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Increased genetic gains in sheep, beef 
and dairy breeding programs from using 
female reproductive technologies combined 
with optimal contribution selection 
and genomic breeding values
Tom Granleese1,2*, Samuel A. Clark2, Andrew A. Swan1,3 and Julius H. J. van der Werf1,2

Abstract 

Background:  Female reproductive technologies such as multiple ovulation and embryo transfer (MOET) and juve-
nile in vitro embryo production and embryo transfer (JIVET) can boost rates of genetic gain but they can also increase 
rates of inbreeding. Inbreeding can be managed using the principles of optimal contribution selection (OCS), which 
maximizes genetic gain while placing a penalty on the rate of inbreeding. We evaluated the potential benefits and 
synergies that exist between genomic selection (GS) and reproductive technologies under OCS for sheep and cattle 
breeding programs.

Methods:  Various breeding program scenarios were simulated stochastically including: (1) a sheep breeding pro-
gram for the selection of a single trait that could be measured either early or late in life; (2) a beef breeding program 
with an early or late trait; and (3) a dairy breeding program with a sex limited trait. OCS was applied using a range of 
penalties (severe to no penalty) on co-ancestry of selection candidates, with the possibility of using multiple ovulation 
and embryo transfer (MOET) and/or juvenile in vitro embryo production and embryo transfer (JIVET) for females. Each 
breeding program was simulated with and without genomic selection.

Results:  All breeding programs could be penalized to result in an inbreeding rate of 1 % increase per generation. 
The addition of MOET to artificial insemination or natural breeding (AI/N), without the use of GS yielded an extra 25 
to 60 % genetic gain. The further addition of JIVET did not yield an extra genetic gain. When GS was used, MOET and 
MOET + JIVET programs increased rates of genetic gain by 38 to 76 % and 51 to 81 % compared to AI/N, respectively.

Conclusions:  Large increases in genetic gain were found across species when female reproductive technologies 
combined with genomic selection were applied and inbreeding was managed, especially for breeding programs 
that focus on the selection of traits measured late in life or that are sex-limited. Optimal contribution selection was an 
effective tool to optimally allocate different combinations of reproductive technologies. Applying a range of penalties 
to co-ancestry of selection candidates allows a comprehensive exploration of the inbreeding vs. genetic gain space.

© 2015 Granleese et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Female reproductive technologies such as multiple ovu-
lation and embryo transfer (MOET) and juvenile in vitro 

fertilization and embryo transfer (JIVET) can be used by 
breeders to accelerate genetic gain in livestock breeding 
programs. These technologies allow an increase of selec-
tion intensity placed on females and they can also reduce 
the optimal age at which animals are selected, and thus 
decrease generation intervals in the breeding program.
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Prior to genomic selection (GS) [1], MOET breed-
ing programs were reported to increase genetic gain 
in dairy breeding programs by up to 30  % by increas-
ing the selection intensity of females [2]. Furthermore, 
if MOET was used and the age of selection candidates 
decreased, breeding schemes would increase genetic gain 
by another 9 % [3]. These gains were similar also in beef 
and sheep breeding programs, for which MOET was esti-
mated to yield an extra 67 to 100 % of genetic gain for 
beef [4, 5] and 17 to 74 % for sheep [6–8]. However, all 
these studies agreed that MOET breeding programs 
would also increase annual rates of inbreeding by up to 
110  % compared to traditional mating programs. Some 
of these increased rates of inbreeding could have even 
been underestimated due to reductions in genetic vari-
ance and to the assumption that the size of a family and 
family numbers were constant [9]. For example, the sto-
chastic simulation of Villanueva et  al. [10] showed that 
inbreeding rates increased by 17 % when there is variabil-
ity between donors in embryo production compared to 
when embryo numbers are assumed fixed.

When JIVET became commercially viable in the 
1990s, selection of donors for JIVET was often based 
on estimated breeding values (EBV) that had low accu-
racy and that were highly correlated among siblings due 
to the great emphasis put on common family informa-
tion. In this scenario, it is difficult to realize high rates of 
genetic gain and maintain sustainable rates of inbreed-
ing. Marker-assisted selection [11] and more recently 
genomic selection [1] have facilitated greater accuracy 
of EBV and lower correlations of EBV between relatives 
[12], particularly in younger stock that have not had any 
performance measurements yet, or if the trait is sex-lim-
ited (i.e. milk production), is hard-to-measure (i.e. car-
cass traits), or has a low heritability (i.e. reproduction).

Recently, some studies have assessed some of the syn-
ergies that may exist between the use of reproductive 
technologies and genomic selection. Using stochastic 
simulation, Pederson et al. [13] found that genomic selec-
tion and MOET on 50 % of nucleus dairy breeding cows 
resulted in a 23 % increase in genetic gain with no signifi-
cant increase in inbreeding. Pryce et al. [14] used a deter-
ministic model for a dairy breeding program to show a 
98  % increase in genetic gain per year when exclusively 
using JIVET and genomic selection compared to a prog-
eny test program, but with an increase of inbreeding rate 
by 65 %. It is important for practical breeding programs 
to consider numbers of female selection candidates con-
signed to MOET and JIVET since both are expensive and 
labor intensive procedures. It is also important to inves-
tigate strategies to slow rates of inbreeding which can be 
accelerated by these technologies.

It is clear from previous studies [3–8, 10, 13, 14] that 
increasing selection intensity for females in breeding 
programs can significantly increase rates of inbreeding. 
Optimal contribution selection (OCS) is a method that 
balances longer-term genetic merit and genetic diver-
sity in breeding populations. OCS can determine the 
optimal levels of the genetic contributions of selection 
candidates but these are often limited by physiological 
parameters under natural mating. OCS could, however, 
be an effective tool to assign female reproductive tech-
nologies to individual females in breeding programs, 
while also assigning optimal contributions to males. For 
a fair comparison and a realistic assessment of the value 
of reproductive technologies and GS and their potential 
synergies, comparisons of breeding programs should be 
done at similar inbreeding rates.

The method developed by Wray and Goddard [15] 
that applies multiple penalties to co-ancestry while 
allocating optimal genetic contributions from selection 
candidates allows the entire selection space between 
genetic gain and inbreeding to be explored rather than 
targeting a specific point as demonstrated by Meuwis-
sen [16]. Wray and Goddard’s [15] method is useful to 
investigate the optimal balance between genetic gain 
and inbreeding. Since OCS allows genetic diversity to be 
maintained and genetic contributions to be optimized, 
the synergies that exist between GS and reproductive 
technologies can be further explored via simulation of 
breeding programs.

The objective of this study was to assess the value of 
using female reproduction technologies combined with 
GS and compare their benefits in beef and dairy cat-
tle and sheep breeding programs, when the aim is to 
increase rates of genetic gain while keeping inbreeding at 
sustainable levels. We applied OCS with various penalties 
on inbreeding and optimized the number of females to be 
used in MOET or JIVET with regard to genetic gain and 
inbreeding.

Methods
Simulation
Stochastic simulation was used to model a number of 
closed nucleus breeding schemes. The number of prog-
eny born each year in a closed nucleus was 250, 250 and 
600 for sheep, beef and dairy cattle, respectively. For each 
scenario, we generated a base population of unrelated 
animals, and subsequently established a 20-year breed-
ing program with overlapping generations. There was an 
annual random death rate of 10 %. Phenotypes and selec-
tion were for a single trait for each breeding program. 
The genetic values for the base individuals were simu-
lated using a polygenic model as:



Page 3 of 13Granleese et al. Genet Sel Evol  (2015) 47:70 

where z is a random variable drawn from a standard nor-
mal distribution and σa is the genetic standard deviation 
of the trait. Breeding values for the subsequent genera-
tions were obtained using:

where asi and adi are the true breeding values of the sire 
and dam of animal i, respectively, and MSi is the Mende-
lian sampling effect for individual i, which was simulated 
as:

where Fi is the average inbreeding coefficient of the par-
ents of individual i. Phenotypes were then simulated by 
adding a random error term to ai, such that each trait had 
a heritability of 0.3 in the base population.

We simulated a number of single-trait scenarios across 
species that differed in gestation length and whether trait 
measurement was before or after selection or sex-limited. 
Phenotypic information was available on selection candi-
dates when the trait could be measured: (1) on both sexes 
within 6  months of age in sheep (e.g. weight and scan 
traits); (2) at 2 years of age in sheep on both sexes (e.g. 
adult wool production); (3) within the first year in beef 
cattle on both sexes (e.g. weaning and yearling weight); 
(4) at 19 months of age, after sexual maturity, in beef cat-
tle on both sexes (e.g. 600 day live weight); (5) a sex-lim-
ited trait measured on females at 27 months of age (e.g. 
milk production).

Eligibility and selection of males
Sheep
Rams were eligible for selection at 7 months of age and 
again at 19 months of age. Thereafter, they were culled if 
not selected at 19 months of age.

Beef cattle
Bulls were eligible for selection at 15 and 27  months 
of age. Thereafter, they were culled if not selected at 
27 months of age.

Dairy cattle
In breeding programs without GS, bulls were eligible for 
pre-selection for progeny testing at 15  months of age. 
Young bulls were selected for progeny testing by con-
ducting the OCS procedure with the 75 highest alloca-
tions of contributions selected. By the age of 4.5  years, 
each bull had 50 daughters (in external herds) with a 
lactation record. The progeny tested bulls were first eli-
gible for mating in the closed nucleus at 4  years of age 

ai = zσa,

ai = ((asi + adi)/2)+MSi,

MSi = z · σa

√

(

.5(1− Fi)
)

,

and all were kept as selection candidates at 5-years of 
age. Any bull not selected at 6 years of age or older was 
culled and all bulls were culled at 9 years of age. Similar 
to Pryce et al. [14], breeding programs that incorporated 
GS made bulls eligible for mating at 15 months old. After 
GS, at 15 months of age, OCS of the top 75 males based 
on optimal contribution was performed and they were 
then used in a progeny-testing program with 50 recorded 
daughters, similar to the breeding program without GS. 
In breeding programs where GS was used, all bulls that 
were selected for progeny-testing were eligible for selec-
tion every year up to 5 years of age.

Genomic selection
Some breeding programs had a scenario where genomic 
selection was used for all animals born in the nucleus. 
Genomic information was modeled following the 
method of Dekkers [17], which simulates a genomic esti-
mated breeding value (GEBV) as a correlated trait with 
a heritability of 0.99 and a correlation r to the measured 
trait, where r is the accuracy of the GEBV. The accuracy 
of the GEBV was assumed to be 0.5 for sheep [18], 0.5 for 
beef cattle [19] and 0.7 for dairy cattle [20]. All animals 
received a GEBV at birth and the GEBV was combined 
with phenotypic information when calculating breeding 
values.

Estimation of breeding values
Each year, EBV were estimated using best linear unbiased 
prediction (BLUP). The model assumed used was:

where y is a vector of phenotypes, µ is the mean, 1n is a 
vector of 1s, Z is a design matrix allocating records to 
breeding values, a is a vector of breeding values with 
var(a) = Aσ 2

a  where A is the numerator relationship 
matrix and σ 2

a  is the additive genetic variance, e is a ran-
dom effect. All data from the base population onwards 
were used for genetic evaluation, including data on the 
progeny of sires that were progeny-tested.

Optimal contribution selection
Optimal contribution selection was implemented using 
the approach of Wray and Goddard’s [15], balancing the 
average genetic merit (M) of selected individuals with the 
average co-ancestry among selected individuals (C), both 
weighted by their contributions to the next generation. 
Average genetic merit of the selected individuals was 
evaluated as:

where â is a vector of EBV and x is a vector of genetic 
contributions of selection candidate animals, with values 

y = 1nµ+ Za + e,

M = x′ â,
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in x summing to 0.5 for each of the sexes. The x vector 
contributions for females were capped at a maximum of 
the equivalent of four offspring per female when MOET 
or JIVET was used and the equivalent of 1 for the sce-
narios with only artificial insemination or natural mat-
ing (AI/N). After contributions were assigned to females, 
the number of required matings could be determined 
for males. The maximum number of matings for a single 
male was then capped at the total number of female mat-
ings. Price and Storn’s [21] evolutionary algorithm was 
used to find optimal solutions for M +  C. Once female 
and male candidates were assigned a mating, they were 
placed on a mating list. Matings were assigned at random 
and females were given a chance of a random number of 
live progeny according to a distribution shown in Table 1. 
One mating could result in multiple progeny via twins 
with AI/N, and via embryos implanted in recipients in 
MOET and JIVET programs.

Inbreeding rates were managed by penalizing the aver-
age co-ancestry among selected animals, which was com-
puted as:

where A is the (n × n) relationship matrix among all can-
didates based on pedigree information and λ is a penalty 
that can be set to result in different rates of inbreeding. 
Price and Storn’s [21] evolutionary algorithm was then 

C = �x′Ax,

used to find optimal contributions as in the vector x by 
maximizing M + C for a given value of λ. These λ values 
evaluated included (0, −15, −25, −35, −50, −75, −100, 
−250, −1000, −9999). The values of λ were selected to 
explore the entire selection space of inbreeding vs genetic 
gain, which when combined, would form a frontier of 
possible outcomes. Smaller penalties will result in higher 
levels of co-ancestry among selected candidates, with 
potentially higher rates of genetic gain and harsh penal-
ties will result in higher genetic diversity with lower rates 
of genetic gain.

Breeding programs
Three breeding program structures were simulated that 
differed in the use of reproductive technologies. The 
first breeding program used only natural mating and/
or AI and was simulated as a control. The second breed-
ing program examined the effect of adding MOET to the 
breeding program, and the third examined the effect of 
MOET and JIVET combined. The number of offspring 
that each dam produced under the various reproduc-
tive technologies was randomly assigned from a range 
of offspring based on previous studies [22–26] (Table 1). 
Females were only offered one chance of being allocated 
a reproductive technology in each selection round. If no 
offspring were born, the female was carried as a dry ani-
mal to the next round of selection.

Table 1  Probability of producing a certain number of live progeny per female per mating for artificial insemination (AI) 
or natural mating (AI/N), MOET and JIVET in different species

AI/N7 probability for a ewe at 12 months of age of having a lamb
a  [22]
b  [23]
c  [24]
d  [25]
e  [26]
f  Predicted average of total progeny of three JIVET matings

Progeny number/program AI/N12a AI/Na AI/Nc AId MOETb,e JIVETb

Species Sheep Sheep Beef Dairy All All

0 0.40 0.10 0.07 0.15 0.10 0.25

1 0.58 0.70 0.92 0.85 0.05 0.05

2 0.02 0.20 0.01 0.00 0.05 0.18

3 0.00 0.00 0.00 0.00 0.15 0.18

4 0.00 0.00 0.00 0.00 0.25 0.10

5 0.00 0.00 0.00 0.00 0.15 0.10

6 0.00 0.00 0.00 0.00 0.13 0.07

7 0.00 0.00 0.00 0.00 0.07 0.04

8 0.00 0.00 0.00 0.00 0.05 0.03

Average number of progeny 0.62 1.1 0.94 0.85 4.02 8.37f

Range of progeny possible 0–2 0–2 0–2 0–1 0–8 0–24
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Breeding program 1: artificial insemination/natural mating 
(AI/N)
Ewes were eligible for selection at 7 and 19  months of 
age. Heifers and cows’ were eligible for selection at 15 
and 27 months of age in the beef and dairy breeding pro-
grams. Ewes and cows were culled if not selected at 19 
and 27 months of age, respectively.

Breeding program 2: AI/N + MOET
Eligibility of females for AI/N or MOET was the same 
as in the AI/N breeding program because MOET can 
only be performed on sexually mature females, including 
young ewes that are just entering puberty [27]. Females 
that were selected to contribute four offspring based on 
OCS were assigned to MOET. Females selected to con-
tribute between one and three offspring were assigned to 
AI/N. Eligibility and culling of females were the same as 
in the AI/N breeding programs. In all MOET programs, 
dams were given the chance of having 0 to 8 offspring, 
with an average of 4 (Table 1). Females were only assigned 
one male mate for each AI/N or MOET breeding.

Breeding program 3: AI/N + MOET + JIVET
The third breeding program added the possibility for 
juvenile females to be candidates for selection through 
the use of JIVET. Only juvenile ewes and heifers were 
eligible for JIVET and they were not eligible for AI/N 
or MOET in either species. Juvenile females that were 
selected in OCS to four offspring were assigned JIVET 
matings. Sexually mature females that were selected 
to contribute three offspring were assigned to MOET, 
females selected to contribute less than three offspring 
were assigned an AI mating, and females that were 
selected to contribute less than one offspring were not 
used.

Due to the possibility of using multiple sires in JIVET, 
three separate matings were assigned to females for 
JIVET in the same mating period, whereas AI/N and 
MOET females only received one mating. Selected juve-
nile females could have between 0 and 8 offspring for 
each of the three matings, with an average of 2.8 live off-
spring per mating (Table 1).

Ewes were 1  month old at selection for JIVET. Sheep 
breeding programs required a mid-year JIVET mating 
since the timing of JIVET-on-JIVET programs do not 
fit into annual breeding programs. During the mid-year 
mating, all ewe selection candidates (including mature 
ewes) were entered into OCS but only JIVET allocations 
were executed despite AI and MOET matings being allo-
cated to the mature ewes. As these matings allocated 
to mature ewes did not yield any progeny, the follow-
ing round of selection ignored those allocated matings. 
OCS took into account if ewes had contributed 6 months 

earlier. In beef and dairy breeding programs, heifers were 
3 months old when assigned to JIVET and did not require 
a mid-year mating like sheep as cattle have a nine month 
gestation period.

Comparison of breeding programs
Each breeding program was run for 20  years and repli-
cated 75 times. Breeding programs were compared based 
on average annual genetic gains and average annual 
rates of inbreeding for years 6 to 20, i.e. after the Bul-
mer equilibrium [28] was reached. Inbreeding was cal-
culated annually as the average inbreeding coefficient of 
the entire drop of animals born that year using pedigree 
information. The average annual inbreeding to be dis-
played in the figures was calculated as the inbreeding 
increase per year averaged from years 6 to 20 of the simu-
lation. Inbreeding per generation was also calculated due 
to overlapping generations existing in the simulations. 
Inbreeding per generation was calculated by matching 
the average inbreeding coefficient over the last 10 years 
with the number of generations in n years where:

where n is the number of breeding years and L is the 
average generation interval over the final 15 years of the 
simulated breeding program. Generation interval for 
each individual was calculated as average age of parents 
at age of birth. The annual generation interval was calcu-
lated as the average generation interval of the entire drop 
born each year.

Results
Differences between breeding programs without genomic 
selection
At moderate (1 % per generation) to high (>1.5 % per gen-
eration) levels of inbreeding MOET outperformed AI in 
all cases by 25 to 50 %. At lower inbreeding levels, MOET 
provided up to 17 to 65 % more genetic gain than AI/N, 
particularly for late (Figs.  1, 2) and sex-limited traits 
(Fig.  3). When inbreeding was heavily penalized, there 
was little genetic gain or inbreeding. In the early meas-
ured sheep trait, JIVET yielded 4 to 10 % more genetic 
gain than MOET (Fig. 4). However, for a late sheep trait 
and for both beef traits and a sex-limited dairy trait, there 
was no significant difference in genetic gain between the 
JIVET and MOET breeding programs (Figs.  1, 2, 3, 5) 
although some matings were allocated to JIVET (Table 2). 
As the penalty on inbreeding increased, generation inter-
vals increased and genetic gain decreased (Table  3). It 
should also be noted that “unpenalized” inbreeding levels 
in Tables  3 and 4 are of the results of setting λ to zero 
which are similar to results from truncation selection.       

NGens =

(

n

L

)

,
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Differences between breeding programs with genomic 
selection
When GS was implemented in breeding programs, pro-
grams using JIVET yielded the largest genetic gain, fol-
lowed by programs using MOET for all species and 
traits (Table 3; Figs. 1, 2, 3, 4, 5). The largest differences 
in genetic gain between JIVET and MOET breeding pro-
grams were observed for late traits in sheep and beef 
cattle and for a sex-limited trait in dairy cattle, with dif-
ferences ranging from 24 to 32  % of genetic gain with 
MOET at moderate inbreeding levels. Differences in 
annual genetic gain between MOET and AI/N were larg-
est for early measured traits, ranging from 41 to 43  % 
of genetic gain with AI (Tables  3, 4). The use of both 
JIVET and MOET decreased generation intervals, with 
programs using JIVET displaying the most significant 
decrease for all species and traits (Table 3).

Impact of genomic selection on breeding programs
The use of GS decreased generation intervals and 
increased genetic gain across all species and traits 
(Table  3). Genomic selection increased genetic gain by 
37 to 143 % for breeding programs using JIVET, 23 to 
77 % for breeding programs using MOET and 23 to 93% 
for AI/N breeding programs (Table 4). These gains were 
proportionally higher for late measured traits in sheep 
(Fig. 1), beef cattle (Fig. 2) and dairy cattle (Fig. 3). The 
use of GS in early measured traits for sheep (Fig. 4) and 
beef cattle (Fig. 5) still produced 20 to 40 % more genetic 
gain when combined with reproductive technologies.

When inbreeding was not heavily penalized (>0.5  % 
inbreeding per generation), the allocation of reproduc-
tive technologies increased with the use of GS. When 
comparing breeding programs with and without GS, 
there were more JIVET matings with GS at the expense 
of MOET matings, and this re-allocation was more pro-
nounced for late measured traits and in dairy cattle 
(Table 3).

Discussion
Breeding programs
Our results show that, as in prior studies, using female 
reproductive technologies increases genetic gain when 
compared to traditional breeding programs. Moreover, 
we found that the use of female reproductive technolo-
gies in combination with the implementation of genomic 
selection increased rates of genetic gain even more. How-
ever, we also observed in all scenarios that if inbreeding 
was not penalized, large inbreeding coefficients could 
be accumulated over time. This study demonstrates 
the benefits of optimizing the allocation of females to 
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reproductive technologies through the use of optimal 
contribution selection, which resulted in increased rates 
of genetic gain under sustainable rates of inbreeding. 
Combining MOET with GS yielded 25 to 50 % more 
genetic gain compared to AI and combining JIVET with 
GS increased genetic gain up to 143 % without increasing 
the rate of inbreeding.

Genomic selection resulted in clear benefits between 
breeding strategies for all traits, species and breeding 
programs using different technologies. When compar-
ing breeding programs with and without GS, increases in 
genetic gains from the use of GS ranged from 33 to 143 % 
for JIVET programs, from 37 to 77  % for MOET pro-
grams and from 29 to 93 % for AI/N programs (Tables 3, 

4). When comparing programs that used GS, JIVET led 
to 15 to 43 % greater genetic gain than MOET breeding 
programs. We also observed a 38 to 76 % greater genetic 
gain for MOET breeding programs compared to AI/N 
breeding programs when GS was implemented in both 
breeding programs. These gains of MOET over AI and 
JIVET over MOET were due to greater accuracies of EBV 
at selection of young selection candidates and lower cor-
relations between the EBV of siblings. Genomic selection 
allows an increase of selection accuracy at the age of first 
selection and this increase is greatest for late and sex-
limited traits. Genomic information increases accuracy 
of EBV by explaining within-family variance due to Men-
delian sampling [12], which is important when selecting 
animals early because without GS there is little informa-
tion about this component. Moreover, the Bulmer effect 
reduces the between-family variance and, therefore, 
contributes less to future genetic gains than the within-
family variance [29]. Dekkers [17] concluded that highly 
accurate (0.8) GEBV could increase genetic gain by 21 
and 81 % over a traditional phenotypic selection program 
for traits with a heritability of 0.3 and 0.1, respectively. 
These extra gains from GS depend on whether traits have 
been measured on selection candidates at the time of first 
selection. In dairy cattle, we used accurate GEBV for GS 
(0.7) and observed that GS increased rates of genetic gain 
in traditional AI programs by 52 % (Tables 3, 4). Using GS 
in sheep and beef cattle programs, with a lower accuracy 
of GEBV (0.5), increased rates of genetic gain by 29 to 
93 %, depending on species and when the trait was meas-
ured (Tables 3, 4). Genomic predictions in beef cattle and 
sheep are typically less accurate than in dairy cattle due 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.5 1 1.5 2 2.5 3 3.5 4

Ge
ne

�c
 g

ai
n 

(g
en

e�
c 

SD
)/

ye
ar

Inbreeding increase (%)/year

Gene�c gain vs inbreeding  - Early trait sheep

AI/N + MOET + JIVET (GS)

AI/N + MOET + JIVET

AI/N + MOET (GS)

AI/N + MOET

AI/N (GS)

AI/N

Fig. 4  Average annual genetic gain (genetic standard deviations) and rate of inbreeding (%) with selection on an early measured trait in sheep 
using reproductive technologies with and without genomic selection. Data points represent different penalties on coancestry, with no penalty on 
the far right and a high penalty on the far left

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 0.5 1 1.5 2 2.5 3

Ge
ne

�c
 g

ai
n 

(g
en

e�
c 

SD
)/

ye
ar

 

Inbreeding increase (%)/year

Gene�c gain vs inbreeding per year - Early trait beef

AI/N + MOET + JIVET (GS)
AI/N + MOET + JIVET
AI/N + MOET (GS)
AI/N + MOET
AI/N (GS)
AI/N

Fig. 5  Average annual genetic gain (genetic standard deviations) 
and rate of inbreeding (%) with selection on an early measured trait 
in beef using reproductive technologies with and without genomic 
selection. Data points represent different penalties on coancestry, 
with no penalty on the far right and a high penalty on the far left



Page 8 of 13Granleese et al. Genet Sel Evol  (2015) 47:70 

to the extensive and multi-breed aspect of these indus-
tries, which makes it more difficult to generate train-
ing populations that sustain high accuracies. Studies in 
sheep that assumed maximum accuracies of GEBV of 0.5 
showed that GS increased genetic gain by 21 % in termi-
nal sire breeds and up to 39 % in fine wool Merino sheep 
[30].

Optimal contribution selection
While many previous studies have evaluated the short-
term benefits of reproductive technologies, they did not 

all explore how the rate of inbreeding can be minimized 
or reduced. Wray and Goddard [15] developed a selec-
tion principle to manage rates of inbreeding through a 
penalty method. Other studies implement OCS by maxi-
mizing genetic gain at a specific rate of inbreeding [16, 
31, 32]. Together, these methods have demonstrated that 
maintaining a high level of genetic gain at set rates of 
inbreeding can be achieved. We used a range of inbreed-
ing penalties to create ‘frontiers’ of genetic gain versus 
inbreeding, thereby clearly showing the balance that 
can be achieved (Figs. 1, 2, 3, 4, 5), rather than targeting 

Table 2  Proportion of selected females assigned each type of mating in each breeding program when rate of inbreeding 
is 1 % (±0.05 %) per generation for sheep, beef and dairy

a  All standard errors of means (SEM) for total numbers of ewes, cows and males were less than 1.2, 2.7 and 0.18, respectively

AI/N MOET JIVET Nb of females selecteda Nb of males useda Nb of females per male

Early trait sheep

 AI/N + MOET + JIVET (GS) 0.37 0.24 0.39 55 23 2.4

 AI/N + MOET + JIVET 0.42 0.37 0.21 65 24 2.7

 AI/N + MOET (GS) 0.41 0.59 95 23 4.0

 AI/N + MOET 0.5 0.5 110 23 4.8

 AI/N (GS) 1 243 28 8.7

 AI/N 1 243 31 8.0

Late trait sheep

 AI/N + MOET + JIVET (GS) 0.36 0.18 0.46 51 28 1.8

 AI/N + MOET + JIVET 0.42 0.29 0.29 59 27 2.2

 AI/N + MOET (GS) 0.34 0.66 110 27 4.1

 AI/N + MOET 0.45 0.55 110 29 3.8

 AI/N (GS) 1.00 245 33 7.4

 AI/N 1.00 244 32 7.7

Early trait beef

 AI/N + MOET + JIVET (GS) 0.24 0.32 0.44 47 19 2.5

 AI/N + MOET + JIVET 0.26 0.35 0.39 57 20 2.9

 AI/N + MOET (GS) 0.34 0.66 98 18 5.4

 AI/N + MOET 0.34 0.66 100 19 5.3

 AI/N (GS) 1.00 276 14 19.7

 AI/N 1.00 277 14 19.8

Late trait beef

 AI/N + MOET + JIVET (GS) 0.25 0.34 0.41 51 14 3.6

 AI/N + MOET + JIVET 0.26 0.40 0.34 57 15 4.1

 AI/N + MOET (GS) 0.32 0.68 97 15 7.7

 AI/N + MOET 0.35 0.65 101 16 5.0

 AI/N (GS) 1.00 277 15 18.1

 AI/N 1.00 279 16 17.2

Dairy

 AI + MOET + JIVET (GS) 0.38 0.28 0.34 143 39 3.7

 AI + MOET + JIVET 0.47 0.35 0.18 167 41 4.1

 AI + MOET (GS) 0.47 0.53 265 40 6.7

 AI + MOET 0.44 0.56 263 34 7.7

 AI (GS) 1.00 646 59 11.0

 AI 1.00 652 41 15.8
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specific inbreeding rates. We were then able to choose 
specific inbreeding rates per generation to compare sce-
narios. While genetic gain somewhat plateaued when 
the rate of inbreeding increased to 1  % per generation 
(Table  3), managers of breeding programs must decide 
which point on the frontier suits their breeding objective.

Our study is unique in that it uses OCS to optimize 
genetic gain with inbreeding in livestock breeding pro-
grams that use female reproductive technologies. It also 
optimally assigned reproductive technologies according 

to how much each mating contributes to the objective 
function of maximizing gain while penalizing inbreed-
ing. Table 2 demonstrates the proportion of females that 
were allocated to different reproductive technologies. We 
observed that, with the added accuracy that is provided 
by GS, the proportions of MOET allocations did not 
change in AI + MOET breeding programs. However we 
observed that with the use of GS in AI + MOET + JIVET 
breeding programs increased JIVET allocations by up to 
86, 20 and 88 % and decreased MOET allocations by up 

Table 3  Average generation interval (L) and  annual genetic gain (ΔG in σa units) across  75 replicates at  various rates 
of inbreeding (±0.05 %) per generation for sheep, beef and dairy traits

All standard errors of means (SEM) were less than 0.11 and less than 0.003 for all breeding programs for generation interval and genetic gain, respectively

Inbreeding rate  
(%/generation)

0.5 1.0 Unpenalized

L ΔG L ΔG L ΔG

Early trait sheep

 AI/N + MOET + JIVET (GS) 1.06 0.67 1.01 0.77 0.92 0.85

 AI/N + MOET (GS) 1.73 0.43 1.39 0.63 1.23 0.75

 AI/N (GS) 2.04 0.39 1.94 0.44 1.84 0.50

 AI/N + MOET + JIVET 1.30 0.40 1.19 0.59 0.98 0.63

 AI/N + MOET 1.73 0.37 1.48 0.51 1.27 0.57

 AI/N 2.16 0.32 2.02 0.34 1.90 0.41

Late trait sheep

 AI/N + MOET + JIVET (GS) 1.07 0.46 1.03 0.51 1.01 0.58

 AI/N + MOET (GS) 1.64 0.34 1.43 0.39 1.41 0.46

 AI/N (GS) 2.25 0.25 2.08 0.29 1.96 0.35

 AI/N + MOET + JIVET 1.49 0.20 1.42 0.21 1.32 0.22

 AI/N + MOET 3.20 0.21 3.12 0.22 3.03 0.23

 AI/N 3.24 0.14 3.13 0.15 3.06 0.15

Early trait beef

 AI/N + MOET + JIVET (GS) 2.28 0.41 2.1 0.49 1.99 0.57

 AI/N + MOET (GS) 2.93 0.36 2.71 0.41 2.59 0.48

 AI/N (GS) 3.92 0.27 3.69 0.29 3.70 0.34

 AI/N + MOET + JIVET 2.63 0.25 2.27 0.31 2.19 0.36

 AI/N + MOET 3.10 0.26 2.9 0.3 2.68 0.34

 AI/N 4.04 0.20 3.92 0.21 3.86 0.26

Late trait beef

 AI/N + MOET + JIVET (GS) 2.38 0.36 2.24 0.41 2.14 0.42

 AI/N + MOET (GS) 3.10 0.29 2.97 0.33 2.86 0.35

 AI/N (GS) 4.08 0.22 3.93 0.26 3.92 0.28

 AI/N + MOET + JIVET 2.72 0.21 2.58 0.23 2.51 0.24

 AI/N + MOET 3.36 0.21 3.19 0.23 3.00 0.23

 AI/N 4.18 0.17 4.15 0.17 4.03 0.18

Dairy

 AI + MOET + JIVET (GS) 1.92 0.54 1.86 0.58 1.79 0.67

 AI + MOET (GS) 2.66 0.40 2.58 0.44 2.46 0.51

 AI (GS) 3.55 0.28 3.41 0.32 3.35 0.35

 AI + MOET + JIVET 4.09 0.24 3.97 0.26 3.91 0.28

 AI + MOET 4.62 0.24 4.52 0.26 4.47 0.28

 AI 5.55 0.18 5.39 0.21 5.28 0.24
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to 38, 15 and 20  % for sheep, beef cattle and dairy cat-
tle breeding programs, respectively. In conjunction with 
a shift in the selection of more JIVET candidates, we 
observed a decrease in generation intervals (Table  3). 
We also observed that the number of males selected each 
year differed only slightly between programs (Table  2). 
It should be noted that males are generally used below 
their maximum reproductive capacity. The use of males 
below their natural or artificial insemination capabilities 
was needed to maintain diversity without sacrificing too 
much genetic gain. The concept of reducing inbreeding 
while implementing reproductive technologies by using 
more sires under their reproductive capacity has been 
described previously by Kinghorn [33], Arendonk and 

Bijma [34], Pryce et al. [14] and Lillehammer et al. [35] in 
dairy, and by Brash et al. [8] in sheep breeding schemes.

Comparing with previous studies
Our study estimated that the benefit of MOET in sheep 
breeding programs without using GS, was up to 50  % 
while maintaining the rate of inbreeding at 1 % per gen-
eration. Previous studies [7, 8] using MOET in sheep 
breeding programs also predicted such gains but with-
out restricting inbreeding rates. Our beef MOET breed-
ing programs achieved 35 to 43 % more genetic gain 
than AI programs without GS which was less than pre-
vious studies, which reported extra gains of 67 to 138 % 
[7, 9, 10], but we achieved these gains at the same rate 

Table 4  Increase (%) in  rate of  genetic gain per  year of  breeding programs using MOET and  JIVET compared to  the 
AI/N breeding program (Repro) and increase (%) in rate of genetic gain per year from the use of genomic selection (GS) 
on each breeding program at various rates of inbreeding (±0.05 %) per generation for sheep, beef and dairy traits

Inbreeding rate (%/gen) 0.5 1.0 Unpenalized

Repro GS Repro GS Repro GS

Early trait sheep

 AI/N + MOET + JIVET (GS) 72 68 75 31 70 35

 AI/N + MOET (GS) 10 16 43 24 50 32

 AI/N (GS) 22 29 22

 AI/N + MOET + JIVET 25 74 54

 AI/N + MOET 16 50 39

Late trait sheep

 AI/N + MOET + JIVET (GS) 84 130 76 143 66 163

 AI/N + MOET (GS) 36 62 34 77 31 100

 AI/N (GS) 79 93 133

 AI/N + MOET + JIVET 43 40 47

 AI/N + MOET 50 47 53

Early trait beef

 AI/N + MOET + JIVET (GS) 52 64 69 58 68 58

 AI/N + MOET (GS) 33 38 41 37 41 41

 AI/N (GS) 35 38 31

 AI/N + MOET + JIVET 25 48 38

 AI/N + MOET 30 43 31

Late trait beef

 AI/N + MOET + JIVET (GS) 64 71 58 78 50 75

 AI/N + MOET (GS) 32 38 27 43 25 52

 AI/N (GS) 29 53 56

 AI/N + MOET + JIVET 24 35 33

 AI/N + MOET 24 35 28

Dairy

 AI + MOET + JIVET (GS) 93 125 81 123 91 139

 AI + MOET (GS) 43 67 38 69 46 82

 AI (GS) 56 52 46

 AI + MOET + JIVET 33 24 17

 AI + MOET 33 24 17
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of inbreeding per generation, while rates of inbreeding 
increased by 87 to 300 % in the aforementioned studies. 
Use of MOET in our dairy breeding program resulted 
in 24  % extra genetic gain without increasing the rate 
of inbreeding. This is similar to the values reported by 
Kinghorn [33] and Leitch et al. [3], who estimated simi-
lar gains in dairy cattle nucleus breeding programs that 
implemented MOET compared to traditional AI nucleus 
breeding programs but with larger increases in rates of 
inbreeding (1.7 to 4.2 % increase per year). Without GS, 
all traits and species benefited from the use of MOET. 
However, except for the early measured trait in sheep, 
which yielded 4 to 10 % greater annual genetic gain, the 
use of JIVET without GS did not yield extra genetic gain 
compared to AI +  MOET programs in late trait sheep, 
beef and dairy cattle breeding programs, although some 
JIVET matings were allocated to juveniles (Table 2). The 
lower allocation of JIVET matings is likely due to the low 
accuracy of EBV and the high correlation between EBV of 
full siblings at a young age. This demonstrates that, even 
without accounting for the additional cost of JIVET, this 
technology may not give an advantage to breeding pro-
grams when using optimal contribution selection across 
age classes, at least without GS.

Previous studies have also evaluated breeding programs 
that implement female reproductive technologies with 
GS in comparison to traditional programs. Pryce et  al. 
[14] deterministically modeled a closed nucleus of Hol-
stein cattle in which 300 juvenile females that were sub-
mitted to JIVET were mated only to genomically selected 
sires and compared the rates of genetic gain and inbreed-
ing to a progeny-testing AI breeding program. The JIVET 
program resulted in a 131 % increase in genetic gain and 
a 7 % decrease in rate of inbreeding, which they obtained 
by increasing the number of sires of bulls and cows. Their 
breeding program resulted in 0.59 genetic standard devi-
ations of genetic gain per year at a 0.17 % rate of inbreed-
ing per year. The most comparable scenario in our study 
is the AI + MOET + JIVET (GS) program vs. AI. With a 
rate of inbreeding of 0.17 % per year for both programs, 
we observed that AI + MOET + JIVET (GS) resulted in 
a 145 % greater genetic gain per year than the AI breed-
ing program, with gains of 0.54 and 0.22 genetic standard 
deviations per year, respectively (Fig. 5). The genetic gain 
that we obtained in the dairy cattle AI + MOET + JIVET 
(GS) breeding program was not quite as large as that 
in Pryce et  al. [14]. This could be due to our stochastic 
simulation also using MOET and AI technologies which 
resulted in higher generation intervals and lower selec-
tion intensities compared to Pryce et  al.’s [14] 100  % 
JIVET each year.

Rates of inbreeding
Breeding programs resulting in high rates of inbreed-
ing should be avoided due to the likelihood of declines 
in fitness [36, 37] and homozygous recessive genotypes 
that are lethal [38]. However, if inbreeding is penalized 
too heavily, genetic diversity is maintained but with low 
rates of genetic gain (Figs. 1, 2, 3, 4, 5). Therefore, a com-
promise must be made to achieve desirable amounts of 
genetic gain without increasing inbreeding too much. 
Figures 1, 2, 3, 4 and 5 show rates of inbreeding per year, 
but past studies suggest using inbreeding rate per gen-
eration as a metric as it can be used to compare different 
breeding programs with different generation intervals. 
Bijma [39] suggested restricting rates of inbreeding to 
1 % per generation, which was supported by Buch et al. 
[40].This desired rate of inbreeding will differ between 
producers due to varying concerns about the impor-
tance of inbreeding, the size of the nucleus, the ability to 
import unrelated animals into the nucleus, the effective 
population size of the breed as a whole, and the incidence 
of recessive homozygous genetic diseases [41].

Simulation restrictions
In this study, GEBV were simulated as a correlated trait 
with a heritability of 1 and a genetic correlation with the 
trait equal to the accuracy of the GEBV [24]. Genomic 
selection can also be simulated by simulating quanti-
tative trait loci (QTL) and genetic markers. However, 
because we did not simulate genotypes, predicting the 
linkage disequilibrium (LD) patterns across generations 
[42] between markers and QTL was not addressed in our 
simulations. Family sizes that increase in a nucleus over 
generations through the use of MOET and JIVET could 
slightly increase the accuracy of the individual GEBV 
of those family members [43]. However, predicting the 
changes in gene frequencies of the nucleus population 
using an infinitesimal model could be difficult to deter-
mine over a period longer than three generations [44]. 
An alternative method that simulates the actual marker 
genotypes could be used to capture the change in LD 
structure over time due to selection [45]. Some stud-
ies [46–48] have studied the efficacy of genomic selec-
tion when performed over many generations, and where 
only a few QTL control genetic variation. They suggest 
that the effects of markers do not change but the propor-
tion of genetic variance explained by them will decline, 
which means that the effects of genomic selection may be 
over-estimated in our simulations. However, it has been 
suggested that hundreds or thousands of QTL may con-
trol variation for a given trait [49, 50]. Heffner et al. [51] 
demonstrated that if all QTL effects are small, as in an 
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infinitesimal model, genomic selection could maintain 
accuracies over multiple generations due to the change in 
LD between QTL and markers being less important over 
a longer time period. Therefore, given both sides of the 
argument it is difficult to predict whether the method of 
Dekkers [17] over- or under-estimates genetic gains from 
genomic selection.

In our study, we used a pedigree-derived relation-
ships matrix (A) to measure inbreeding and also during 
OCS. Some authors have shown that using a genomic 
relationship matrix (G) in OCS has some advantages 
over using A by achieving similar rates of genetic gain 
with slightly lower rates of inbreeding [52, 53]. This is 
achieved because G accounts for differences in the level 
of relatedness within families. Using G would however 
increase computing time for an already time-consuming 
simulation.

This study did not take the costs of technology into 
account. If they were, we expect that the use of repro-
ductive technologies would decrease. In some cases, 
reproductive technologies were assigned although the 
additional genetic benefit was limited, in particular when 
inbreeding was highly penalized. Therefore, this study 
evaluated the maximum use and benefit in terms of 
genetic gain. Including costs will, however, give a more 
realistic picture of potential use. A cost benefit assess-
ment will also focus more on how genetic gain is trans-
lated into actual monetary benefit for the breeder who 
carries the burden of the additional investment.

Conclusions
Reproductive technologies combined with genomic 
selection can substantially enhance rates of genetic gain 
without compromising rates of inbreeding when opti-
mal contribution selection is used with an incurred pen-
alty on future co-ancestry. Without genomic selection, 
the use of JIVET in conjunction with MOET is not ben-
eficial. These results suggest that synergies exist between 
the applications of reproductive technologies, genomic 
selection and optimal contribution selection. Optimal 
contribution selection was an effective tool in optimizing 
the allocations of combined reproductive technologies. 
The full exploration of the frontier between inbreeding 
vs. genetic gain production was facilitated by applying a 
range of penalties to co-ancestry of selection candidates.
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