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A B S T R A C T

Multi-dimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) has made profound advances for
comprehensive analysis of cellular lipids. It represents one of the most powerful tools in analyzing lipids directly
from lipid extracts of biological samples. It enables the analysis of nearly 50 lipid classes and thousands of
individual lipid species with high accuracy/precision. The redox imbalance causes oxidative stress, resulting in
lipid peroxidation, and alterations in lipid metabolism and homeostasis. Some lipid classes such as oxidized fatty
acids, 4-hydroxyalkenal species, and plasmalogen are sensitive to oxidative stress or generated corresponding to
redox imbalance. Therefore, accurate assessment of these lipid classes can provide not only the redox states, but
also molecular insights into the pathogenesis of diseases. This review focuses on the advances of MDMS-SL in
analysis of these lipid classes and molecular species, and summarizes their recent representative applications in
biomedical/biological research. We believe that MDMS-SL can make great contributions to redox biology
through substantiating the aberrant lipid metabolism, signaling, trafficking, and homeostasis under oxidative
stress-related condition.

1. Introduction

1.1. Lipid, lipidomics, and multi-dimensional mass spectrometry-based
shotgun lipidomics

Lipids involve numerous biological processes and play many crucial
roles in cellular functions, including cellular barriers, signaling, energy
storage, and growth and survival. Therefore, perturbations in lipid
homeostasis are closely associated to diverse phenotypes and disease
states, such as obesity, diabetes, cancer, neurodegenerative disorders,
and autoimmune diseases [1–5]. It is clear that investigation of lipid
alterations can make great contributions to elucidate disease pathogen-
esis and discover potential biomarkers for early diagnosis of diseases
and drug efficacy.

However, cellular lipids are highly diverse and complex. These
lipids consist of different polar head groups, backbones, and various
aliphatic chains which connect to backbones in different linkages. The
aliphatic chains are different in length (i.e., different numbers of carbon

atoms), different degrees of unsaturation, different locations of double
bonds, and potential branches, etc [6]. It is predicted that tens of
thousands to hundreds of thousands possible lipid species exist in
cellular lipidome at the levels of amol/mg to nmol/mg of protein [7,8].
Moreover, many new lipid species are continually being discovered [9].

In addition to their diversities in chemical structures, lipids are also
highly dynamic. Lipid molecular species and compositions are varied
from species, cell types, cellular organelles, and subcellular membrane,
leaflets of membrane bilayers, and membrane microdomains (i.e., rafts)
[10]. They are dynamically changing with life cycle, environmental
conditions, or pathological perturbation [11–13]. Furthermore, their
metabolism is interwoven via numerous pathways and networks [14].

After genomics and proteomics, lipidomics was also coined in early
2000 as a disciplinary field to investigate all lipids in a large scale and
at the levels of intact molecular species [15,16]. It has been demon-
strated that lipidomics analysis serves as a powerful tool for under-
standing the biochemical mechanisms underlying lipid-related disease
processes through quantifying the changes of individual lipid classes,
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subclasses and molecular species and identifying the altered pathways
and networks underlying changed lipid classes, subclasses, and mole-
cular species [14]. In recent years, lipidomics has made great advances
due to the rapid development in novel analysis strategies and
approaches [17], and new instruments and techniques of MS [18].

Depending on whether LC separation is coupled to a mass spectro-
meter, MS-based lipidomics can be classified into two major categories,
i.e., LC-MS-based and direct infusion-based lipidomics. The latter one is
usually termed shotgun lipidomics. Based on the unique features and
the mass spectrometers employed, at least three different approaches of
shotgun lipidomics, including tandem MS-based, high mass accuracy
MS-based, and multi-dimensional MS-based (MDMS-SL), have been
developed and well documented in the literature [6,19].

MDMS-SL, which maximally exploits the unique chemical and
physical properties inherent in discrete lipid classes enabling for
analysis of very low-abundance levels, overcomes the majority of the
limitations of other shotgun lipidomics approaches and has many
significant advantages [6,19]. At its current development, this platform
allows the researchers to analyze nearly 50 lipid classes and thousands
of individual lipid species with>90% accuracy [17], including identi-
fication of fatty acyl positional isomers [20] and fatty acid isomers [21]
of the species. The typical workflow of MDMS-SL analysis of biological
samples is schematically illustrated in Fig. 1.

1.2. Overview of conventional methodology for analysis of lipids indicative
of oxidative stress

Oxidative stress arises due to redox imbalance between the oxida-
tive and anti-oxidative systems of cells and/or tissues. It results in the
over productions of oxidative free radical and reactive oxygen species
(ROS), which could attack cellular proteins, lipids, and nucleic acids
leading to cellular dysfunction [22]. A large number of studies have
demonstrated that oxidative stress is tightly associated with many
diseases [22–26]. The changed levels of a variety of lipids are indicative
of oxidative stress. For example, 4-hydroxyalkenal species and eicosa-
noids are lipid peroxidation products generated through complex
enzymatic and nonenzymatic reactions [27,28], and plasmalogens
serve as one of endogenous antioxidants [29]. Many methods have
been developed to measure the levels of these classes of lipids present in
biological fluid and tissue samples, including immunoassay methods
[30], separation-based MS methods (i.e., GC-MS, normal phase LC-MS,
and reversed phase LC-MS) [31], and shotgun lipidomics [17]. All of
these methods have advantages and limitations. Enzyme-linked im-
munosorbent assays are popular and simple to perform and accessible
to most of laboratories, but the questionable specificity when so many
isomers can cross-react with the various antibodies has limited their
utilities [32]. HPLC methods coupled with UV detection are only useful

for analysis of relatively high abundance metabolites [33]. More
attention should be paid to uniform derivatization and interfering
substances when using derivatization coupled with fluorescence detec-
tion [34]. Although MS-based approaches are sometimes complex and
require sample preparation involving extraction and purification, they
are the “gold standard” methods for allowing researchers to measure all
of the different species [35–37]. Compared with shotgun lipidomics,
separation-based MS methods need more internal standards [38].
Chromatographic separation leads to the differential elusion of internal
standard and analytes, whereas co-elution of an analyte with its
standard is very important to compensate for matrix effects and varying
ionization efficiencies during gradient elution [38]. Both 4-hydroxyalk-
enal species and eicosanoids are instable and would decompose during
the procedure of chromatographic separation. In addition, separation-
based MS methods are generally time-consuming, which is not suitable
for larger sample profiling [39].

In last few years, MDMS-SL for analysis of these oxidative stress-
related lipid species has been developed rapidly. Although a serial of
reviews on shotgun lipidomics have been published [6,14,17], they
have different focuses. In this review, we first introduce the principles
of MDMS-SL for 4-hydroxyalkenal species, eicosanoids, and plasmalo-
gens, and then summarize their recent representative applications
under different disease states. Finally, we discuss the advantages of
MDMS-SL for analysis of these oxidative-stress-related lipids and how to
further explore the methods in future work.

2. Quantitative analysis of lipid molecular species associated with
redox biology by shotgun lipidomics

2.1. Shotgun lipidomics of 4-hydroxyalkenal species

Among the cellular components, phospholipids, which usually
contain high levels of polyunsaturated fatty acids (PUFAs), are the
most sensitive to be attacked by ROS induced by oxidative stress [40].
4-Hydroxyalkenal species, a class of α, β-unsaturated aldehyde, are
considered to be one of the most reactive electrophilic end-products of
lipid peroxidation generated from PUFAs. Therefore, the levels of 4-
hydroxyalkenal species are the indicator of the oxidative stress of a
biological system. 4-Hydroxyalkenal species are highly reactive due to
the presence of three reactive functional groups in the chemical
structure: a carbonyl group on C1, a conjugated double bond (alkene)
between C2 and C3, and a hydroxyl group on C4 (Fig. 2). These groups
make the 4-hydroxyalkenal species highly reactive toward nucleophilic
thiol and amino groups, and can readily form covalent adducts with
various cellular (macro)molecules (e.g., lipids, proteins, and nucleic
acids). The interactions could lead to inhibition of protein and DNA
synthesis, dysregulation of enzyme activities, alteration in mitochon-

Fig. 1. Schematic illustration of the workflow of MDMS-SL for analysis of cellular lipidomes directly from crude extracts of biological samples [20,21].
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drial coupling, etc [41,42]. Moreover, compared with free radicals,
these species are relative stable and can easily escape from initial
generation sites to propagate the oxidative injury, thus to serve as
“toxic second massagers”. Many investigations have demonstrated that
the accumulation of those 4-hydroxyalkenal adducts is linked to the
pathogenesis of diverse cardiovascular diseases, liver inflammation,
renal failure, autoimmune diseases, and neurodegenerative disorders,
as well as aging [43–48].

4-Hydroxyalkenal species are generated from a variety of complex
enzymatic and nonenzymatic reactions during diverse physiological
and pathophysiological processes as illustrated in Fig. 2 [49]. Briefly, 4-
hydroxy-2E-nonenal (4-HNE), usually the most common species among
the 4-hydroxyalkenal family in most of biological systems, is generated
by peroxidation of n-6 PUFAs, such as arachidonic, linoleic, and other
n-6 PUFAs, as well as their 15-lipxoygenase metabolites (i.e., 15-
hydroperoxyeicosatetraenoic acid, and 13-hydroperoxyoctadecadienoic
acid); 4-hydroxy-2E,6Z-dodecadienal (4-HDDE) is exclusively produced
from 12-lipxoygenase metabolites of arachidonic acid (e.g., 12-hydro-
peroxyeicosatetraenoic acid); 4-hydroxy-2E-hexenal (4-HHE) is the
peroxidative product of n-3 PUFAs (e.g., linolenic, eicosapentaenoic,
and docosahexaenoic acids); and other 4-hydroxyalkenal species (e.g.,
4-hydroxynondienal (4-HNDE) and 4-hydroxydodecatrienal (4-HDTE))
can also be produced through peroxidation of PUFAs [50].

Although the enzymatic and nonenzymatic reactions of lipid
peroxidation are very complicated, it has been demonstrated that the
enzymatic pathway of lipid peroxidation is strictly consistent with the
particular expression of the various types of lipoxygenases [49,51,52].
Therefore, the changes of different 4-hydroxyalkenal species truly
reflect the activities of corresponding lipoxygenases and the extent of
oxidative stress.

To understand the formation and biological roles of 4-hydroxyalk-
enals, an important aspect is to detect and measure the levels of these
species in biological systems. 4-Hydroxyalkenals are present in very low
abundance, very unstable, and unionizable. Varieties of methodologies
have been developed and used to identify and quantify individual 4-
hydroxyalkenal species and their adducts [47,53–58]. Our group
exploited the facile Michael adduct of carnosine (β-alanyl-L-histidine)
with 4-hydroxyalkenals to develop a sensitive, simple, high-throughput,
and accurate MDMS-SL method for identification and quantification of
these compounds [50].

Briefly, a stable isotope-labeled d3-4-HNE as an internal standard is
added before lipid extraction and reaction of the carnosine with 4-
hydroxyalkenals is relatively quick. After working up the reaction

mixture with a modified Bligh-Dyer procedure, the aqueous phase is
retained, evaporated, resuspended with a small volume of methanol/
water (1:1 by volume), and directly infused into a mass spectrometer
for characterization and quantitation of 4-hydroxyalkenals [50]. It has
been demonstrated that (1) in ESI-MS analysis, the ionization efficiency
of the generated carnosine adducts is significantly enhanced in
comparison to the native form of 4-hydroxyalkenal species in the
positive-ion mode; (2) product ion MS analyses of the formed adducts
display many abundant, informative, and characteristic fragment ions,
which can be used not only to identify and quantify 4-hydroxyalkenals,
but also to discover other novel 4-hydroxyalkenals (e.g., 4-HNDE and 4-
HDTE); and (3) the derivatization can stabilize 4-hydroxyalkenals for
prevention of their losses during analysis. Based on the advantages of
the derivatization, a sensitive and facile MDMS-SL method has been
developed for quantification of 4-hydroxyalkenal species directly from
chloroform extracts (Fig. 3). This method has been exploited to
determine the mass levels of different 4-hydroxyalkenal species in
various biological samples from clinic and animal models, such as the
heart, kidney, liver, brain, skeletal muscle, and plasma/serum
[23,50,59,60].

2.2. Fatty acidomics of oxidized fatty acids for analysis of eicosanoids,
docosanoids, nitrosylated FA, halogenated FA, and others

Fatty acids (FAs) are a large family of lipids including nonesterified
(i.e., saturated and unsaturated) and modified FAs (e.g., all oxidized,
halogenated, and other modified FAs). All of them contain at least one
carboxylic group and a long aliphatic chain. Like 4-hydroxyalkenals,
oxidized FAs are also generated by a variety of complex enzymatic and
nonenzymatic oxidations of PUFAs [61]. These lipids function as
cellular signaling molecules in diverse critical physiological and
pathological processes, including cell growth and development, blood
coagulation, kidney function, immune responses, and, most notably,
inflammation [62–65]. In addition, some isomers of them might have
cooperative/opposite biological properties, so it would be difficult to
explain the molecular mechanisms by determining only a limited
number of these molecules [66]. Simultaneously measuring a wide
range of them could better understand their roles in different processes
and provide a set of biomarkers for disease diagnosis or prognosis.

However, identification and quantification of these lipids are a huge
challenge, because they (1) are present at extremely low concentration
in biological systems; (2) are not very stable; and (3) have many
isomeric species. In addition to the difference in chain length, number

Fig. 2. Mechanisms of 4-hydroxyalkenal species production [49]. PUFA abbreviates polyunsaturated fatty acid. 15-HpETE, 12-HpETE, and 13-HpODE stand for 15-hydroperoxyeico-
satetraenoic acid, 12-hydroperoxyeicosatetraenoic acid, and 13-hydroperoxyoctadecadienoic acid.
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of double bonds, and locations of these double bonds in acyl chain, the
PUFA can be oxidized in different positions of its acyl chain. Thus, there
exist a huge number of oxidized FAs with similar chemical structures.
Although many different methods for analysis of them with different
applications have been developed, only a subgroup or a few subgroups
of these lipids have been analyzed at a time in each method [32,33,37].
Moreover, numerous internal standards should be added for accurate
quantification of these molecules [61].

Based on the charge-fragmentation nature in mass spectrometry, we
have developed a MDMS-SL based approach for global analysis of
cellular lipid species containing a functional group of carboxylic acid,
including identification of chain length, double bond number and
locations, modified group(s) and locations, etc., and quantification of
these species including individual isomeric species with only one
internal standard per family (Fig. 4) [21].

Specifically, a permanent charge site is introduced to the com-
monly-carried carboxylic acid of these lipids through an amidation
reaction as previously reported [67]. The derivatization reaction
significantly enhances the ionization efficiency and yields a lot of
informative structural fragments in product ion MS analysis after
collision-induced dissociation (CID). After a variety of charge-carried
reagents have been tested, it has been found that all the derivatives
with these reagents could yield informative charge-remote fragmenta-
tion patterns [21]. Furthermore, these fragmentation patterns could be
used to identify the lipids containing a carboxylic acid including their
isomers [21]. As an example, the product ion MS spectra of hydro-
xyeicosatetraenoic acid (HETE) isomeric derivatives with N-(4-amio-
methylphenyl)pyridinium (AMPP) are shown in Fig. 5.

Intriguingly, the fragmentation patterns of individual isomers are so
different that the compositions of those isomers can be readily
determined through simulating the tandem MS spectrum of the mixture
of the isomers with the tandem MS spectra of individual isomers using

multiple linear regression analysis [21]. Therefore, quantification of the
identified lipid species containing carboxylic acid including isomers can
be achieved by MS analysis only after derivatization without chromato-
graphic separation. In the study, it has been demonstrated that the
developed MDMS-SL approach works for analysis of almost all kinds of
oxidized FAs, such as HETEs, diHETEs, epoxyeicosatrienoic acids
(EETs), nitrosylated FAs, etc. Using this approach surely facilitates
identification of the biochemical mechanisms underlying diverse
pathological conditions [21].

2.3. Measurement of plasmalogen molecular species and metabolites for
assessment of oxidative stress

Plasmalogens (1-O-alk-1′-enyl-2-acyl-glycerophospholipids) are a
unique subclass of phospholipids characterized by the presence of a
vinyl-ether bond at the sn-1 position, mainly including plasmenylcho-
line (pPC) and plasmenylethanolamine (pPE) [68]. Plasmalogens gen-
erally account approximately 10 mol% of the total phospholipid mass
[29]. However, they could be very abundant in some organs [29,69].
Plasmalogens play many crucial roles in cellular functions, including
reservoirs for second messengers, working as endogenous antioxidants,
as well as serving as essential structural components of the cellular
membranes [29,70]. It has been demonstrated that aberrant metabo-
lism of plasmalogens is closely associated with insulin resistance [71],
atherosclerosis [72], neurodegeneration (i.e., Alzheimer's disease,
Parkinson's disease, Down syndrome, and Niemann-Pick type C)
[5,73], fatty alcohol accumulation in fibroblasts [74], aging [75], and
ischemia-reperfusion injury [76], etc.

The presence of another isomeric ether-containing subclass of lipids
in PE and PC often complicates the identification of plasmalogens in a
cellular lipid mixture. So far, varieties of methods have been developed
to identify and quantify the plasmalogens [77–80]. Some of them
exploit the fact that the vinyl ether bond of plasmalogens is very acid-
labile. Through comparison of total molecular species profiles of both
acid-treated and non-treated lipid extracts, plasmalogens can be
distinguished from alkyl subclass species [68].

In biological systems, the total content of plasmalogens rarely
increases since their biosynthesis is strictly regulated by peroxisomes
[14]. Three major metabolic pathways can lead to the decreased
plasmalogen content, including peroxisomal dysfunction, phospholi-
pase A2 (PLA2) activation, and oxidative stress [14]. Interestingly,
aberrant metabolism of each pathway has unique products and/or
manifestations as shown in Fig. 6. For instance, reduced plasmalogen
levels with elevated lysoplasmalogens suggest the activation of PLA2

[81]. Decreased plasmalogen contents with increased choline and
ethanolamine lysoglycerophospholipids (particularly those containing

Fig. 3. Schematic illustration of the MDMS-SL method for analysis of 4-hydroxyalkenal species directly from lipid extracts of biological samples [50]. D3−4-HNE is added as an internal
standard (IS). 4-HHE, 4-HNDE, 4-HNE, and 4-HDTE stand for 4-hydroxy-2E-hexenal, 4-hydroxy-2E-nondienal, 4-hydroxy-2E-nonenal, and 4-hydroxy-dodecatrienal, respectively.

Fig. 4. Schematic illustration of an MDMS-SL approach for analysis of oxidized fatty acids
which contains at least one functional group of carboxylic acid [21]. The amidation
reaction is catalyzed by 1-ethyl-3-(3-dimethylaminopropyl)carbiodiimide (EDC).
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PUFAs) indicate the increased oxidative stress [82]. Meanwhile,
determining other indicators of oxidative stress, such as 4-hydroxyalk-
enals [50], chlorinated lipids [83], and/or eicosanoids [35], can
provide further supports of this pathway. Finally, decreased plasmalo-
gen contents accompanying the decreased levels of ether-containing
plasmalogen counterparts [84] and minimal changes of choline and
ethanolamine lysoglycerophospholipids suggest the dysfunction of
peroxisomes. Accordingly, measuring the levels of plasmalogen species
and relative metabolites by MDMS-SL can identify the corresponding
pathophysiological pathways leading to the changed plasmalogen
homeostasis [23].

3. Representative applications of shotgun lipidomics for studying
redox biology

As enhancing the coverage for lipid analysis, shotgun lipidomics
becomes a powerful tool in determining altered lipid content in diverse
states [85], such as revealing the underlying mechanism(s) for the
changes of lipid homeostasis [86], discovering biomarkers for disease
diagnosis or prognosis for fatty liver [87], testing the efficacy of new
drugs [88,89], supporting the exploration of new treatments [12], and
further confirming the results from other “omics” (e.g., genomics,
proteomics, and transcriptomics) with model systems (i.e., animals,

Fig. 5. Product ion ESI-MS analysis of hydroxyeicosatetraenoic acid (HETE) isomers after derivatization with N-(4-amiomethylphenyl)pyridinium (AMPP) [21]. Product ion ESI-MS
analysis of these derivatized HETE isomers at collision energy of 40 eV and collision gas pressure of 1 mTorr. The fragment ions at m/z 169 and 183 can be used for screening these
isomers at the m/z position of molecular ions in the precursor-ion scans of m/z 169 and 189, respectively, and quantifying the total content of their mixture relative to a selected internal
standard (e.g., a stable isotope labeled HETE). The fingerprints of the fragment ions between m/z 190 and 450 (i.e., m/z 239, 253, 267, 283, 293, 295, 307, 333, 335, 347, 375, 387) can
be used to simulate a tandem MS spectrum of a mixture of the HETE isomers and determine their composition. Absolute amounts of individual HETE species can be derived from the total
amount of the mixture and the composition.
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cells, plants, bacteria, etc.) [90,91]. A large number of reviews on the
applications of shotgun lipidomics have been presented for varieties of
biological studies with different emphasis [6,14,17,19,38,68,92]. Here-
in, recent representative applications of shotgun lipidomics for studying
redox biology, especially those recently conducted by our group, are
summarized.

3.1. Oxidative stress in systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is a deadly autoimmune disease
with a diversity of clinical features, mainly occurring in women at their
childbearing ages [93]. The exact pathological mechanism(s) of SLE
remain unknown and are usually attributed to dysfunction of immuno-
cytes and genetic and/or environmental factors [94]. Oxidative stress is
elevated in SLE patients due to mitochondrial dysfunction in lupus T
cells, resulting in accumulation of ROS and depletion of reduced
glutathione [95]. The increased oxidative stress is tightly associated
with SLE pathogenesis [96]. However, common indicators of oxidative
stress are nonspecific and non-representative of all SLE symptoms.

Oxidative stress interferes with lipid metabolism of SLE. In addition
to showing a “lupus pattern” of dyslipoproteinemia characterized with
high levels of very-low-density lipoprotein (VLDL) cholesterol and
triglycerides (TAG), and low levels of high-density lipoprotein (HDL)
cholesterol [97], SLE patients always exhibit higher serum levels of
oxidized HDL (ox-HDL) [98]. The aberrant metabolism of lipids and
lipoproteins may account for cardiovascular diseases pathogenesis of
SLE, which is a major causal factor for the high morbidity and mortality
of SLE patients [99]. Moreover, oxidative modification of self-antigens
is present in SLE pathology due to oxidative stress pathology. There are
more than 100 different autoantibodies in SLE, many of which are
related to lipids and/or enzymes involving lipid metabolism [100].
Therefore, determining alterations in these lipids is very important for
further understanding the mechanism(s) underpinning SLE pathogen-
esis.

Our MDMS-SL technology has been employed to analyze the lipids
of serum collected from 30 SLE patients and 30 controls, respectively
[23]. It has been found that, in addition to the elevated TAG content as
previously known [101], lipidomics revealed the significant decrease of
all identified pPC and pPE species. Compared with control, the total
losses of these lipids accounted for approximately 26 and 21 mol%,
respectively (Fig. 7A shows the changes of PE species). However, other
two subclasses of both PE (e.g., phosphatidylethanolamine (dPE), and

plasmanylethanolamine (aPE)) and PC (i.e., phosphatidylcholine (dPC),
and plasmanylcholine (aPC)) changed minimally.

In order to understand the mechanism(s) for the reduction of
plasmalogen content, the levels of lysoPE species were also determined
by MDMS-SL in the study. It has been found that significant increase of
sn-2 acyl type lysoPE in SLE patients, especially those containing PUFAs
(Fig. 7B). As schematically shown in Fig. 6, the decreased pPE content
with breakage of sn-1 vinyl ether bond is related to lipid peroxidation
[14]. To further support the identified pathway, the levels of 4-
hydroxyalkenal species were also determined by MDMS-SL (Fig. 7B).
As anticipated, the total level of these species substantially increased in
the patients, clearly indicating the elevated oxidative stress at the SLE
state. As mentioned above, HNE can propagate oxidative stress to other
intracellular organelles, which may explain the varieties of clinical
symptoms of SLE patients. Additionally, multivariate and multiple
analysis showed significant correlations among SLE disease index,
proinflammatory cytokine IL-10 level, and contents of 4-hydroxyalk-
enals and pPE species, suggesting that the increased mass levels of 4-
hydroxyalkenals and decreased pPE content may be associated with
disease severity and production of autoantibodies in SLE patients.

In summary, shotgun lipidomics analysis has not only revealed the
changes of lipid species in SLE patients, but also provided insights into
underlying biochemical mechanism(s) for these alterations. Moreover,
the results of lipidomics are significantly associated with disease
severity, autoimmunity, different clinical symptoms, and/or complica-
tions of SLE, indicating that the changed levels of those lipid species
may serve as novel potential biomarkers for diagnose and/or prognosis
of SLE.

3.2. The adverse effects of anesthetics on brain lipids

Considerable studies evidence the adverse effects of general anes-
thetics on the brain development in preclinical young animal models,
including accelerated apoptosis, alterations in dendritic morphology, as
well as cognitive and behavioral changes [102–105]. Thus, the safety of
children exposed to anesthetics receives more public concern, espe-
cially prolonged exposure (e.g., > 8 h). So far, the underlying mechan-
ism(s) responsible for the neurotoxicity and injury remain elusive.

Sevoflurane is a volatile anesthetic that is widely used in children as
it has many advantages over other intravenous or inhalation anes-
thetics, such as more comfort, lower blood/gas solubility, less irritation
to airway, pleasant smell, notably, and less adverse effects [106].

Fig. 6. Illustration of three major metabolic pathways responsible for plasmalogen reduction. These include peroxisomal dysfunction (Pathway 1), phospholipase A2 activation (Pathway
2), and oxidative stress (Pathway 3) [14]. Determining the levels of the plasmalogen species and relative metabolites through MDMS-SL can readily identify the corresponding aberrant
pathway. PLA2 and ROS stand for phospholipase A2 and reactive oxygen species, respectively.
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However, lots of evidence suggests that sevoflurane can also cause
neuronal apoptosis and behavioral dysfunctions [107–109]. Therefore,
evaluation of the relevant alterations on the developing brain after
prolonged exposure of sevoflurane is of importance.

In a recent study, after infant monkeys were exposed to clinically-
relevant concentration of sevoflurane for 9 h, their frontal cortical
tissues were harvested for DNA microarray, shotgun lipidomics,
Luminex protein, and histological assays [110]. DNA analysis revealed
that sevoflurane exposure caused broad induction of differently ex-
pressed genes (DEGs) in the monkey brain. The DEGs are closely
associated with nervous system development and functions, neurologi-
cal diseases, and cell death/survival. Intriguingly, some of them directly
involve in the networks of lipid metabolism, such as fatty acid and
steroid metabolism [110]. Lipid is the most abundant component in the
brain other than water, thus, its homeostasis and signaling play vital
roles in cell functions and viability [111]. Therefore, lipidomics
analysis could provide insights into the mechanism(s) underpinning
the induced neurotoxicity and find new biomarkers.

MDMS-SL analysis has been performed on the lipid extracts of tissue
samples from the brain cortices of monkeys with or without exposure to
sevoflurane. It has been found that substantial alterations in content
and composition of multiple lipid classes and molecular species in brain
frontal cortices of infant monkeys exposed to sevoflurane for 9 h are
present [110]. For example, the total mass level of PE species are
significantly reduced from 131.4± 1.9 nmol/mg protein in controls to
110.6± 11.4 nmol/mg protein in sevoflurane-treated group
(p<0.05). Moreover, several of these reduced species are plasmalogen
species (Fig. 8), which act as one of the natural antioxidants and are
more susceptible to ROS in the body. The markedly elevated levels of
lysoPE species and 4-HNE strongly support the existence of increased
oxidative stress after prolonged sevoflurane exposure.

Lipidomics also shows the significant reduced levels of phosphati-
dylserine (PS) and phosphatidylglycerol (PG) species (p<0.01 and

p<0.001, respectively) in the brain of infant monkeys after sevoflur-
ane exposure (Fig. 8). PS is located in the inner leaflet of plasma
membrane, possessing unique physical and biochemical properties. PS
involves in the recruitment and activation of numerous enzymes that
are associated with neuronal survival, neurite growth, and synaptogen-
esis [112–114]. Therefore, the disruption of PS could lead to subse-
quent neuronal dysfunction and/or degeneration. PG species, largely
present in mitochondrial membrane, play a vital role in the main-
tenance of mitochondrial structure and functions [115]. The reduction
of PG contents in sevoflurane-treated group suggests that mitochondria
might be impaired in sevoflurane exposure. As the “power house” of a
cell, mitochondrion is a critical generator of ROS. The impaired
mitochondria may be associated with increased oxidative stress includ-
ing the elevation of HNE and lysoPE. Consistently, Fluoro-Jade C
staining shows more degenerating neurons in sevoflurane-treated group
with the higher levels of cytokines in comparison to the controls [110].

In summary, shotgun lipidomics reveals that mitochondria could be
the major target of prolonged sevoflurane exposure, resulting in the
increased oxidative stress and the alteration in lipid homeostasis.
Therefore, lipidomics not only demonstrates the results supporting
the findings from DNA, protein, and histological analysis, but also
provides deeper insights into the mechanism underpinning the sevo-
flurane-induced neurotoxicity. In addition, the specific changed lipids
may be sensitive biomarkers for the early detection of anesthetic-
induced neuronal damage.

4. Summary and perspective

Although the lipidomics discipline has only emerged for a short
period, it has been greatly advanced due to the rapid development of
modern technologies and plays an important role in a vast variety of
biological research. The MDMS-SL platform maximally exploits the
unique chemical and physical properties inherent in diverse lipid

Fig. 7. Comparison of the contents of representative serum lipids between SLE patients and controls. Plasmalogen PE species (Panel A), and ethanolamine lysoglycerophospholipids
(lysoPE) and 4-hydroxyalkenal species (Panel B) present in serum lipid extracts from SLE patients (n=30, red bar) and healthy controls (n=30, blue bar) were determined by MDMS-SL as
previously described [23]. The data represent means± SEM from different individuals (n=30). *p<0.05, **p<0.01, and ***p<0.001 compared with those in the control group. The
prefix “p” in Panel A is used to abbreviate plasmalogen PE species. HHE, HNDE, and HNE stand for 4-hydroxy-2E-hexenal, 4-hydroxy-2E-nondienal, and 4-hydroxy-2E-nonenal,
respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article).
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classes and has been proved to be one of the most powerful tools for
lipid analysis. The increased oxidative stress induced by redox imbal-
ance can generate a variety of lipid peroxidation products or might
involve in alterations in lipid metabolism. Usually, these oxidative
stress-related lipid metabolites are present in very low abundance,
instable, isomeric, and unionizable, all of which are huge challenges for
their analyses. Through chemical derivatization, sensitive, simple, high-
throughput, and accurate methods based on the principles of MDMS-SL
for identification and quantification of these metabolites such as 4-
hydroxyalkenal species and oxidized fatty acids have been developed
and proved to be very powerful and useful.

Shotgun lipidomics has been used for studies on a variety of
pathophysiological conditions including SLE disease and anesthetic-
induced neurotoxicity. The findings from the research strongly indicate
that lipidomics not only identifies the presence of lipid peroxidation in
different states, which may be novel potential sensitive biomarkers for
disease diagnosis and/or prognosis, but also provides insights into the
underpinning biochemical mechanism(s) of the pathophysiological
states. We believe that shotgun lipidomics can make great contributions
to the studies of redox biology.
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