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Abstract: Environmentally friendly protection coatings have obtained increasing attention for their
use in wooden materials, which can be destroyed easily when exposed to outdoor environments.
A series of silane sol coatings coordinated with Eu3+ was prepared by hydrolyzing silane compounds.
The obtained luminescent coating with three-dimensional net structure showed excellent optical,
anti-ultraviolet aging, and thermal stability. The hybrid silane-modified compound coating was well-
distributed on the wood by Si–O bonds to prevent its removal. The compound coating could stave
off the decomposition of wood by converting ultraviolet light into red light and a charring action
can endow the wood with thermal stability at high temperature, demonstrating the improvement of
fire resistance and radiation residence following prolonged exposure to ultraviolet light, proving its
excellent anti-ultraviolet aging properties.

Keywords: photoluminescence; thermal stability; optical properties; anti-ultraviolet aging properties

1. Introduction

Wood is a natural material mostly composed of cellulose, lignin, and hemicellulose,
which is uneven distributed in the cell and intercellular layer [1–4]. Therefore, the wood
contains a large number of hydroxyl groups, which are susceptible to water to cause the
damage of the wood. What is more, abundant biological characteristics will also make it
vulnerable to attacks by organisms and microorganisms in the environment, affecting its
stability and applications [5]. Over the years, in the development and utilization of wood
products, outdoor use of wood products gradually increased wood surface in the surrounding
environment. In recent years, wood products used outdoors have gradually increased.
Functional modification of wooden composites has long been a common trend because of their
wide applications in homes, heating, furniture, and paper [6]. However, wooden materials
easily decompose when exposed with solar radiation and vapor in the air under normal
temperature conditions. Thus, it is of great significance to develop sustainable and cost-
effective coatings to achieve thermal stability and anti-ultraviolet properties.

Although the luminescence efficiency of rare earth are so low due to their parity
forbidden 4f-4f transitions, the drawback could be conquered through the introduction
of the ligand to form the rare earth complex [7]. The luminescence process of rare-earth
complexes can be describe as an energy transfer process that after the formation of singlet
excited state molecules attributed to energy absorption through the irradiation of excitation
light, the singlet excited state energy is transferred to the triplet state by non-radiative
transition, next to which the triplet energy is transferred to the rare earth ions’ excited
state without radiation together with the radiation process from the excited state of metal

Polymers 2021, 13, 127. https://doi.org/10.3390/polym13010127 https://www.mdpi.com/journal/polymers

https://www.mdpi.com/journal/polymers
https://www.mdpi.com
https://orcid.org/0000-0003-2964-6473
https://doi.org/10.3390/polym13010127
https://doi.org/10.3390/polym13010127
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/polym13010127
https://www.mdpi.com/journal/polymers
https://www.mdpi.com/2073-4360/13/1/127?type=check_update&version=3


Polymers 2021, 13, 127 2 of 11

ions to ground state resulting in light emission. This process of absorbing energy from the
ligand and then transferring the energy to the rare earth ions is also called the antenna
effect [8]. Rare earth complexes are widely used because of their narrow spectral band,
high luminous efficiency, and strong color purity [9].

The degree of aging of the wood composite material depends on the sensitivity of the
surface of the material to sunlight, which is related to the chemical structure of the material.
Due to the refraction and scattering of light, only a small part of the sunlight shines on the
ground, and its wavelength is approximately between 290–430 nm, and the sunlight that
negatively affects the surface of the material. Ultraviolet (UV) light irradiation in sunlight
can mostly degrade the structure of wood and generate great amount of free radicals,
a phenomenon that is mostly attributed to the lignin in the wood, which is so sensitive
that it can react with oxygen under certain conditions outdoors to produce chromophoric
carbonyl and carboxyl groups, leading to the color change of the wood [10–14]. Traditional
organic coatings inevitably decompose when exposed to ultraviolet light for a long time [15].
Functional treatment of wooden materials has long been a major issue because of their
massive application in everyday life and high hygroscopicity and decomposition which
make their service life greatly shorten.

Organosilicon, a kind of synthetic polymer, whose main chain skeleton is formed by
alternating oxygen and silicon atoms connected with other organic segments or functional
groups, has been widely used in various fields, including construction, packaging, trans-
portation, medical equipment, and other industries [16–19]. It has become an indispensable
type of new polymer material used in daily life and has a superior high temperature resis-
tance performance and anti-ultraviolet aging properties [20,21]. Moreover, to strengthen
these anti-ultraviolet aging properties, we introduce rare earth ions dipped in coatings
in order to form a coordinated environment to convert the UV light absorbed by photo-
sensitive chromophores into harmless red-light emission by Eu3+ in order to prevent the
decomposition process [22]. In addition, the coordination of Eu3+ ions with −C=O groups
of the ligand will increase the degree of crosslinking of the coating network [23,24].

Herein, multi-functional luminescent protection coatings were prepared by hydrol-
ysis and condensation reactions among the modified silane monomers coordinated with
europium (III) ions. The coating composite was obtained through a condensation reaction
between the silicon hydroxyl groups in the coating and the surface hydroxyl group of
the wood surface as shown in Scheme 1. Mass spectra were measured using electrospray
ionization mass spectra (ESI-MS) in the positive mode from tetrahydrofuran solutions.
The surface morphology structures were explored by scanning electron microscopy (SEM),
Energy Dispersive X-ray Analysis (EDXA), and FTIR spectroscopy (FTIR). Derivative ther-
mogravimetry (DTG) and thermogravimetry (TG) analysis is used to certify the pyrolysis
reactions of coated wooden composites from room temperature to 800 ◦C to investigate their
thermal stability. In addition, the anti-ultraviolet aging ability of the coating composites
was also predicted.
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2. Materials and Methods
2.1. Materials

Poplar wood slices with the sizes of 10 mm (longitudinal)× 5 mm (tangential)× 2 mm
(radial) were ultrasonically washed in acetone, ethanol and deionized water three times
for 10 min in turn and dried at 50 ◦C for 48 h in a vacuum. Europium nitrate hexahydrate
(Eu (NO3)3·6H2O) (99.99%) and aminopropyl trimethoxy silane (99%) used throughout the
research were provide by Beijing Huaweiruike Co., Ltd., Beijing, China. Ethanol (99.7%)
and phthaloyl chloride (98%) were supplied by Tianjin Kaitong Chemical Reagent Co., Ltd.
(Tianjin, China) without further purification.

2.2. Synthesis of Modified Silane Monomer

Phthaloyl chloride (0.005 mol) in methylene chloride (10 mL) was added to the solution
of aminopropyl trimethoxy silane (0.01 mol) in methylene chloride (10 mL) at 0 ◦C. Then,
the mixture was stirred at room temperature for 2 h, after which the solution were put into
a vacuum at 45 ◦C to remove the solvent. At last, the colorless and transparent product
was obtained

2.3. Synthesis of Europium Coordination Complex

Eu (NO3)3·6H2O and modified silane monomer were accurately weighed with different
molar ratios (1:3, 1:4, 1:5) and dissolved in 10 mL of anhydrous ethanol. Then, the mixture
was heated continuously under reflux at 80 ◦C for 8 h to obtain the complex solution.

2.4. Synthesis of Organosilicon Sol Coordinated by Europium (III)

Eu (NO3)3·6H2O and modified silane monomer were accurately weighed with differ-
ent molar ratios (1:3, 1:4, 1:5) and dissolved in 10 mL of anhydrous ethanol, respectively.
Then, the mixture was heated continuously under reflux at 80 ◦C for 8 h. Finally, the mix-
ture was diluted with ethanol for concentrations of 0.08 mol/L. The appropriate amount
of distilled water and 4–8 drops of 1mol/L dilute hydrochloric acid were added to the
complex’s solution above and stirring magnetically in a water bath (40 ◦C, 45 ◦C, 50 ◦C,
55 ◦C, 60 ◦C) with reflux condensation and stirring for 12 h to obtain the sol coatings.

2.5. Synthesis of Coating Composites

The pre-treated woods were immersed into the 20 mL of sol coatings at room tem-
peratures under continuous mechanical stirring for 24 h and a layer of Si–O–Si network
structure covered on wood surface by Si–O covalent bond. Then, the samples were dried
at 85 ◦C for over 2 h in the vacuum. Finally, the coating composites were obtained.

2.6. Artificial Ultraviolet Aging Test

Various samples simulated ultraviolet aging under ultraviolet light of high energy in
the same conditions to investigate the sol coating composites with radiation time ranging
from 0 to 20 d. During the color change test, the color variation of the coating composites
surface before and after the UV irradiation were measured with CIELAB system in accor-
dance with the ISO-2470 standard. CIELAB L*, a*, b*, parameters were measured at 10
locations on each specimen and every sample had three replicas.

∆L* = L1* − L0* (1)

∆a* = a1* − a0* (2)

∆b* = b1* − b0* (3)

where ∆L*, ∆a*, and ∆b* values were the difference of the final (L1*, a1*, b1*) and initial
(L0*, a0*, b0*) color values after and before UV irradiation, respectively.
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The values above were used to obtain the overall color change parameter ∆E* as a
function of the weathering time:

∆E* = [(∆L*)2 + (∆a*)2 + (∆b*)2]1/2 (4)

A small ∆E* value was corresponded to a subtle color difference indicating strong
resistance of coating composite to UV radiation.

3. Results
3.1. Structural Characteristics

FTIR spectra of the untreated wood, the coating wood, and the coating composite
under UV light radiation for 480 h was shown in Figure 1. For the untreated wood
sample, the peak appears at 3336 cm−1 was assigned to the stretching vibration of the
O–H stretching groups [25,26]. After modification, the intensity of broad absorption
peak appeared at 3336 cm−1 became weak, which indicated that a condensation reaction
between the silanol groups of hydrolyzed aminopropyl trimethoxy silane and the surface
hydroxyl group of the wood surface had occurred [27]. The absorption band at 2913 cm−1

corresponds to the C–H stretching vibrations. In addition, after the surface was covered
by the sol coating, new adsorption bands appear at 1657 cm−1 and 1730 cm−1, which is
attributed to C=O stretching vibrations and N–H bending vibration, respectively [28],
proving the existence of a secondary amide group on the coating surface. The peaks around
1025 cm−1 corresponded to Si–O–Si and Si–O-C stretching vibrations after coating [29].
The absorption peak at 1092 cm−1 was ascribed to the Si–O–wood bond, indicating a strong
polycondensation grafting reaction between silanol groups and the wood surface [30].
More importantly, the curves of the wood after a long period of radiation exposure exhibited
similar behavior in relation to their FTIR spectra compared with the coating composite,
which proves the ability of the sol coating to protect wood from ultraviolet light damage.
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Figure 1. FT-IR spectra for (a) the untreated wood, (b) the sol coating composite, (c) the sol coating
composite under UV-light radiation (340 nm) for 480 h.

The ESI-MS spectra of organosilicon sol coordinated by europium (III) in the positive
mode are shown in Figures S1 and S2 in the supplementary material. The spectra exhibit
peaks at m/z = 630.05 and 721.07 that are assigned to the ligands (see Supplemental
Information, Figure S1 in the supplementary material), verifying the formation of Si–O
structure. In addition, several fragments containing europium were observed in the mass
spectra (Table S1 in the supplementary material).
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3.2. SEM-EDX Analysis

The SEM results in Figure 2 exhibit the surface morphologies of the untreated wood,
the sol coating composite, and the sol coating composite under UV light radiation (340 nm)
for 480 h. In Figure 2a, the pristine tracheid of the wood is smooth. A homogeneous and
continuous network structure masks the surface (Figure 2b), which is attributed to the sol–gel
reaction on the silane, indicating that the sol coatings were effectively applied to the wood
surface. The chemical elements on the surface were explored using their EDXA spectra, as
shown in Figure 3. Before treating the wood, there are only carbon, oxygen, nitrogen, and
gold elements that could be detected. After coating, silicon, europium, and chloride could be
found from the spectra due to the introduction of the sol coating. The element distribution
of the coating composite changed slightly under UV radiation over the 480 h, from which it
could be predicted that part of the coating was subject to strong radiation during its protection
of the wood surface. As shown in Figure 2c, after a long period of radiation exposure, the
coating structure protecting the wood partially disappeared.
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3.3. Thermal Stability

For untreated wood, there are four thermal degradation steps that have been clearly
observed in the N2 atmosphere (Figure 4). The first step occurred below 120 ◦C and the
subtle weight loss could be attributed to the loss of water. The most weight loss happened
in the second region from 120 to 400 ◦C, and was caused by the depolymerization of the
hemicellulose, giving rise to D-xylose as well as to some oligosaccharide mixtures. Then,
further oxidation of the lignin took place at a higher temperature [31,32]. Compared with
the untreated wood, as shown in Figure 4 and Table 1, the introduction of the sol coating
increased the decomposition process of the wood with lower Tmax2 values, which could be
attributed to the stable thermal silicide layer initially generated by the reaction of hydroxyl
and silane hydroxyl. The initial degradation was conducive to improving the thermal
stability of the wood as stable thermal silicious structures formed, which could postpone
the next stage of its degradation. Although the thermal stability of the coating on the wood
was reduced at the beginning, it was significantly strengthened in the last decomposition
step, which could also be indicated by the elevated Tmax3 value and increased residue from
600 to 800 ◦C.
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Table 1. Results of thermogravimetric analysis.

Sample Tmax1
(◦C)

Residue at
120 ◦C (%)

Tmax2
(◦C)

Residue at
400 ◦C (%)

Tmax3
(◦C)

Residue at
600 ◦C (%)

Tmax4
(◦C)

Residue at
700 ◦C (%)

Tmax5
(◦C)

Residue at
800 ◦C

(%)

Untreated
wood 69.2 98.0 370.7 36.8 596.8 29.6 651.4 20.2 800 16.7

Coating
composite 72.2 97.7 354.3 40.3 573.1 28.6 – 26.6 800 24.2

3.4. Aging Property and Optical Stability

The color variations during the UV light (340 nm) radiation were measured via
accelerated aging tests to explore the anti-ultraviolet property of the wood as well as the
coating composite. UV aging resistance was predicted by the ∆E* before and after UV
radiation. It can be seen that the ∆E* value of the untreated wood is higher than the coating
composite. Figure 5a shows the trends of the ∆E* in the samples with sol coatings obtained
under different reaction temperatures (40 ◦C, 45 ◦C, 50 ◦C, 55 ◦C, 60 ◦C) before and after
UV light radiation. The ∆E* of the sample coated with the sol coating obtained at 60 ◦C
is the lowest, predicting that the UV aging resistance of the sample is proportional to the
reaction temperature of the sol coating. The photochromic performance of the coating
composite becomes gradually stable with the UV exposure time increasing. The wood
with coatings obtained at 60 ◦C exhibited a stronger UV resistance ability. As an important
indicator of the service life of the material, the ∆E* values play a necessary part.
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Figure 5b shows the ∆E* of the untreated wood and coating composite under UV
light radiation in relation to the variability of the different ratios between Eu3+ and ligands.
After 480 h of UV light radiation, the ∆E* values of all coating composites exhibited no
significant fluctuations and only slight variations, indicating the good photochromic stability
of the sol coating. A ratio of 1:3 showed the best UV light resistance with less color variation.
Meanwhile, the largest ratio for the changing values of natural wood and modified wood is
6.29, which belongs to the ratio 1:3 and approaches two times that of the ratio 1:4. The ratio
between Eu3+ and the ligands of 1:3 was the most stable after 100 h of aging for this variable.

To further investigate the optical properties of the coating composite under sustained
UV radiation (340 nm), the variations in the values of the emission peaks of Eu3+ (614 nm)
in the coating composites obtained at the most optional conditions with a ratio of 1:3 at
60 ◦C were evaluated. As shown in Figure 6, it can be seen that, after ultraviolet radiation,
the fluorescence of wood is enhanced, which is perhaps due to the fact that, after a long
period of radiation exposure, the silane undergoes further hydrolysis and condensation
reactions, leading to the formation of an Si–O network structure, which will increase
the rigidity of the ligand and reduce the energy loss by non-radiative deactivation [33].
On the contrary, the condensation reaction of organic–inorganic hybrid coatings change
the coordination environment of Eu3+, which could be reflected by the ratio of 5D0→7F2
(614 nm) transition to 5D0→7F1 (590 nm) transition [34–36]. The larger ratio of 5D0→7F2
transition to 5D0→7F1 means that the chemical environment symmetry around the Eu3+

ion is decreased [37,38]. From Table 2, it can be seen that, after 14 days of radiation, the
ratio increased from 1.40 to 1.74, then decreased to 1.68, which may be attributed to the fact
that, initially, the silane coating was cross-linked to form an Si–O network structure under
ultraviolet light radiation. However, the layer structure is destroyed during long-term
radiation exposure, and the coordination environment of the rare earth ions is changed
back to its original state, only with a higher symmetry. From Figure 6, it can be indicated
that the coating composites we prepared have an excellent fluorescence stability, and can
transfer UV light to red light under long-term radiation exposure in order to protect the
surface of wood from intense radiation.
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4. Conclusions

The prepared organic–inorganic hybrid silica coatings, based on natural wood materi-
als, effectively improved the thermal stability and anti-ultraviolet aging ability of wood.
Via TG analysis, the coated wood with the hybrid silica coatings was found to be able
to extinguish flames, and the texture and structure of the residual chars was maintained,
demonstrating the good efficiency of the coatings on wood at high temperatures, due to the
formation of the Si–O network, suggesting an evident intumescent charring mechanism for
the coated woods. The coating composites also exhibit a better durability during 480 hours’
radiation exposure using UV light (340 nm), which could be attribute to the fact that the
silane coating was cross-linked to form an Si–O network structure under ultraviolet light
irradiation. More importantly, the formation of the Si–O network structure increases the
rigidity of the ligand and reduces the energy loss by non-radiative deactivation. Moreover,
the coordination environment of the rare earth ions was changed back to its original state,
only with a higher symmetry, which could enhance the energy transfer from the ligand to
the rare earth ions in order to convert ultraviolet light into red light efficiently and reduce
the damage caused by ultraviolet radiation on the coating composite, leading to a higher
fluorescence stability. These hybrid silica coatings could therefore be considered as an
effective and environmentally sustainable approach for the protection of wood.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
360/13/1/127/s1, Figure S1: ESI-MS positive mode of organosilicon sol coordinated by europium
(III) dissolved in THF showing the corresponding fragment inset, Figure S2: Geometry structures of
products, Table S1: Fragments assignments according to the experimental data of organosilicon sol
coordinated by europium (III).
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