

control behavior. The protocol of several different current

injections used here helps detect such an observation bias because

it allows the detection of trends rather than individual points.

Adding to a number of previous studies [5,23,66–68] we tried to

link the observed variability in dynamics to the properties of the

neurons (parameters of the neuron model) and observed that the

notion of parameter sensitivity depended strongly on the criteria

for ‘‘essentially equivalent model dynamics’’ (see also the

discussion in [4,47]). Clearly, if the dynamics are to be exactly

reproduced in terms of the components of the cost function

(normalized SDF, total SDF, and moving average of the

membrane potential) the restrictions on parameters are more

stringent than if only the reproduction of a trend in a dynamical

property (intra-burst ISI, IBI, burst duration, or burst frequency) is

required. The result of our analysis lies in the extent of this

difference. In the former case, some parameters are restricted to a

minute range of down to 60.1% whereas in the latter case a

615% change did not seem to matter for any of the parameters

and many parameters could be changed ten-fold or more without

an effect. While surprising at first, these extremely wide ranges of

meaningful parameter values match recent observations in

biological systems in general [69,70].

In this work we only analyzed the sensitivity of the model to

changes of one single parameter at a time. There are now indications

that some currents may be coregulated [71,72]. Coregulation raises

the possibility that changing one current at a time may seem to have

catastrophic effects while, at the same time, adequately compensated

changes of multiple current may have well-defined (and desired)

effects. Without an extensive investigation we can also not exclude

that the opposite is true and the observed co-regulation is designed to

enhance the effect of changes in the currents. However, theoretical

examination of the parameter space using models may be a powerful

tool in finding the control parameters used to regulate neurons. For

example [33] found combinations of parameters that when regulated

preserve the activity of a model neuron and its characteristic

dynamical profile.

As another example for indirect neuron analysis using our

model, we revisited the question of the nature of the observed

irregular behavior of LP neurons over a wide dynamical range of

conditions [22,39]. We were able to show that in the model this

can be explained as properly chaotic behavior (indicated by

positive Lyapunov exponents, Fig. 13) arising from the interaction

of slow and fast ionic conductances and a slow first order Ca

dynamics. This confirms earlier direct observations on LP

membrane potential time series [20]. Interestingly we found two

broad chaotic regimes which are separated by a narrow region of

more regular activity. We tentatively identified the two regions of

chaotic behavior as chaotic bursting and chaotic spiking.

It has been suggested that the irregular (chaotic) dynamics in LP

neurons is connected to the Ca dynamics [29,73,74]. Our results

are consistent with this hypothesis but the involvement of internal

Ca stores as suggested in [29] does not appear to be necessary. We

also did not need to invoke stochasticity as suggested in [75].

When analyzing the robustness of the observed chaoticity

against parameter changes for two illustrative current injection

levels, we observed that the typical behavior of chaoticity or non-

chaoticity is preserved for most parameter sets but interspersed are

sets leading to different behavior. This indicates a highly complex

parameter space landscape with very similar and very different

models in close neighbourhood as has been recently observed

independently for different classes of neurons [48].

The analysis of the impact of changes to individual parameters

on the observation of chaoticity is consistent with our observations

with respect to the other properties investigated (similarity to the

original model measured by the cost function, similarity to the

original model measured by trend changes in the dependence of

ISI, IBI, etc. on current injection). Parameters that did not seem to

matter much for the former (e.g., gCaS) also did not matter for the

latter and those that were important for one parameter (e.g., gCaT)

were always important for both.

We have argued before that a well-adjusted HH model may

predict the effect of blocking individual ionic currents. Here we

made two such predictions. If the sodium currents are blocked we

preditced a dynamics of ‘‘naked bursting’’ in which the slow burst

waveforms remain almost unaltered but do not lead to spikes

(Fig. 5B). For blockage of IA we predicted almost undisturbed

bursting and spiking activity (Fig. 5C) with slight changes in

bursting frequency and duration. Both predictions are consistent

with available related data ([49], in case of INa) and preliminary

results (R.L. unpublished). The specific predictions remain to be

tested. A verification of our predictions, even if only partially,
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would be another piece of evidence that data driven modeling

similar to ours can be sucessful.

The dynamical properties of neurons are determind by their

structure and current composition and are crucial for their

function. Therefore, a combined approach, such as is presented

here, that uses data driven modeling in the context of functioning

neurons can promote better understanding of the function of both

neurons and neuronal systems. One advantage of using automated

methods is the possibility of gaining insight into possible

mechanisms of parameter adjustment in the biological system. It

is clear that some genotype variability in addition to changes

during the life of the animal exists. If the control parameters that

need to be maintained are known, it will be possible to search for

the biological mechanisms that generate the control. The

approach promoted in this work has the potential of revealing

the most salient control parameters as candidates for such an

endeavor. Combined with experiments which are driven by the

theoretical predictions it can be a powerful tool in the analysis of

neuronal system function.

Materials and Methods

Electrophysiology
We used pacific spiny lobsters Panulirus interruptus supplied by

local fishermen. After cooling the lobsters in ice for anesthetiza-

tion, the STG was removed along with the commissural and

esophageal ganglia as described previously [7,76]. The prepara-

tion was continuously perfused with saline at room temperature.

Individual neurons were identified by correlating intracellular

recordings with corresponding extracellular recordings from

identified nerves. The experiments were performed in standard

Panulirus saline, which had the following composition (in mmol/l):

479.1 NaCl, 12.7 KCl, 13.7 CaCl2, 10.0 MgSO4, 3.9 Na2SO4, 5.0

HEPES, and 5.0 TES, pH 7.4. We isolated LP neurons of the

pyloric system with photoablation [77] and chemical inactivation

of synapses with 105 M picrotoxin (PTX, Sigma) as described

earlier [78–80]. The intracellular recordings were made with 8–

10 MV glass electrodes filled with 3 M KCl using intracellular

amplifiers (AM systems Inc., WA). All data were stored on

Axoscope (Molecular Devices Inc., CA) for later analysis. We then

obtained long recordings of the membrane potential of the isolated

neuron subject to DC current injections applied through a second

electrode inserted into the cell soma.

Model development
We built a conductance based model of the lobster (Panulirus

interruptus) lateral pyloric (LP) cell using a set of parameter

estimation (fitting) techniques. The initial model and the model

parameters before parameter estimation were derived from

previous experimental and modeling results. In particular, for

the transient calcium current, ICaT, the slow calcium current, ICaS,

and h current, Ih we refitted standard H-H type equations to LP

voltage clamp data [18,19,23], taking into account the advances in

data fitting [81] made since the initial efforts of model building

were undertaken [24]. For the calcium induced potassium current

IKCa and the A current IA we used the existing fits to LP data of the

crab (Cancer borealis) [24]. The fast sodium, INa and delayed

rectifier, IKd, currents have not been experimentally jointly

characterized in the LP neuron of either lobster or crab due to

space clamp issues with the Na current. The Kd current was

recently measured in Panulirus [82]. Using this data without

corresponding data for the Na current unfortunately would make

it close to impossible to achieve appropriate spiking activity in the

initial model due to the intricate balance between Na and Kd

currents in spike generation. To ensure stable and appropriate

spike generation we resorted to standard equations [83] for Na

and Kd currents and did not adjust them during the fitting

procedure. The spike rate adaptation current IM was introduced

based on the observation of spike rate adaptation in all of our data

sets. Unlike the activation and inactivation parameters of other

currents, all parameters of this current were subject to a full fit.

The calcium dynamics in the cell was described by first order

dynamics and without spatial resolution.

We grouped the currents into two compartments, ICaT, ICaS,

IKCa, IA and Ih in a compartment we denote by ‘soma’ and the

remaining currents, INa, IKd and IM in a compartment denoted

‘axon’. This division implies a functional distribution rather than a

strict physical one, but is supported by experimental results that

demonstrated substantial distribution of Calcium currents close to

the soma [84,85]. The strong attenuation of spikes observed in the

soma, on the other hand, indicates that the spike generating

currents are located electrically far from it. Both soma and axon

have a separate leakage current Ileak,s and Ileak,a respectively. The

unknown parameters of membrane capacitance of soma and axon

compartments and in particular the coupling between compart-

ments were initially adjusted by hand to obtain reasonable activity

patterns in the initial model.

Model equations
The membrane potential of axon and soma compartment, Vaxon

and Vsoma respectively, are described by

dVaxon

dt
~

1

Ca

{INa{IKd{IM{Ileak,azIVVð Þ ð9Þ

dVsoma

dt
~

1

Cs

{ICa{IKCa{IA{Ih{Ileak,s{IVVð

zIscale IDC{IoffsetzIsyn

� ��
:

ð10Þ

Ioffset = 2 nA stems from the residual coupling at the end of the

parameter estimation procedure which introduces a current bias due

to differences in baseline voltage of data and model (on top of Vshift).

Isyn denotes the total incoming synaptic current. All ionic currents

except for the ones mentioned explicitly below are given by

Ix~gxmphq V{Vxð Þ ð11Þ

where is the maximal conductance of the current, V is the membrane

potential of either the axon compartment (INa, IKd, and IM) or the

soma compartment (all other currents), and Vx is the reversal

potential of the current. The activation and inactivation variables are

governed by

dm

dt
~am 1{mð Þ{bmm ð12Þ

dh

dt
~ah 1{hð Þ{bhh ð13Þ

for INa and IKd, and

dmx

dt
~ m?x Vð Þ{mxð Þkmx ð14Þ
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dhx

dt
~ h?x Vð Þ{hxð Þkhx ð15Þ

for the other currents, denoted by x = CaT, CaS, KCa, A, h, and M.

The calcium current is formulated in the Goldman-Hodgkin-Katz

(GHK) formalism

ICa~ gCaT mCaT hCaTzgCaSmCaSð Þ
Ca½ �exp Vsoma

RT=F

� �
{ Ca½ �out

exp Vsoma

RT=F

� �
{1:0

PCaVsoma:

ð16Þ

The IA current has two different components of the inactivation

variable,

IA~gAm3
A ahA1z 1{að ÞhA2ð Þ Vsoma{VAð Þ ð17Þ

a~
1

1zexp Vsoma{VaA

saA

� � ð18Þ

The leak currents are given by

Ileak~gleak V{Vleakð Þ ð19Þ

with gleak = gleak,s, gleak,a and V = Vsoma, Vaxon for the soma and axon

leak currents respectively. The calcium concentration is described

by a first order kinetic equation,

d Ca½ �
dt

~{cICaICa{kCa Ca½ �{ Ca½ �0
� �

: ð20Þ

Finally the coupling between compartments is ohmic, i.e.,

IVV~gVV Vsoma{Vaxonð Þ: ð21Þ

The activation and inactivation functions am, bm, ah, bh, and m‘,

h‘, km, kh are described in Table 5. The parameters that were

typically not subject to adjustments are summarized in Table 4.

One parameter set of adjusted parameters is shown in Table 3.

The activation and inactivation curves of currents were taken

from the literature or fitted to data from the literature, in

particular, INa and IKd from [52], IKCa, IA directly from [24], Ih is

our own fit to voltage clamp data in [24] using the same functional

form as in [24], and ICa is our fit to voltage clamp data in [23],

using the standard GHK formalism.

IM is not based on direct experimental observation and

implements a generic M type spike rate adaptation current. All

its parameters were subject to fitting.

Detailed cost function
In automated fitting (parameter estimation) algorithms the

quality of a set of parameters in describing the target data is

measured by a so-called cost function. The cost function in our

Table 5. Activation and inactivation functions for INa, IKd, ICa, IKCa, IA, Ih, and IM.

p q am bm ah bh

IN 3 1
0:32

Vaxonz52

1{exp { Vaxonz52
4

� � 0:28
Vaxonz25

exp Vaxonz25
5

� �
{1

0:128exp {
Vaxonz48

18

� �
4

exp { Vaxonz25
5

� �
z1

IKd 4 0
0:32

Vaxonz50

1{exp { Vaxonz50
5

� � 0:5exp { Vaxonz55
40

� �

p q m‘ h‘ km kh

ICaT 1 1 1

1zexp Vsoma{VmCaT

smCaT

� � 1

1zexp Vsoma{VhCaT

shCaT

� � kmCaT khCaT

1zexp Vsoma{VkhCaT

skhCaT

� �
ICaS 1 0 1

1zexp Vsoma{VmCaS

smCaS

� � kmCaS

IKCa 1 1 Ca½ �
cmKCaz Ca½ �

|
1

1zexp
Vsoma{ VmKCa1{f

:
Ca½ �ð Þ

smKCa1

� �
|

1

1zexp
Vsoma{ VmKCa2{f

:
Ca½ �ð Þ

smKCa2

� �

chKCa1

chKCa2z Ca½ �
kmKCa khKCa

IA 3 1,1 1

1zexp
Vsoma{VmA

smA

� � hA1 & hA2:
1

1zexp Vsoma{VhA

shA

� � kmA hA1 : khA1 hA2 :
khA2

1zexp Vsoma{VkhA2

skhA2

� �

Ih 1 0 1

1zexp
Vsoma{Vmh

smh

� � kmh

| 1zexp
Vsoma{Vkmh

skmh

� �� �

IM 1 0 1

1zexp
Vaxon{VmM

smM

� � kmM

1zexp Vaxon{VkmM

skmM

� �

doi:10.1371/journal.pone.0002627.t005
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procedure was the weighted sum of three cost measures computed

from the model output and the data (or the output of two different

models). The main contribution is the Euclidean distance between

the normalized spike density functions (SDFs), [46], of the model

and the data, denoted by smodel(t) and sdata(t):

cos ts~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðtzT

t

sdata tð Þ{smodel tð Þð Þ2dt

vuuut ð1Þ

where T denotes the width of the time window of comparison

between model and data. The normalized SDFs are given by

sx tð Þ~Sx tð Þ
, ðtzT

t

Sx tð Þdt, ð2Þ

where x stands for ‘model’ and ‘data’ respectively and the total

SDF is defined as

S tð Þ~
XNspikes

i~1

exp { t{tið Þ2
.

s2
� �

ð3Þ

The variables ti denote the times when the ith spike occurs and

the standard deviation of the Gaussian curves is s = 100 ms. This

choice for s ensures that individual spikes are not resolved

individually but rather contribute to a global burst shape. At the

same time, typical bursts are still well-separated in the normalized

SDF.

Figure 15 illustrates the construction of the cost function

graphically. For the first cost function component, spikes are

detected in the observed membrane potential data (Fig. 15A) and

for each spike a Gaussian bell curve is placed at the time it

occurred (Fig. 15B). These Gaussians are then summed up to form

the SDF (Fig. 15C). We normalize the SDF by dividing through

the overall area (such that the overall area becomes one) and

compare the resulting normalized SDFs at each point in time. By

Figure 15. Components of the cost function and how they are calculated. A) An Example of a membrane potential trace from the LP model
with gray bars indicating timing of detected spikes. To obtain the corresponding spike density function (SDF), a Gaussian of fixed width s = 100 ms
and amplitude 1 is added at each time of spike occurrence (B). The colors in (B) illustrate which spike is represented by which Gaussian. The
summation of all curves results in the SDF shown in (C). The moving average of the membrane potential is formed by averaging its 100 previous time
steps, in this example of about 0.4 ms each (D). E) Illustration of the typical contribution of the cost function components. Here, the time series was
time-shifted and compared to an non-shifted version of itself at varying time shifts (x axis; the inset is an enlargement of the region around 0). The
dependece of a direct membrane potential cost function on time shift is shown in black (based on the Euclidean distance between all points of the
membrane potential and the shifted membrane potential). The dependence of the SDF cost function (the Euclidean distance between all points of
the two SDFs) on time shift is shown in red, and the cost for the moving average (the distance between the averaged membrane potentials at varying
time shifts) is shown in blue. Note, how both the SDF and moving average widen the ‘‘valley’’ around the minimum where the data is not shifted and
thus has 0 distance. It is, therefore, easier to find the minimum with a search algorithm if these types of cost functions are used rather than a direct
membrane potential difference. While in this respect similar, the SDF-based distance differs from the distance based on the moving average in that it
is sensitive to the existence of spikes. A ‘‘naked burst’’ like shown in Figure 5B for blocked INa would, when compared to the control data, lead to
small cost for the moving average, but immense cost for the SDF.
doi:10.1371/journal.pone.0002627.g015
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doing so, we get a measure of similarity of the pattern of spiking

without considering the overall spike rate.

The second component of the cost function is the difference

between the integrals of the SDFs over the width T of the

comparison time window,

cos tÐ
S
~

ðtzT

t

Sdata tð Þdt{

ðtzT

t

Smodel tð Þdt

������
������: ð4Þ

This measures the (dis)similarities of overall spike frequency

rather than the pattern of spiking as the integral of the SDF is

proportional to the total number of spikes that were observed.

The normalized SDF and the integral over the SDF were used

separately in these two components of the cost function to allow

weighting the importance of spike patterning and overall spiking

frequency independently. These two first components of the cost

function solely depend on spike times and can be viewed as a

spike-time dependent cost function with independent weights for

spike patterning and overall spike frequency.

The last cost function component is the Euclidean distance of a

moving average of the membrane potentials,

cos t �VV ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðtzT

t

�VVdata tð Þ{ �VVmodel tð Þð Þ2dt

vuuut : ð5Þ

where the moving average V̄(t) is the average of the membrane

potential over the last 100 time steps of numerical integration up

to t (Fig. 15D). This component of the cost function measures the

slow waveform of the membrane potential and is not particularly

sensitive to spikes.

The three components were combined in a linear sum, cos t = ks

cos ts+k#S cos t#S+kV̄ cos tVmacr; with weights kx that were chosen

empirically such that the first component (cos ts) accounts for about

90% of the cost, the second (cos t#S) approximately 9%, and the last

component (cos tV̄) the remaining 1% (see the main text for a

further discussion of this choice). This compound cost function was

measured simultaneously in several sliding time windows of length

T and the results were added linearly to determine the total cost.

Figure 15E illustrates how the different components of the cost

function perform in comparing a typical burst of the model to a

time shifted version of this burst. In this mock example the moving

average of the membrane potential seems to provide very similar

information as the spike density function. Note, however, that the

moving average is not spike-sensitive and would look almost

identical if the burst was just a membrane potential plateau

without spikes (see, e.g., Fig. 5B) whereas the SDF would change

dramatically in this situation.

Protocol for parameter changes
The parameters of the model fall into two qualitatively different

categories, which we designated as additive and multiplicative

parameters. Additive parameters are mainly potentials (i.e.,

expressed in mV units) and meaningful changes in these

parameters are additions/subtractions of small steps (in terms of

absolute values in mV), allowing transitions through 0 if they

occur. Multiplicative parameters comprise all other parameters we

considered, most prominently maximal conductances of currents.

Changes in these parameters are best expressed in terms of

percentage change, i.e., by multiplication by a factor close to 1.

These parameters cannot cross 0 during the fit.

All parameters were hard-limited to an interval of [p0250 mV,

p0+50 mV] (additive parameters) and tp0?0.1, p0?10s (multiplicative

parameters), where p0 denotes the initial parameter value. Due to

the rather generous size of the allowed intervals we did not observe

parameters approaching their hard limits in our final runs.

During the parameter estimation, the size of parameter changes

was adjusted dynamically according to the response of the current

model to such changes using the following algorithm: If the

suggested parameter changes in an annealing step led to a ‘‘lateral

cost’’ between the perturbed and unperturbed model that

exceeded a given cost maximum, the step size of all parameters,

that had been subject to suggested changes, is reduced by a

constant factor. If this lateral cost (the size of the change of model

behavior in response to the suggested parameter changes) is too

small, step sizes are increased. The ‘‘target cost’’ between models

was slowly reduced over the duration of the parameter estimation

procedure.

In the experiments designed to assess model robustness and

sensitivity, the conductances were changed in a range from 0.1 to

10 times their original value, corresponding to the hard limits used

in the original parameter estimation. Test steps in parameters for

this part of the numerical work were chosen to start with

p9 = exp(6Dp0)p with Dp0 = 0.001 and continue as p9 = exp(6Dpn)p,

with Dpn = 1.05nDp0. Using this ‘‘double logarithmic’’ scale allowed

us to characterize parameters both with extremely high and very

low sensitivity.

Low frequency noise
For realistic comparison of the model with the, by necessity,

noisy data of the electrophysiological recordings, we added weak

synaptic input from 10 Poisson neurons (Vrest = 60 mV, Vspi-

ke = 50 mV, l = 60 Hz, 2 ms spike width, 8 ms refractory period)

with balanced excitation and inhibition to the LP neuron model.

Synapses were described by a standard model,

Isyn~gsynS Vrev{Vpost

� �
ð6Þ

dS

dt
~a 1{Sð Þ tanh Vpre{Vmid

� �	
Vslope

� �	
2z1

� �
{bS ð7Þ

with gsyn = 10 nS and probability 0.5 for excitation (Vrev = 20 mV) or

inhibition (Vrev = 280 mV). a = 0.1 ms21, b = 0.02 ms21,

Vmid = 220 mV, and Vslope = 10 mV. Vpre and Vpost denote the pre-

and postsynaptic membrane potential respectively. We chose

synaptic noise of this type over high frequency Gaussian noise

because it has more appropriate timescales for simulating the effects

of potential residual interactions of neurons in the experiments.

Lyapunov Exponents
The Lyapunov exponents were calculated using a renormaliza-

tion-based method [86,87] employing the analytical Jacobian of

the model equations. The Jacobian was calculated using Maple

(Waterloo Maple Inc. (Maplesoft), Waterloo, Ontario). For each

DC injection level a trajectory of T = 500000 ms was calculated for

the model and a basis in tangent space which was then re-

orthonormalized every 5 ms using a Gram-Schmidt orthonorma-

lization procedure. Lyapunov exponents were calculated from the

set of the N = 100000 renormalization constants x
j
i , i = 1,…,N,

j = 1,…,16, as

lj~
1

T

XN

i~1

log x
j
i

� �
: ð8Þ
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ISI return maps
Inter-spike interval return maps were generated by recording

the occurrence of each pair (ISIn, ISIn+1) in a 2D histogram of bin

size 1 by 1 ms, and smoothing this histogram by convolution with

a Gaussian with standard deviation 5 bins in each x and y

directions. The resulting ‘‘ISI return map density function’’ was

visualized in a ‘‘heat’’ color map with cold colors for low values

and warm colors for high values.

Statistics
Error bars used in plots are SEM unless stated otherwise. For

comparing model parameters to LP parameters we used Student’s

t-test with 0.05 significance level. For the correlation statistics we

used Pearson correlation. All tests were done in Matlab (Math-

Works - Inc., Natick, Mass.).
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