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Background
Coronavirus disease 2019 (COVID-19) is an acute infectious 
respiratory disease caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2).1 Since December 2019, over 
270 million people have been infected with more than 4 mil-
lion deaths worldwide due to the highly contagious and inva-
sive nature of this virus.2 Although different types of 
COVID-19 vaccines candidate in clinical and preclinical 
development, the variants of the virus may reduce effectiveness 
of these vaccines.3 After the SARS-CoV-2 infection, one-fifth 
of patients may change into severe cases, and the pathologic 
processes associated with severe COVID-19 include massive 
type 2 alveolar epithelial cell death, irreversible inflammatory 
cytokine storm, and impaired immune function.4

Ferroptosis, a new type of cell death, is first proposed by 
Dixon in 2012 and differs from apoptosis and necrosis in terms 
of execution mechanisms and molecular signaling pathways.5 

Ferrpotosis is mediated by reactive oxygen species, mitochon-
drial iron metabolism and concentration of lipid peroxidation 
initiated with enzymatic mechanisms or not.6,7 The main char-
acteristics of ferroptosis are more integrity of the cell mem-
brane structure than that in apoptosis and necrosis, the decrease 
and disappearance of mitochodrial cristea which are the prime 
location of oxidative phosophorylation, and the reduction of 
GPX4 which is one core enzyme of antioxidant.7,8 Moreover, 
Ferroptosis has been implicated in multiple physiological and 
pathological processes of different diseases, including carci-
noma, AKI, neurodegenerative diseases, sepsis, and T-cell 
immunity.9

Recent studies have found that ferroptosis plays a crucial 
role in many diseases and anti-ferroptosis treatments have 
become the hotspots. Qi et al10 revealed that the serum levels 
of inflammatory factors such as Interleukin 1β (IL-1β), 
Tumor Necrosis Factor-α (TNF-α) and Interleukin 6 (IL-6) 
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ABSTRACT

BACkGROunD: A worldwide outbreak of coronavirus disease 2019 (COVID-19) has resulted in millions of deaths. Ferroptosis is a form of 
iron-dependent cell death which is characterized by accumulation of lipid peroxides on cellular membranes, and is related with many physi-
ological and pathophysiological processes of diseases such as cancer, inflammation and infection. However, the role of ferroptosis in 
COVID-19 has few been studied.

MATeRIAl AnD MeThOD: Based on the RNA-seq data of 100 COVID-19 cases and 26 Non-COVID-19 cases from GSE157103, we identified 
ferroptosis related differentially expressed genes (FRDEGs, adj.P-value < .05) using the “Deseq2” R package. By using the “clusterProfiler” R 
package, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. Next, a protein-
protein interaction (PPI) network of FRDEGs was constructed and top 30 hub genes were selected by cytoHubba in Cytoscape. Subsequently, 
we established a prediction model for COVID-19 by utilizing univariate logistic regression and the least absolute shrinkage and selection opera-
tor (LASSO) regression. Based on core FRDEGs, COVID-19 patients were identified as two clusters using the “ConsenesusClusterPlus” R pack-
age. Finally, the miRNA-mRNA network was built by Targetscan online database and visualized by Cytoscape software.

ReSulTS: A total of 119 FRDEGs were identified and the GO and KEGG enrichment analyses showed the most important biologic pro-
cesses are oxidative stress response, MAPK and PI3K-AKT signaling pathway. The top 30 hub genes were selected, and finally, 7 core 
FRDEGs (JUN, MAPK8, VEGFA, CAV1, XBP1, HMOX1, and HSPB1) were found to be associated with the occurrence of COVID-19. Next, the 
two patterns of COVID-19 patients had constructed and the cluster A patients were likely to be more severe.

COnCluSIOn: Our study suggested that ferroptosis was involved in the pathogenesis of COVID-19 disease and the functions of core 
FRDEGs may become a new research aspect of this disease.
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were significantly higher after being stimulated by RSL-3-a 
ferroptosis activator.10 Some ferroptosis-related genes (FRGs) 
via reprograming the tumor immune microenvironment to 
enhance tumor cell invasion and growth.11-13 In addition, fer-
roptosis has been found to play a profound role in pathogen-
esis of pulmonary diseases like pneumonia, interstitial lung 
disease, asthma, and cancer.14,15 A few studies, however, have 
examined the relationship between ferroptosis and COVID-
19. Thus, we hypothesized that ferroptosis might be involved 
in the pathogenesis of COVID-19 and that FRGs may par-
ticipate in its occurrence.

In this study, we surveyed the expression level of FRGs 
in patients with or not with COVID-19 from GSE157103 
and obtained a series of ferroptosis related differentially 
expressed genes (FRDEGs) between the two group patients. 
Subsequently, we analyzed the biological function of FRDEGs 
and constructed the protein-protein interaction (PPI) network 
of them. Utilized one algorithm of cytoHubba plug-in Cytoscape, 
top 30 hub genes were chosen for further analysis. Finally, we 
identified 7 core genes as biomarkers for COVID-19 by com-
bining the expression of hub genes and the clinical date of all 
patients. Therefore, our study showed the potential mechanism 
of ferroptosis in the pathogenesis of COVID-19 and high-
lighted some core FRGs which are related to the occurrence 
and severity of COVID-19, and these findings could provoke 
the new insights into the research of COVID-19.

Material and Methods
Data source and processing

Gene expression Omnibus (GEO) is a largest international pub-
lic repository of high-throughput genomic data and other 
sequencing data for medical research. In our study, the expression 
profile and clinical data of GSE157103 were downloaded from 
GEO. The dataset contains 100 COVID-19 patients and 26 
Non-COVID-19 patients. All blood samples were taken from 
hospitalized patients, and total RNA were extracted for RNA-
seq.16 The flowchat for present research is shown in Figure 1. The 
“Deseq2” package in R language, a tool for analyzing RNA-seq 
data, was used to identify the differential expression level of genes 
in COVID-19 patients compared to Non-COVID-19 patients. 
Differentially expressed genes (DEGs) were identified with 
adj.P-Val < .05 and visualized with volcano plot by the “ggplot2” 
R package. The 333 genes involving in the process of ferroptosis 
pathway were identified as ferroptosis related genes (FRGs) from 
the Molecular Signatures Database (MSigDB, http://www.gsea-
msigdb.org/gsea/msigdb/index.jsp). The ferroptosis related dif-
ferentially expressed genes (FRDEGs) were determined by 
intersecting the DEGs with FRGs and the Venn diagram were 
plotted. The heatmap was plotted to show log2-transformed 
expression data of FRDEGs using the “pheatmap” R package.

To investigate the biological functions and metabolism-
related pathways of FRDEGs, we performed Gene Ontology 

(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses. GO analyses are used 
to classify the functions of gene sets in terms of 3 different 
aspects: biological process (BP), molecular function (MF), and 
cellular component (CC). Likewise, KEGG pathway enrich-
ment analysis can make a clarity and better view of the func-
tions of gene sets. Briefly, the annotation and enrichment 
analysis of FRDEGs were performed using the “ClusterProfiler” 
R package17 and cut off by P < .05. The top 20 results of GO 
and KEGG analysis were visualized using the “ggplot2” R 
package. The GO chord was plotted using the “GOplot” R 
package. A Sankey diagram was plotted using the R package 
“networkD3” to show the specific FRGs involved in KEGG 
pathways.

Establishment of PPI network

In order to better understand the interactions between 
FRDEGs, the PPI network with a cut-off point greater than 
0.4 was created using the STRING18 (https://cn.string-db.
org/) online database and visualized by Cytoscape.19 We used 
the maximal clique centrality (MCC) algorithm of cytoHubba, 
a plug-in of Cytoscape, to rank all FRDEGs by degree score 
and selected top 30 genes as hub genes for further research.20 
In addition, the sub-modules of the PPI network were identi-
fied by ClusterONE plugin in Cytosacpe, with a cut-off value 
of P < .05 and the top 3 sub-modules with lowest P-value were 
visualized.

Establishment of a predictive model of COVID-19

Using the 30 hub genes from the PPI network, we utilized 
univariate logistic regression to identify the link between the 
level of FRDEGs expression and the occurrence of COVID-
19, taking P < .05 as the cut-off value. To further select the core 
genes, the least absolute shrinkage and selection operator 
(LASSO) regression was used for dimension reduction. The 
correlation of core genes in prediction of COVID-19 were 
determined by Spearman correlation analysis using “corrplot” 
R package. Through the respective coefficient of each core 
genes, the formula: predictive score = Σi expression level of core 
genei×coefficienti was constructed to calculate the total score 
of the each sample.

Establishment of the nomogram and validation of 
predictive model

Based on the core FRDEGs identified above, the nomogram 
was created to forecast the risk of COVID-19. The “createDa-
taPartition” R function was then used to randomly split all the 
samples into training (70%) and validation (30%) sets, with a 
random seed being set to ensure consistency of output after 
each run of the code. The reliability of the predictive model 

http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://cn.string-db.org/
https://cn.string-db.org/
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constructed by the core genes was assessed by ROC curve in 
both training and validation sets. Finally, the expression level of 
core genes in these sets was shown by heatmap using “pheat-
map” R package.

Unsupervised clustering of COVID-19 patients

In order to know the subtyping of COVID-19 patients with 
core genes expression, we performed consensus clustering with 
K means algorithms using “ConsenesusClusterPlus” R pack-
age.21,22 We visualized The different expression level of core 
genes and the clinical data in the two cluster patients using 
“ggplot2” R package.

Establishment of miRNA and mRNA network

Based on the 4 differentially expressed genes between the two 
clusters, we got the predictive microRNAs (miRNA) which 

could bind to the messenger (mRNA) using the Targetscan 
online database (https://www.targetscan.org/vert_72/). Then, 
the miRNA-mRNA network with the top 5 highest weighted 
scores were visualized by Cytoscape.

Statistics analysis

All statistical analyses were used a 2-tailed test and P < .05 was 
considered as a significant difference. Relevant analysis is car-
ried out using R software.

Results
FRGs in COVID-19

Comparing the expression level of all genes between the 
COVID-19 patients and Non-COVID-19 patients from 
GSE157103, we identified a total of 8145 DEGs, of which 4338 
were up-regulated and 3807 were down-regulated (Figure 2A). 

Figure 1. The study flow chart.

https://www.targetscan.org/vert_72/
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In order to explore whether there is some correlation between 
ferroptosis occurred in cell death and the pathogenesis of 
COVID-19, all DEGs were intersected with FRGs to seek the 
same genes. As shown in the Venn diagram, a total of 119 
FRDEGs were discovered (Figure 2B). In addition, among the 
FRDEGs we found, 75 of them were up-regulated and the rest 
were down-regulated in COVID-19 patients’ blood cells. Then 
heatmap of the FRDEGs expression in the two groups was 
exhibited (Figure 2C), and it was clear that there are differences 
between the patients with or not with COVID-19 on the level 
of some FRGs expression.

GO and KEGG enrichment analyses of FRDEGs

According to GO analysis, the biological functions of FRDEGs 
were engaged in oxidative stress, outer mitochondrial mem-
brane metabolism, and protein kinase activation (Figure 3A). 
All of these are crucial steps in cell injury and metabolic distur-
bances.23 We showed the specific genes associated with top 10 
BP processes by GO cord plot and found that the up-regulated 
expression genes (CAV1, MYB, EPAS and ATF3) were impli-
cated in oxidative stress and neuronal death, while the down-
regulated expression genes (HSPB1, HBA1, HMOX1 and 
EGLN2) were involved in cellular responses to stresses from 
chemical and external (Figure 3B). The KEGG enrichment 
analysis showed most FRDEGs were significantly involved in 
autophagy, lipid and atherosclerosis, apoptosis, mitophagy, spi-
nocerbellar ataxia, human T-cell leukemia virus 1 infection, 
MAPK signaling pathway and PI3K-Akt signaling pathway 
(Figure 3C), for additional details see in Supplemental Table S1. 

Sankey diagram was depicted to show some important signal-
ing pathways such as apoptosis, autophagy, lipid and atheroscle-
rosis with its explicit genes (Figure 3D).

The PPI network and modules of FRDEGs

Using STRING database to get PPI network of the FRDEGs, 
we selected top 30 genes with highest correlation coefficient 
scores as hub genes by cytohubba for subsequent research 
(Figure 4A). In addition, the core network modules from the 
constructed PPI network were identified by ClusterONE in 
Cytosacpe software. The lower the P-value for each module, 
the higher the polymerization energy and the link between the 
functions of proteins in the module. Finally, 3 modules with 
lowest P-value (module one: P = 1.1 × 10−9; module two: 
P = 2.5 × 10−8; module 3: P = .01) were showed respectively, and 
each of them contain most of hub genes we selected (Figure 
4B–D).

Construction of COVID-19 predictive model

To examine the pathogenesis of the hub genes in COVID-19 
patients, a series of bioinformatic analysis were utilized. First, 
we used univariate logistic regression to determine which hub 
gene is influenced the occurrence of COVID-19, and then 
selected 15 relative genes by a P-value less than .05 (Table 1). 
Subsequently, LASSO regression was applied for feature 
selection and deeply screening of these 15 genes. In 10-fold 
cross-validation, lambda-min was considered the best choice 
(Figure 5A and B), and 7 core genes with their respective 

Figure 2. The FRDEGs in GSE157103. (A) The volcano plot, red represents the up-regulated genes, blue represents down-regulated genes, and gray 

represents stable genes in COVID-19 patients compared with Non-COVID-19 patients. (B) Totally 119 FRDEGs in DEGs. (C) The heatmap of the total 

FRDEGs in two groups. Blue represents low expression and yellow represents high expression in all samples.
Abbreviations: DEGs, differently expressed genes; FRDEGs, ferroptosis related differently expressed genes; FRGs, ferroptosis related genes.
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Figure 3. KEGG and GO enrichment process of FRDEGs. (A) The bubble diagram of GO enrichment analysis. Top 10 of each GO process (BP、MF and 

CC) are shown in the diagram. (B) The top 10 biological processes of FRDEGs are shown by GO cord, blue represents down-regulated genes and red 

represents up-regulated genes. (C) Top 20 pathways by KEGG enrichment of FRDEGs are shown by bubble diagram. (D) Sankey diagram of KEGG 

enrichment analysis and its specific FRDEGs.
Abbreviations: BP, biological processing; CC, cellular component; MF, molecular function.

regression coefficients were obtained. The expression of these 
core genes were significantly different between COVID-19 
and Non-COVID-19 patients (P < .05). It was found that 
HMOX1 and HSPB1 were down-regulated, and the other 5 
genes ( JUN, MAPK8, VEGFA, CAV1, XPB1) were up-regu-
lated (Figure 5C), and the high expression level of HMOX1 
and HSPB1 in Non-COVID-19 patients suggested that 

HMOX1 and HSPB1 were probably be protective factors for 
COVID-19. Additionally, the correlation of the core genes 
was examined, and their pattern was mapped (Figure 5D). The 
results showed that CAV1 had the strongest positive correla-
tion with XBP1 (coefficient = .86), while MAPK8 had the 
strongest negative correlation with HSPB1 (coeffi-
cient = −0.32). Finally, we constructed the predictive scores of 
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Figure 4. The PPI Network of FRDEGs. (A) The interleaved circle diagrams show the protein-related interaction relationships of proteins encoded by 

FRDEGs. The score of each FRDEGs were calculated according to the MCC algorithm, and the inner circle represents top 30 FRDEGs while the 

remaining genes to form the outer circle. (B–D) Top 3 clusters of PPI network by ClutsterONE. Yellow represents the top 30 genes by MCC algorithm, 

green represents the rest genes.

core genes in COVID-19 patients using the results of LASSO 
regression (Table 2), and the scores of COVID-19 patients 
were significantly higher compared to that in Non-COVID-19 
patients (Figure 5E).

Validation of the core genes in COVID-19 patients

The normgram was plotted according to the expression level of 
each core gene and the regression coefficient in the patients 
with and without COVID-19 (Figure 6A). The ROC curve 
was used to test the application value of the constructed model, 
and AUC for the training and validation sets were 0.953 and 
0.897, indicating the high accuracy of the constructed model 
(Figure 6B and C). Moreover, the ROC curve of each core 
genes in the occurrence of COVID-19 was shown in Figure 7. 
As a whole, the AUC range for the core genes was 0.665 to 
0.804, with XBP1 having the highest AUC at 0.804 and 
MAPK8 having the lowest at 0.673. This suggested that the 
core genes identified in this study might play an important role 
in COVID-19 patients and are involved in the pathological 
process of COVID-19. Subsequently, heat maps of the core 
genes were plotted separately in both training set and valida-
tion set, showing that they were significantly differentially 

Table 1. Univariate logistic regression of FRDEGs in the occurrence of 
COVID-19.

FRDEGS R VAlUE P VAlUE

JUN 1.11 .01

MAPK8 −2.25 .02

HRAS −0.94 0

KRAS 0.9 .08

HIF1A 0.96 .01

VEGFA 1.77 .02

RB1 1.26 .01

NRAS 1.83 .02

SP1 1.44 .01

HMOX1 −1.61 0

IDH1 1.13 .01

CAV1 1.96 .02

XBP1 1.93 0

HSPB1 −0.92 0
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Figure 5. Characterization of core genes associated with COVID-19 in FRDEGs. (A) least absolute shrinkage and selection operator (lASSO) coefficient 

profiles of COVID-19 related FRDEGs. (B) lASSO regression by 10-fold cross-validation to choose the best tuning parameter. (C) Box plot shows the 

expression levels of core genes in COVID-19 patients compared with Non-COVID-19 patients. (D) Correlation plot of 7 core genes in all samples. Blue 

represents positive correlation while red represents negative correlation between the core genes. The magnitude of the correlation coefficient is 

represented by the numbers in the circles. (E) Box plot shows the scores of constructed core genes between COVID-19 patients and Non-COVID19 

patients.
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expressed in COVID-19 patients compared to Non-
COVID-19 patients (Figure 6D and E).

Deferent patterns of COVID-19 patients

Based on the 7 core genes identified above, COVID-19 patients 
were divided into cluster A and cluster B by a consistent clus-
tering algorithm (Figure 8A). We observed that the two clus-
ters were different in predictive scores, and the expression levels 
of JUN, MAPK8, CAVI, and XBP1 were significantly higher 
in cluster B patients compared to those in cluster A patients 
(Figure 8B and C). Moreover, there was a significantly greater 
likelihood for cluster A patients to require mechanical ventila-
tion, be admitted to the intensive care unit (ICU), or have com-
plications related to diabetes mellitus (DM) compared to 
cluster B patients (Figure 8D and E). According to these 
results, severe COVID-19 might be related to high expression 
levels of JUN, MAPK8, CAVI, and XBP1.

The miRNA-mRNA network of core genes

Through the differentially expressed genes between two clus-
ters of COVID-19 patients, we predicted miRNAs which 
could bind to its mRNAs using the targetscan database and 
mapping the network in Cytoscape according to the top 5 
weighted congtext score (Figure 9). Surprisingly, miR-199-5p 
is a same predicted target for both CAV1 and XBP1 in the 
ceRNA network, this could theoretically explain the positive 
correlation of expression between the 2 genes, however this 
speculation needs to be confirmed experimentally.

Discussion
COVID-19 epidemic is a serious threat to people’s health, pos-
ing significant socioeconomic burden.24 Additionally, a portion 
of the hospitalized COVID-19 patients may suffer post-
COVID-19 sequelae such as fatigue, depression, dyspnea.25 
There are limited medical intervention strategies to prevent the 
COVID-19.26 Therefore, the deeper we clarify the pathogenic 
mechanisms of this disease, the better treatment efficacy will 
be. Emerging evidence indicated that the multi-organ failures 

rapidly happened in severe COVID-19 cases may due to the 
hemoglobin damage which could lead to iron overload.27,28 
However, it is unclear whether ferroptosis which has iron 
metabolism disorder is involved in the aggravation of 
COVID-19.

At the molecular level, disease-related genes have distinct 
transcription and translation in different physiological or path-
ological states of the same cell type.29 Thus, in order to investi-
gate the interrelationship of ferroptosis and COVID-19, we 
identified FRDEGs through intersecting the DEGs with 
FRGs. The function and regulation of FRDEGs might have a 
potential and crucial role in COVID-19. One biological pro-
cess identified by GO enrichment analysis of FRDEGs in our 
study, oxidative stress, had been shown to increase within cells 
after infections with various viruses, such as the human respira-
tory syncytial virus, rhinoviruses, and influenza virus.30-32 
Moreover, recent studies have shown that the accumulation of 
oxidative stress in endothelium cells aggravates the severity and 
mortality of COVID-19.33,34 KEGG enrichment analysis of 
FRDEGs indicated that the PI3K-AKT signaling pathway 
and MAPK signaling pathway might be involved in the patho-
genesis of COVID-19. PI3K-AKT signaling pathway, a mag-
nifying singling cascade regulated by protein phosophprylation 
and dephosphorylation, is activated after patients who were 
infected with SARS-COV-2 to enhance autophagy, apoptotic 
and inflammation in endothelial cells.35 Apoptosis signal-reg-
ulating kinase 1 (ASK1), a member of the MAP3K family, can 
be activated by erastin, a ferroptosis inducer compound, to pro-
mote cell death and inflammatory response.36,37 Therefore, it is 
worthwhile to demonstrate in the future whether the FRDEGs 
via these biologic processes or pathways take part in the occur-
rence and development of COVID-19.

In this study, PPI network diagram of FRDEGs showed the 
specific top 30 FRDEGs we had chosen for further research. 
The most selected FRDEGs were contained in top 3 modules 
via ClusterONE algorithm, suggesting that in some extent 
they are valuable for research. Finally, we established the pre-
diction model containing 7 core FRDEGs ( JUN, MAPK8, 
VEGFA, CAV1, XBP1, HMOX1, and HSPB1). Coincidentally, 
functions of some core genes were closely associated with the 
development of COVID-19. HMOX1 protein plays an anti-
inflammatory role to attenuate serious conditions such as sep-
sis, tissue injury and fibrinogenesis, all of which are damaged to 
our healthy after bacterial infection as well as SARS-CoV-2 
infection.38 By using spectrometry analysis, it is possible to 
determine that the human HMOX1 protein can bind to the 
SARS-CoV-2 open reading frame 3 a (ORF3a), which can 
then directly activate the NLPR3 inflammasome pathway to 
create the inflammation storm which is thought to be one driv-
ing factor of ARDS.39,40 Moreover, another protective gene 
against COVID-19 we have found is HSPB1, the coding pro-
tein of which has an extracellular anti-inflammation function.41 
Therefore, recent studies are consistent with our findings that 

Table 2. Correlation coefficient of 7 core genes by lASSO regression.

GENE COEFFICIENT

JUN 0.779

MAPK8 −0.925

VEGFA 1.030

HMOX1 −0.828

CAV1 0.006

XBP1 1.489

HSPB1 −0.493
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Figure 6. Identification of core genes from FRDEGs in COVID-19. (A) Normgram of core genes which are related with the risk of occurrence of COVID-19. 

(B and C) ROC curves for the predictive evaluation of 7 core genes in the training and validation sets and the area under the respective curves. (D and E) 

The heatmap of 7 core genes expression in the training set and the validation set. 
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one of protective factor for COVID-19 patients may be the 
high expression levels of HMOX1 and HSBP1. In addition to 
HSPB1 and HMOX1, other core genes are also critical in the 
pathogenesis of virus-associated diseases. JNKs, a group of 
MAPKs containing MAPK8, target JUN which is a member 
of the activator protein 1 (AP1), and the activation of AP1 can 
cause a variety of effects, including cell death after influenza A 
virus infection, migration and differentiation of tumor cells.42,43 
Furthermore, as a major marker of caveolae in endothelial cells, 
CAV1 are increasing expressed by HIV infection and also 
interacts with a lot of intracellular signaling molecules such as 
MAPK and VEGFA.44-46 Therefore, the real functions of these 

core genes in COVID-19 patients are worthy of investigating 
and validating in the future.

The prediction model we constructed by FRDEGs showed 
high AUC value in both training and validation sets. However, 
the accuracy and practicability of the model need to be further 
investigated. Additionally, patients had COVID-19 were clas-
sified into two clusters with the expression level of core genes. 
We found that cluster A COVID-19 patients have a higher 
proportion of ICU admission, ventilator treatment and DM 
than cluster B patients, indicating that cluster A patients are 
more severe. It is also indicated that DM can down-regulate 
the innate immunity function to make worse severity and 

Figure 7. ROC curves of each core genes. (A-G) The ROC curves show the diagnostic value of each core genes in the occurrence of COVID-19. 
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fatality of COVID-19 patients.47 Moreover, we found 4 core 
genes (XBP1, MAPK8, CAV1, JUN) which had different 
expression level between the two clusters patients. These 4 
genes with a higher expression levels in cluster A might be the 
driving factors of severe COVID-19 cases. The miRNAs, one 
type of non-coding RNAs, have been found to be epigenetic 
regulators by binding to their target mRNAs and then sup-
pressing the expression of mRNAs.48 According to recent 
studies, there have been demonstrated that some miRNAs can 
affect the translation of their target mRNAs, such as MiR-199 

can down-regulate the expression of XBP149 and MiR-451 can 
bind CAV1 to alleviate the proliferation of gliobalstoma.50 
Therefore, to find the regulator relationship of miRNA will be 
better to discover the functions of core gene and cure the 
COVID-19 patients.51

There are some limitations of our research. First, additional 
clinical samples are necessary to confirm the expression level of 
FRGs and the value of prediction model of COVID-19 
patients. Furthermore, due to the quarantine management and 
higher infectious rate of COVID-19 patients, it is difficult for 

Figure 8. Two clusters of COVID-19 patients and the different clinical syndrome. (A) The unsupervised clustering of COVID-19 patients by core genes 

and the best rank is k = 2. (B) The prediction scores of core genes between two clusters. (C) Box plot of expression status of core genes in different 

clusters. (D–F) Differences in clinically important indicators between the two cluster patients.
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us to get blood samples to validate the true expression level and 
biological process of FRDEGs in COVID-19.

Conclusions
This study revealed the correlation between the ferroptosis 
and COVID-19 infection and indicated the important bio-
logical processes and signaling pathways which the FRDEGs 
may involve in. The predictive model based on 7 core FRDEGs 
was constructed and was to show a high accuracy. The 
COVID-19 patients can be divided into two clusters by core 
genes, and the cluster A patients were inclined to severe cases. 
Finally, we constructed RNAs network with the different 
expression of core genes in two clusters. However, the molecu-
lar mechanisms of core FRDEGs in COVID-19, as well as 
the functions of miRNAs remain to be confirmed in the future 
experimental studies.
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