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Intrinsic ecological dynamics drive biodiversity
turnover in model metacommunities
Jacob D. O’Sullivan 1✉, J. Christopher D. Terry 1 & Axel G. Rossberg1

Turnover of species composition through time is frequently observed in ecosystems. It is

often interpreted as indicating the impact of changes in the environment. Continuous turn-

over due solely to ecological dynamics—species interactions and dispersal—is also known to

be theoretically possible; however the prevalence of such autonomous turnover in natural

communities remains unclear. Here we demonstrate that observed patterns of compositional

turnover and other important macroecological phenomena can be reproduced in large spa-

tially explicit model ecosystems, without external forcing such as environmental change or

the invasion of new species into the model. We find that autonomous turnover is triggered by

the onset of ecological structural instability—the mechanism that also limits local biodi-

versity. These results imply that the potential role of autonomous turnover as a widespread

and important natural process is underappreciated, challenging assumptions implicit in many

observation and management tools. Quantifying the baseline level of compositional change

would greatly improve ecological status assessments.
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Change in species composition observed in a single location
through time, called community turnover, is observed in
all natural ecosystems. Potential drivers of such biotic

change include changes in the abiotic environment, random
demographic fluctuations (referred to as community drift) and
population dynamics driven by ecological interactions and dis-
persal. Analysis of community time series suggests communities
turn over at a faster rate than can be explained by random drift1,2.
Climate change and other anthropogenic pressures are known to
contribute to community turnover3–7 and there is evidence to
suggest that turnover is accelerating in some biomes8.

Ecological assessments, projections and mitigation strategies
are therefore commonly designed around the assumption that
communities turn over predominantly in response environmental
change and direct anthropogenic pressures9. The extent to which
processes intrinsic to ecosystems contribute to turnover, however,
remains poorly understood10. Understanding the expected
amount of temporal turnover due to such intrinsic processes is of
vital importance if ecological change is to be accurately
interpreted7. If strong temporal community turnover were a
natural phenomenon that can arise independently of changes in
the abiotic environment, then observed shifts in the composition
of ecological communities would not on their own demonstrate
external pressures.

In theoretical models of ecological communities population
abundances do not necessarily arrive at fixed points. Instead, such
systems can manifest persistent dynamics which we refer to here
as ‘autonomous’ since they do not depend on variation in
the external environment or other extrinsic drivers. When these
population fluctuations are strong, changes in the abundances of
species can be dramatic and even drive species locally extinct; if
an excluded species retains occupancy in adjacent patches11, it
may re-colonise at some future time. We refer to as ‘autonomous
turnover’ local compositional changes involving colonisation-
extinction processes or significant restructuring of relative
abundances, driven by such autonomous population dynamics.

Limited availability of historical turnover data before the onset
of widespread anthropogenic impacts poses considerable chal-
lenges when trying to establish the natural baseline of turnover.
Nevertheless, broad consistency amongst the species-time-area
relationships observed in extant assemblages12,13 points to a
consistency in the dominant underlying biological process. It is
reasonable to expect, therefore, that the drivers of such spatio-
temporal turnover can be probed using theoretical models.

Previous theoretical11,14–17 and experimental studies18 have
shown how competitive ecological communities (for specific
network structures or parameter combinations) can generate any
type of dynamical behaviour, including persistent chaotic cycles.
Likewise, antagonistic interactions between predator and prey
species have been shown in both theory and experiment to lead to
persistent population oscillations in the absence of external
variation19,20. However, these cyclic processes are different from,
and have not usually been associated with, empirical observations
of acyclic, directional compositional turnover1,2. An important
distinction between these processes lies in the role of space. While
cyclic forms of community dynamics can lead to characteristic
spatial structures17,18,21, cyclic dynamics do not in principle
require space19,20. Acyclic turnover, on the other hand, manifestly
involves colonisation by species from surrounding patches and
therefore explicitly requires that a community is embedded in a
spatially structured ecological neighbourhood.

Here we ask: can community dynamics enabled by spatial
structure account for the observed macroecological patterns in
compositional turnover? We address this question drawing on
recent advances in the theory of spatially extended ecological
communities, so called “metacommunities”22, using a

population-dynamical simulation model with explicit spatial and
environmental structure23 that has been shown to reproduce
fundamental spatial biodiversity patterns. As previously shown,
such metacommunity models can exhibit a phenomenon called
“ecological structural instability”24, as a result of which species
richness at both local and regional scales is intrinsically
regulated23. The structural stability of a system refers to its
capacity to sustain changes in parameters without undergoing
qualitative changes in dynamical behaviour25. As such, ecological
structural stability is taken to describe in particular the capacity of
a community to persist in the face of small biotic or abiotic
perturbations24,26–30. Empirical observation of many of the
emergent phenomena associated with ecological structural
instability provides compelling indirect evidence for the pre-
valence of structural instability in nature23,31. Our understanding
of the impact of structurally unstable diversity regulation on
temporal community-level properties, however, remains
incomplete32. Here we build upon earlier work by exploring the
spatio-temporal patterns that emerge in metacommunity models.
We find that, when expanding the spatial and taxonomic scale of
simulations beyond those studied previously, metacommunities
manifest autonomous compositional turnover which can be
substantial and, in the case of large models, acyclic. This turnover
is best understood as continuous fluctuations of community state
around heteroclinic networks characterised by multiple unstable
equilibria. Crucially, the macroecology of these heteroclinic net-
works matches known empirical patterns.

Results and discussion
Metacommunity model and asymptotic community assembly.
We built a large set of model metacommunities (detailed in full in
“Methods”) describing competitive dynamics within a single guild
of species across a landscape. Each metacommunity consisted of a
set of patches, or local communities, randomly placed in a square
arena and linked by a spatial network. The dynamics of each
population are governed by three processes: inter- and intraspe-
cific interactions, heterogeneous responses to the environment
and dispersal between adjacent patches (Fig. 1). Competition
coefficients between species are drawn at random and the
population dynamics within each patch are described by a Lotka-
Volterra competition model. We control the level of environ-
mental heterogeneity across the network directly by generating an
intrinsic growth rate for each species at each patch from a ran-
dom, spatially correlated distribution. To ensure any turnover is
purely autonomous, we keep the environment fixed throughout
simulations. Dispersal between neighbouring patches declines
exponentially with distance between sites. This formulation
allows precise and independent control of key properties of the
metacommunity–the number of patches, the characteristic dis-
persal length and the heterogeneity of the environment.

To populate the model metacommunities, we iteratively
introduced species with randomly generated intrinsic growth rates
and interspecific interaction coefficients. Between successive
regional invasions we simulated the model dynamics, and removed
any species whose abundance fell below a threshold across the
whole network. Through this assembly process and the eventual
onset of ecological structural instability, both average local diversity,
the number of species coexisting in a given patch, and regional
diversity, the total number of species in the metacommunity,
eventually saturate and then fluctuate around an equilibrium
value—any introduction of a new species then leads on average to
the extinction of one other species (Supplementary Fig. 1). In these
intrinsically regulated metacommunities we then studied the
phenomenology of autonomous community turnover in the absence
of regional invasions or abiotic change.
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In our metacommunity model, local community dynamics and
therefore local limits on species richness depend on a combina-
tion of biotic and abiotic filtering (non-uniform responses of
species to local conditions)33–35 and immigration from adjacent
patches, generating so called mass effects in the local
community36–38. Biotic filtering via interspecific competition is
encoded in the interaction coefficients Aij, while abiotic filtering
occurs via the spatial variation of intrinsic growth rates Rix. For
simplicity, and since predator-prey dynamics are known to
generate oscillations39 through mechanisms distinct from those
we report here, we restrict our analysis to competitive commu-
nities for which all ecological interactions are antagonistic. The
off-diagonal elements of the interaction matrix A describe how
one species i affects another species j. These are sampled
independently from a discrete distribution, such that the
interaction strength Aij is set to a constant value in the range 0
to 1 (in most cases 0.5) with fixed probability (connectance, in
most cases 0.5) and otherwise set to zero. Intraspecific
competition coefficients Aii are set to 1 for all species. This
discrete distribution of the interaction terms was chosen for its
relative efficiency. In the Supplementary discussion (and
Supplementary Fig. 2) we show that outcomes remain unaffected
when more complex distributions are modelled. Intrinsic growth
rates Rix are sampled from spatially correlated normal distribu-
tions with mean 1, autocorrelation length ϕ and variance σ2

(Supplementary Fig. 3).
Dispersal is modelled via a spatial connectivity matrix with

elements Dxy. The topology of the model metacommunity,
expressed through D, is generated by sampling the spatial
coordinates of N patches from a uniform distribution
Uð0; ffiffiffiffi

N
p Þ ´Uð0; ffiffiffiffi

N
p Þ, i.e., an area of size N. Thus, under

variation of the number of patches, the inter-patch distances

remain fixed on average. Spatial connectivity is defined by linking
these patches through a Gabriel graph40, a planar graph generated
by an algorithm that, on average, links each local community to
four close neighbours41. Avoidance of direct long-distance
dispersal and the sparsity of the resulting dispersal matrix permit
the use of efficient numerical methods. The exponential dispersal
kernel defining Dxy is tuned by the dispersal length ℓ, which is
fixed for all species.

The dynamics of local population biomasses Bix= Bix(t) are
modelled using a system of spatially coupled Lotka-Volterra (LV)
equations that, in matrix notation, takes the form23

dB
dt

¼ B � ðR� ABÞ þ BD; ð1Þ

with ∘ denoting element-wise multiplication. Hereafter this
formalism is referred to as the Lotka-Volterra Metacommunity
Model (LVMCM). Further technical details are provided in
Methods and the Supplementary Discussion.

In order to numerically probe the impacts of ℓ, ϕ and σ2 on the
emergent temporal dynamics, we initially fixed N= 64 and varied
each parameter through multiple orders of magnitude (Supple-
mentary Fig. 4). In order to obtain a full characterisation of
autonomous turnover in the computationally accessible spatial
range (N ≤ 256), we then selected a parameter combination found
to generate substantial fluctuations for further analysis. Thereafter
we assembled metacommunities of 8–256 patches (Fig. 2a) until
regional diversity limits were reached (with tenfold replication)
and generated community time series of 104 unit times from
which the phenomenology of autonomous turnover could be
explored in detail. We found no evidence to suggest that the
phenomenology described below depends on this specific
parameter combination. While future results may confirm or

Fig. 1 Elements of the Lotka-Volterra metacommunity model and the emergence of autonomous population dynamics. Environmental heterogeneity,
represented by the intrinsic growth rate matrix R, is modelled using a spatially autocorrelated Gaussian random field. A random spatial network,
represented by the dispersal matrix D, defines the spatial connectivity of the landscape. The network of species interactions, represented by the
competitive overlap matrix A, is modelled by sampling competition coefficients at random (perpendicular bars indicate recipients of a deleterious
competitive impact). The resulting dynamics of local population biomasses, given by the colour-coded equation, are numerically simulated. The Hadamard
product ‘∘’ represents element-wise matrix multiplication. For large metacommunities, local populations exhibit persistent dynamics despite the absence of
external drivers. In the 3D boxes, typical simulated biomass dynamics of dominating species are plotted on linear axes over 2500 unit times. The graphs
illustrate the complexity of the autonomous dynamics and the propensity for compositional change (local extinction and colonisation).
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refute this, autonomous turnover arises over a wide range of
parameters (Supplementary Fig. 4) and as such the phenomenon
is robust.

Autonomous turnover in model metacommunities. For small
(N ≤ 8) metacommunities assembled to regional diversity limits,
populations attain equilibria, i.e., converge to fixed points,
implying the absence of autonomous turnover23. With increasing
metacommunity size N, however, we observe the emergence of
persistent population dynamics (Supplementary Fig. 5 and
external video) that can produce substantial turnover in local
community composition. This autonomous turnover can be
represented through Bray-Curtis42 (BC) dissimilarity matrices
comparing local community composition through time (Fig. 2b),
and quantified by the number of compositional clusters detected
in such matrices using hierarchical cluster analysis (Fig. 2a, c).

At intermediate spatial scales (Fig. 2, 16 ≤ N ≤ 32) we often
find oscillatory dynamics, which can be perfectly periodic or
slightly irregular. With increasing oscillation amplitude, these
lead to persistent turnover dynamics where local communities
repeatedly transition between a small number of distinct
compositional clusters (represented in Fig. 2 by stripes of high
pairwise BC dissimilarity spanning large temporal ranges). At
even larger scales (N ≥ 64) this compositional coherence begins to
break down, and for very large metacommunities (N ≥ 128)
autonomous dynamics drive continuous acyclic change in
community composition. The number of compositional clusters

detected over time typically varies within a given metacommunity
(Fig. 2a node colour), however we find a clear increase in the
average number of compositional clusters, i.e., an increase in
turnover, with increasing total metacommunity size (Fig. 2c).

Metacommunities in which the boundaries of species ranges
along environmental gradients are clumped are termed Clem-
entsian, while those for which range limits are independently
distributed are referred to as Gleasonian43. We consider the
block structure of the temporal dissimilarity matrix at inter-
mediate N to represent a form of Clementsian temporal turnover,
characterised by sudden significant shifts in community compo-
sition. Metacommunity models similar to ours have been found
to generate such patterns along spatial gradients44, potentially via
an analogous mechanism45. Large, diverse model metacommu-
nities manifest Gleasonian temporal turnover. In such cases,
species colonisations and extirpations are largely independent
and temporal occupancies predominantly uncorrelated, such that
compositional change is continuous, rarely, if ever, reverting to
the same state.

Mechanistic explanation of autonomous turnover. Surprisingly,
the onset and increasing complexity of autonomous turnover as
system size N increases (Fig. 2) can be understood as a con-
sequence of local community dynamics alone. To explain this, we
first recall relevant theoretical results for isolated LV commu-
nities. Then we demonstrate that, in presence of weak propagule
pressure, these results imply local community turnover dynamics,

Fig. 2 Autonomous turnover in model metacommunities. a Typical model metacommunities: a spatial network with N nodes representing local
communities (or patches) and edges, channels of dispersal. Patch colour represents the number of clusters in local community state space detected over
104 unit times t using hierarchical clustering of the Bray-Curtis (BC) dissimilarity matrix, Supplementary Fig. 6. b Colour coded matrices of pairwise
temporal BC dissimilarity corresponding to the circled patches in (a). Insets represent 102 unit times. For small networks (N= 8) local compositions
converge to static fixed points. As metacommunity extent increases, however, persistent dynamics emerge. Initially this autonomous turnover is oscillatory
in nature with communities fluctuating between small numbers of states which can be grouped into clusters (16 ≤ N ≤ 32). Intermediate metacommunities
(32 ≤ N ≤ 64) manifest “Clementsian” temporal turnover, characterised by sharp transitions in composition, implying species turn over in cohorts. Large
metacommunities (N ≥ 128) turn over continuously, implying “Gleasonian” assembly dynamics in which species' temporal occupancies are independent.
c The mean number of local compositional clusters detected for metacommunities of various numbers of patches N (error bars represent standard
deviation across all replicated simulations). While the transition from static to dynamic community composition at the local scale is sharp (see text), non-
uniform turnover within metacommunities (a) blurs the transition at the regional scale. Aij= 0.5 with probability 0.5, ϕ= 10, σ2= 0.01, ℓ= 0.5.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23769-7

4 NATURE COMMUNICATIONS |         (2021) 12:3627 | https://doi.org/10.1038/s41467-021-23769-7 | www.nature.com/naturecommunications

https://vimeo.com/379033867
www.nature.com/naturecommunications


controlled by the richness of potential invaders, that closely
mirror the dependence on system size seen in full LV
metacommunities.

Application of methods from statistical mechanics to models of
large isolated LV communities with random interactions revealed
that such models exhibit qualitatively distinct phases46–48. If the
number of modelled species, S, interpreted as species pool size,
lies below some threshold value determined by the distribution of
interaction strengths (Supplementary Fig. 7), these models exhibit
a unique linearly stable equilibrium (Unique Fixed Point phase,
UFP). Some species may go extinct, but the majority persists48.
When pool size S exceeds this threshold, there appear to be no
more linearly stable equilibrium configurations. Any community
formed by a selection from the S species is either unfeasible (there
is no equilibrium with all species present), intrinsically linearly
unstable, or invadable by at least one of the excluded species. This
has been called the multiple attractor (MA) phase47. However, the
implied notion that this part of the phase space is in fact
characterised by multiple stable equilibria may be incorrect.

Population dynamical models with many species have been
shown to easily exhibit attractors called stable heteroclinic
networks49, which are characterised by dynamics in which the
system bounces around between several unstable equilibria, each
corresponding to a different composition of the extant commu-
nity, implying indefinite, autonomous community turnover
(Fig. 3, red line). As these attractors are approached, models
exhibit increasingly long intermittent phases of slow dynamics,
which, when numerically simulated, can give the impression that
the system eventually reaches one of several ‘stable’ equilibria,
suggesting that turnover comes to a halt. We demonstrate in
the Supplementary discussion that the MA phase of isolated LV
models is in fact characterised by such stable heteroclinic
networks (Supplementary Figs. 8 and 9). Note, we retain the
MA terminology here because the underlying complete

heteroclinic networks, interpreted as a directed graph50,51 (Fig. 3,
inset), might have multiple components that are mutually
unreachable through dynamic transitions52, each representing a
different attractor.

If one now adds to such isolated LV models terms representing
weak propagule pressure for all S species (Supplementary Eq. (2)),
dynamically equivalent to mass effects occurring in the full
metacommunity model (Eq. (1)), then none of the S species can
entirely go extinct. The weak influx of biomass drives community
states away from the unstable equilibria representing coexistence
of subsets of the S species and the heteroclinic network
connecting them (blue line in Fig. 3). Typically, system dynamics
then still follow trajectories closely tracking the original
heteroclinic networks (Fig. 3), but now without requiring
boundless time to transition from the vicinity of one equilibrium
to the next.

The nature and complexity of the resulting population
dynamics depend on the size and complexity of the underlying
heteroclinic network, and both increase with pool size S. In
simulations (Supplementary Fig. 10) we find that, as S increases,
LV models with weak propagule pressure pass through the same
sequence of states as we documented for LVMCM metacommu-
nities in Fig. 2: equilibria, oscillatory population dynamics,
Clementsian and finally Gleasonian temporal turnover.

Above we introduced the number of clusters detected in Bray-
Curtis dissimilarity matrices of fixed time series length as a means
of quantifying the approximate number of equilibria visited
during local community turnover. As shown in Fig. 4a, b, this
number increases in LV models with S in a manner strikingly
similar to its increase in the LVMCM with the number of species
present in the ecological neighbourhood of a given patch. Thus,
dynamics within a patch are controlled not by N directly but
rather by neighbourhood species richness. For a given neighbour-
hood, species richness depends on the number of connected
patches, the total area and therefore total abiotic heterogeneity
encompassed, and the connectivity, all of which can vary
substantially within a metacommunity of a given size N. As
illustrated in Fig. 4b, there is a tendency for neighbourhood
richness to be larger in larger metacommunities, leading
indirectly to the dependence of metacommunity dynamics on N
seen in Fig. 2.

There is thus a close correspondence between dynamically
isolated LV models and LVMCM metacommunities, in the
sequence of dynamic states as propagule richness increases and in
the resulting complexity of dynamics quantified by counting
compositional clusters. This suggests that underlying heteroclinic
networks, which are revealed by adding propagule pressure in
isolated communities, explain the complex dynamics seen in
LVMCM metacommunities.

For the isolated LV community, the threshold beyond which
autonomous turnover is detected (>1 compositional cluster)
occurs at a pools size of around S= 35 species, consistent with the
theoretical prediction47 of the transition between the UFP and
MA phases (Supplementary Discussion). Close inspection of this
threshold reveals an important and hitherto unreported relation-
ship between the transition into the MA phase and local
ecological limits set by the onset of ecological structural
instability, which is known to regulate species richness in LV
systems subject to external invasion pressure23,24: in the Supple-
mentary Discussion we show that the boundary between the UFP
and MA phases47 coincides precisely with the onset of structural
instability24 (Supplementary Eqs. (3)–(9)).

For LVMCM metacommunities, this relationship (demon-
strated analytically in the Supplementary Discussion) is numeri-
cally confirmed in Fig. 5. During assembly, local species richness
increases until it reaches the limit imposed by local structural

Fig. 3 Approximate heteroclinic networks underlie autonomous
community turnover. The main panel shows two trajectories in the state
space of a community of three hypothetical species (population biomasses
B1, B2, B3) that are in non-hierarchical competition with each other, such
that no species can competitively exclude both others (a “rock-paper-
scissors game”17). Without propagule pressure, the system has three
unstable equilibrium points (P1, P2, P3) and cycles between these (red
curve), coming increasingly close to the equilibria and spending ever more
time in the vicinity of each. The corresponding attractor is called a
heteroclinic cycle (dashed arrows). Under weak extrinsic propagule pressure
(blue curve), the three equilibria and the heteroclinic cycle disappear, yet
the system closely tracks the original cycle in state space. Such a cycle can
be represented as a graph linking the dynamically connected equilibria
(inset). With more interacting species, these graphs can become complex
“heteroclinic networks”49–51 with trajectories representing complex
sequences of species composition during autonomous community turnover.
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instability. Further assembly occurs via the “regionalisation” of
the biota53—a collapse in average range sizes23 and associated
increase in spatial beta diversity—until regional diversity limits
are reached23. The emergence of autonomous turnover coincides
with the onset of species saturation at the local scale.
Autonomous turnover can therefore serve as an indirect
indication of intrinsic biodiversity regulation via local structural
instability in complex communities.

Thus, we have shown that propagule pressure perturbs local
communities away from unstable equilibria and drives composi-
tional change. In order to invade, however, species need to be
capable of passing through biotic and abiotic filters33–35. We
would expect, therefore, that turnover would be suppressed in
highly heterogeneous or poorly connected environments where
mass effects are weak. Indeed, by manipulating the autocorrela-
tion length ϕ and variance σ2 of the abiotic filter represented by
the matrix R and the characteristic dispersal length ℓ, we observe
a sharp drop-off in temporal turnover in parameter regimes that

maximise between-patch community dissimilarity (short envir-
onmental correlation or dispersal lengths, Supplementary Fig. 11).
Thus, we conclude that it is not species richness or spatial
dissimilarity per se that best predict temporal turnover, but the
size of the pool of species with positive invasion fitness, i.e., those
not repelled by the combined effects of biotic and abiotic filters.

The macroecology of autonomous turnover. We find good
correspondence between temporal and spatio-temporal biodi-
versity patterns emerging in model metacommunities in the
absence of external abiotic change and in empirical data (Fig. 6),
with quantitative characteristics lying within the ranges observed
in natural ecosystems.

Temporal occupancy. The proportion of time in which species
occupy a community tends to have a bi-modal empirical
distribution54–56 (Fig. 6a). The distribution we found in simula-
tions (Fig. 6e) closely matches the empirical pattern.

Fig. 4 Ecological mass effects drive autonomous turnover. a The number of compositional clusters detected, plotted against the size of the pool of
potential invaders S for an isolated LV community using a propagule pressure ϵ of 10−10 and 10−15, fit by a generalised additive model87. For S < 35 a
single cluster is detected. For S ≥ 35 autonomous turnover occurs (≥1 compositional clusters) with the transition indicated by the dashed line (inset).
b Qualitatively identical behaviour was observed for model metacommunities in which “propagule pressure” arises due to ecological mass effects from the
local neighbourhood. Each point represents a single patch. Lines in (b) are standard linear regressions. The good alignment of subsequent fits demonstrates
that neighbourhood diversity is the dominating predictor of cluster number, rather than patch number N. Aij= 0.5 with probability 0.5, ϕ= 10, σ2= 0.01, ℓ
= 0.5.

Fig. 5 The emergence of temporal turnover during metacommunity assembly. a Local species richness, defined by reference to source populations only
(αsrc, grey) and regional diversity (γ black) for a single metacommunity of N= 32 coupled communities during iterative regional invasion of random
species. We quantify local source diversity αsrc as the metacommunity average of the number αsrc of non-zero equilibrium populations persisting when
immigration is switched off (off-diagonal elements of D set to zero), since this is the component of a local community subject to strict ecological limits to
biodiversity. Note the log scale chosen for easy comparison of local and regional species richness. b Increases in regional diversity beyond local limits arise
via corresponding increases in spatial turnover (βs, black). Autonomous temporal turnover (βt, grey) sets in (crosses a threshold mean Bray Curtis (BC)
dissimilarity of 10−2) precisely when average local species richness αsrc has reached its limit, reflecting the equivalence of the transition to the MA phase
space and the onset of local structural instability. In both panels, the dashed line marks the point at which autonomous temporal turnover was first
detected. Aij= 0.3 with probability 0.3, ϕ= 10, σ2= 0.01, ℓ= 0.5. Both spatial and temporal turnover computed as the mean BC dissimilarity. In each
iteration of the assembly model (regional invasion event), 0.1S+ 1 species were introduced. Dynamics were simulated for 2 × 104 unit times, with the
second 104 unit times analysed for autonomous turnover, and a total of 104 invasions were modelled.
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Community structure. Temporal turnover has been posited to
play a stabilising role in the maintenance of community
structure57,58. In an estuarine fish community59, for example,
species richness (Fig. 6b) and the distribution of abundances were
remarkably robust despite changes in population biomasses by
multiple orders of magnitude. In model metacommunities with
autonomous turnover we found, likewise, that local species
richness exhibited only small fluctuations around the steady-state
mean (Fig. 6f, three random local communities shown) and that
the macroscopic structure of the community was largely time
invariant (Supplementary Fig. 12). In the light of our results, we
propose the absence of temporal change in community properties
such as richness or the abundance distribution despite potentially
large fluctuations in population abundances59 as indicative of
autonomous compositional turnover.

The species-time-area-relation, STAR. The species-time-relation
(STR), typically fit by a power law of the form S∝ Tw 12,60,61,
describes how observed species richness increases with observa-
tion time T. The exponent w of the STR has been found to be
consistent across taxonomic groups and ecosystems12,13,62, indi-
cative of some general population dynamical mechanism. How-
ever, the exponent of the STR decreases with increasing sampling
area12, and the exponent of the empirical Species Area Relation
(SAR) (S∝ Az) consistently decreases with increasing sampling
duration12 (Fig. 6c, d). We tested for these patterns in a large
simulated metacommunity with N= 256 patches by computing
the species-time-area-relation (STAR) for nested subdomains and
variable temporal sampling windows (see “Methods”). We
observed exponents of the nested SAR in the range z= 0.02–0.44
and for the STR a range w= 0.01–0.44 (Supplementary Fig. 13).
We also found a clear decrease in the rate of species accumulation
in time as a function of sample area and vice-versa (Fig. 6g, h),
consistent with the empirical observations. Meta-analyses of these
patterns in nature have reported exponents which are remarkably

consistent, with z typically in the range 0.1–0.363, and w typically
in the range 0.2–0.413, in both cases largely independent of
location or taxonomic group13.

Thus, the distribution of temporal occupancy, the time
invariance of key macroecological structures and the STAR in
our model metacommunities match observed patterns. This
evidence suggests that such autonomous dynamics cannot be
ruled out as an important driver of temporal compositional
change in natural ecosystems.

Turnover rate in simulated metacommunities. How do the turn-
over rates that we find in our model compare with those
observed? Our current analytic understanding of autonomous
turnover is insufficient for estimating the rates directly from
parameters, but the simulation results provide some indication of
the expected order of magnitude, that can be compared with
observations. Key for such a comparison is the fact that, because
the elements of R are 1 on average, the time required for an
isolated single population to reach carrying capacity is Oð1Þ unit
times. Supplementary Fig. 12b suggests that transitions between
community states occur at the scale of around 10–50 unit times.
This gives a holistic, rule-of-thumb estimate for the expected rate
of autonomous turnover, depending on the typical reproductive
rates of the guild of interest. In the case of macroinvertebrates, for
example, the time required for populations to saturate in popu-
lation biomass could be of the order of a month or less. By our
rule of thumb, this would mean that autonomous community
turnover would occur on a timescale of years. In contrast, for slow
growing species like trees, where monoculture stands can take
decades to reach maximum population biomass, the predicted
timescale for autonomous turnover would be on the order of
centuries or more. Indeed, macroinvertebrate communities have
been observed switching between community configurations with
a period of a few years64,65, while the proportional abundance of
tree pollen and tree fern spores fluctuates in rain forest bog

Fig. 6 Macroecological signatures of autonomous compositional change. A bimodal distribution in temporal occupancy observed in North American
birds54 (a) and in simulations (e N= 64, ϕ= 5, σ2= 0.01, ℓ= 0.5). Intrisically regulated species richness observed in estuarine fish species59 (b) and in
simulations (f N= 64, ϕ= 5, σ2= 0.01, ℓ= 0.5, 1000 unit times t). The decreasing slopes of the STR with increasing sample area12 (c), and the SAR with
increasing sample duration12 (d) for various communities and in simulations (g and h N= 256, ϕ= 10, σ2= 0.01, ℓ= 0.5, spatial window ΔA, temporal
windo ΔT). In (c) and (d) we have rescaled the sample area/duration by the smallest/shortest reported value and coloured by community (see original
study for details). In (g) and (h) we study the STAR in metacommunities of various size N, represented by colour. Limited spatio-temporal turnover in the
smallest metacommunties (blue colours) greatly reduces the exponents of the STAR relative to large metacommunities (red colours). Aij= 0.5 with
probability 0.5 in all cases.
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deposits with a period of the order of 103 years66—suggesting that
the predicted autonomous turnover rates are biologically
plausible.

Conclusions. Current understanding of the mechanisms driving
temporal turnover in ecological communities is predominantly
built upon phenomenological studies of observed patterns2,67–69

and is unquestionably incomplete10,59. That temporal turnover
can be driven by external forces—e.g., seasonal or long term
climate change, direct anthropogenic pressures—is indisputable.
A vitally important question is, however, how much empirically
observed compositional change is actually due to such forcing.
Recent landmark analyses of temporal patterns in biodiversity
have detected no systematic change in species richness or struc-
ture in natural communities, despite rates of compositional
turnover greater than predicted by stochastic null models1,70–72.
Here we have shown that empirically realistic turnover in model
metacommunities can occur via precisely the same mechanism as
that responsible for regulating species richness at the local scale.
While the processes regulating diversity in natural communities
remain insufficiently understood, our theoretical work suggests
local structural instability may explain these empirical observa-
tions in a unified and parsimonious way. Therefore, we advocate
for the application of null models of metacommunity dynamics
that account for natural turnover in ecological status assessments
and predictions based on ancestral baselines. Future work will
involve fitting the model described here to observations by esti-
mating abiotic and biotic parameters from empirical datasets. In
the Supplementary Discussion we show how different combina-
tions of parameters lead to different quantitative outcomes
(Supplementary Fig. 4), likely representing different types of
empirical metacommunities. Understanding where in this para-
meter space natural systems exist may provide the foundation for
a quantitative null model, a baseline expectation of turnover
against which observations can be compared.

Our simulations revealed a qualitative transition from “small”
metacommunities, where autonomous turnover is absent or
minimal, to “large” metacommunities with pronounced autono-
mous turnover (Fig. 2). The precise location of the transition
between these cases depends on details such as dispersal traits, the
ecological interaction network, and environmental gradients
(Supplementary Fig. 4). Taking, for simplicity, regional species
richness as a measure of metacommunity size suggests that both
‘small’ and ‘large’ communities in this sense are realised in nature.
In our simulations, the smallest metacommunities sustain 10s of
species, while the largest have a regional diversity of the order 103,
which is not large comparable to the number of tree species in
just 0.25 km2 of tropical rainforest (1100–1200 in Borneo and
Ecuador73) or of macroinvertebrates in the UK (>32,00074).
Within the ‘small’ category, where autonomous turnover is
absent, we would therefore expect to be, e.g., communities of
marine mammals or large fish, where just a few species interact
over ranges that can extend across entire climatic niches,
implying that the effective number of independent “patches” is
small and providing few opportunities for colonisation by species
from neighbouring communities. Likely to belong to the ‘large’
category are communities of organisms that occur in high
diversity with range sizes that are small compared to climatic
niches, such as macroinvertebrates. For these, autonomous
turnover of local communities can plausibly be expected based
on our findings. Empirically distinguishing between these two
cases for different guilds will be an important task for the future.

For metacommunities of intermediate spatial extent, autono-
mous turnover is characterised by sharp transitions between
cohesive states at the local scale. To date, few empirical analyses

have reported such coherence in temporal turnover, perhaps
because the taxonomic and temporal resolution required to detect
such patterns is not yet widely available. Developments in
biomonitoring technologies75 are likely to reveal a variety of
previously undetected ecological dynamics, however and by
combining high resolution temporal sampling and metagenetic
analysis of community composition, a recent study demonstrated
cohesive but short-lived community cohorts in coastal
plankton76. Such Clementsian temporal turnover may offer a
useful signal of autonomous compositional change in real
systems.

Thus, overcoming previous computational limits to the study
of complex metacommunities11,77, we have discovered the
existence of two distinct phases of metacommunity ecology—
one characterised by weak or absent autonomous turnover, the
other by continuous compositional change even in the absence of
external drivers. By synthesising a wide range of established
ecological theory11,23,24,47–49, we have heuristically explained
these phases. Our explanation implies that autonomous turnover
requires little more than a diverse neighbourhood of potential
invaders, a weak immigration pressure, and a complex network of
interactions between co-existing species.

Methods
Metacommunity assembly. The dynamics of local population biomasses Bix(t)
were modelled using a spatial extension to the multispecies Lotka-Volterra com-
petition model23:

dBix

dt
¼ Bix Rix � ∑

S

j¼1
AijBjx

� �
� e Bix þ ∑

y2N ðxÞ

e
ky

exp �dxy‘
�1

� �
Biy : ð2Þ

The competitive coupling coefficients Aij for i ≠ j were sampled from discrete
distributions. Generally, Aij were set to 0.5 with a probability of 0.5 and to 0
otherwise, however, for the simulation shown in Fig. 5, we relaxed the dynamic
coupling and instead set Aij to 0.3 with a probability of 0.3. This delayed the onset
of local structural instability during metacommunity assembly, making the
coincident emergence of local biodiversity regulation and autonomous
compositional turnover visually clearer.

Environmental heterogeneity was modelled implicitly through spatial variation
in species’ intrinsic growth rates Rix. Specifically, the Rix were sampled
independently for each species i from a Gaussian random field78 with mean μ= 1.0
and standard deviation σ, generated via spectral decomposition79 of the N ×N
landscape covariance matrix with elements Σxy ¼ exp½�ϕ�1dxy�, where dxy denotes
the Euclidean distances between patches x and y, and ϕ the autocorrelation length
(Supplementary Fig. 3).

The dispersal matrix D (Eq. (1)) has diagonal elements Dxx of−e, where e, the
fraction of biomass leaving patch x per unit time, was kept fixed at 0.01 for all
simulations. For pairs of patches connected by an edge in the spatial network, the
immigration terms were modelled as negative exponentials
Dxy ¼ ek�1

y expð�dxy‘
�1Þ, controlled by a dispersal length parameter ℓ, thus

assuming a propensity for propagules to transition to nearby sites. The
normalisation constant ky divides the biomass departing patches y between all
other patches in its local neighbourhood (N ðyÞ), weighted by the ease of reaching
each patch i.e., ky ¼ ∑z2N ðyÞ expð�dyz‘

�1Þ, implying an active dispersal process.
Metacommunities were assembled by iterated regional invasion (Supplementary

Fig. 1). In each iteration of the algorithm, 0.05S+ 1 new species were introduced to
the metacommunity, with S denoting the current extant species richness. The
invaders were tested to ensure positive growth rates at low abundance. This was
done by introducing a multiple of 0.05S+ 1 newly generated species into all
patches at very low abundance, then simulating for a handful of time steps and
testing for increasing biomass trajectories in at least one patch. Of the successful
invaders, 0.05S+ 1 were randomly selected and each introduced at 10−6 biomass
units into the patch in which its growth rate was greatest during testing. After
invaders were introduced, metacommunity dynamics were simulated using the
SUNDIALS80 numerical ODE solver. The time between regional invasions we kept
fixed at 500 unit times, and before each new regional invasion the metacommunity
was scanned and species with biomass smaller than 10−4 biomass units in all
patches of the network were considered regionally extinct and removed from the
model. The assembly algorithm aims to remove all species whose total biomass
declines to zero in the course of the system’s complex dynamics. In rare cases
autonomous fluctuations may drive one of the remaining species to very low
abundance in all patches, however the majority retain local biomass above the
detection threshold in at least one patch at all times.

To assemble models of sufficient spatial extent and species richness, we
developed a parallel implementation of the assembly model that makes use of the
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algorithmic domain decomposition method81 for the population-dynamical
simulations. This involves decomposing the metacommunity into spatial
subdomains of equal numbers of patches, each of which is simulated by a unique
parallel process (CPU), with boundary states regularly broadcast between
processes. The code was run on the Apocrita high-performance cluster at Queen
Mary, University of London82. This permitted assembly of saturated
metacommunities of up to N= 256 patches harbouring S ~ 3000 species, thus
breaking through frequently lamented computational limits11,77 on the numerical
study of metacommunities.

Quantifying autonomous turnover. All post-assembly analyses were done using
the R statistical software environment83 (version 4.0.3). For fully assembled
metacommunities, we simulated and stored time series of tmax ¼ 104 meta-
community samples Bixt= Bix(t) taken in intervals of one unit time. In these
metacommunity timeseries, we measured spatio-temporal turnover based on (i)
compositional dissimilarity, (ii) the distribution of temporal occupancy, (iii) the
number of compositional clusters detected using hierarchical clustering, and (iv)
via species accumulation curves generated using sliding spatial and temporal
sampling windows. Metrics were selected in order to answer specific questions, or
for comparison to observed patterns. Some analyses require quantifying local
species richness. This was done by setting a detection threshold of 10−4 biomass
units, below which populations are considered absent from the community. Local
source diversity, which we define in Fig. 5, is a related but different diversity
measure that is more adequate for quantifying the component of a local com-
munity subject to local ecological limits to biodiversity.

Compositional dissimilarity. Spatial/temporal compositional dissimilarity was
quantified using the Bray-Curtis42 index via the function vegdist in the R
package “vegan”84.

Temporal occupancy. We assessed temporal occupancy by first converting biomass
into presence-absence data (Pixt= 1 for all Bixt > 10−4, and 0 otherwise). Then, for
all populations present at least once, we computed the temporal occupancy (TOix)
as the proportion of the time interval of length tmax during which that population
was present:

TOix ¼
1

tmax
∑
t
Pixt ð3Þ

Hierarchical clustering. We assessed the degree of temporal clustering in com-
munity composition using complete linkage hierarchical clustering85 of the Bray-
Curtis dissimilarity matrix, which gives an approximate measure of the number of
unstable equilibria between which the dynamical system fluctuates. We computed
the number of clusters using a threshold of 25% dissimilarity, which reflects the
structure visible in pairwise dissimilarity matrices (Supplementary Fig. 6a, b).

Spatio-temporal species accumulation. We studied the STR and SAR in model
metacommunities using a sliding window approach, asking, for given ΔA 2 N and
ΔT 2 R>0, how many species Sobs were detected on average in sets A of ΔA ¼ jAj
patches during any time interval T of ΔT unit times length. Specifically, for a
metacommunity of N= 28= 256, the spatial windows were ΔA∈ {20, 21, . . . , 28}
patches, while the temporal windows were ΔT ∈ {1, 5, 10, 50, 100, 500, 1000} unit
times. For each patch x∈ {1, . . . ,N} the spatial sub-sample was then defined as the
set A consisting of the focal patch and its ΔA− 1 nearest neighbours. Similarly, for
each t∈ {1, . . . , tmax− ΔT} the sliding temporal window T was defined as the ΔT
successive recording time steps in the range t to t+ ΔT. The species richness
observed in a given spatio-temporal sub-sample was then computed as

Sobs ¼ ∑
i

∑
t2T

∑
x2A

Pixt ≥ 1

� �
; ð4Þ

where the Iverson brackets [. ] denote the indicator function ensuring species are
counted only once. Finally, the average of Sobs for a given spatio-temporal sample
size was computed in all combinations of ΔA, ΔT.

In closed systems, species accumulation in both space and time must ultimately
saturate, either when the entire metacommunity or entire time series is sampled.
Thus we defined the exponents z and w of the STAR as the maximum slopes of the
SAR/STR on double logarithmic axes (Supplementary Fig. 13).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Simulation data supporting a subset of the results of this study are available at https://doi.
org/10.6084/m9.figshare.14139644.v1.

Code availability
The software used to generate these data is available at https://github.com/jacobosullivan/
LVMCM_src86.
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