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Abstract: Due to the rapid decrease of Pinna nobilis populations during the previous decades, this
bivalve species, endemic in the Mediterranean Sea, is characterized as ‘critically endangered’. In
addition to human pressures, various pathogen infections have resulted in extended reduction, even
population extinction. While Haplosporidium pinnae is characterized as one of the major causative
agents, mass mortalities have also been attributed to Mycobacterium sp. and Vibrio spp. Due to
limited knowledge concerning the physiological response of infected P. nobilis specimens against
various pathogens, this study’s aim was to investigate to pathophysiological response of P. nobilis
individuals, originating from mortality events in the Thermaikos Gulf and Lesvos and Limnos islands
(Greece), and their correlation to different potential pathogens detected in the diseased animals. In
isolated tissues, several cellular stress indicators of the heat shock and immune response, apoptosis
and autophagy, were examined. Despite the complexity and limitations in the study of P. nobilis
mortality events, the present investigation demonstrates the cumulative negative effect of co-infection
additionally with H. pinnae in comparison to the non-presence of haplosporidian parasite. In addition,
impacts of global climate change affecting physiological performance and immune responses result in
more vulnerable populations in infectious diseases, a phenomenon which may intensify in the future.

Keywords: Pinna nobilis; mortality; pathogens; Haplosporidium pinnae; Mycobacterium sp.; Vibrio spp.;
physiology; autophagy; cellular death; inflammation

1. Introduction

The endemic sea bivalve species Pinna nobilis (Linnaeus, 1758) is one of the largest
bivalve species in Mediterranean marine ecosystems, reaching up to 120 cm shell length
and inhabiting coastal areas with Posidonia oceanica (Delile, 1813) or Cymodocea nodosa
(Ucria) (Ascherson, 1870) meadows at depths of 0.5–60 m [1,2]. P. nobilis is characterized by
its fast growth rate alongside other pinnids, with a recorded lifespan of about 20 years [3].
Due to the rapid decrease of P.nobilis populations due to its mass mortalities during the
previous decades, this species is included in the Annex II Barcelona Convention (1992) and
Annex IV of the EU habitats directive (2007), and it has been characterized as ‘critically
endangered’ by the IUCN red list for threatened species [4,5]. Despite its endangered status,
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P. nobilis populations are highly threatened by human activities, such as illegal fishing
for commercial and consumption purposes [6,7]. However, significant mortalities, even
extinction in some cases, of P. nobilis within its natural habitats are mostly due to various
pathogen infections [8]. While records of this phenomenon began in 2016, it continues
to devastate the populations of fan mussels to the present day [9]. The newly described
Haplosporidium pinnae is the most probable cause of this ecological risk [10].

The pathogen Haplosporidium pinnae was firstly described in Alicante (Spain) and the
Balearic Islands (Spain), hosting P. nobilis specimens in locations that suffered heavy losses.
Therefore, H. pinnae has been characterized as one of the major causative agents due to its
presence in moribund and dead animals [9,11]. H. pinnae infection and haplosporidiosis
continues to infect fan mussel populations in several Mediterranean marine areas (e.g.,
the Adriatic Sea, Ionian Sea, Aegean Sea, Tunisia, and Cyprus) [4,12–16], resulting in mass
mortalities of these species [9,11,17]. Except for H. pinnae, Mycobacterium sp. have been
detected in fan mussel specimens along the Italian (Campania and Sicily) and French
coasts (Corsica), causing excessive histopathological lesions, acute immune responses, and
large-scale mortalities [18]. Mycobacteriosis was also detected in fan mussel populations
along the Greek coastline with similar consequences [4]. In addition to all the aforemen-
tioned potential pathogenic threats, opportunistic Vibrio spp. belonging to the Splendidus
and Mediterranei clades were detected during mortality events in P. nobilis populations.
Experimental laboratory conditions detecting the infection of P. nobilis by Vibrio spp have
transformed the phenomenon of mortalities into a complicated matter [8,19–22]. Investiga-
tion of P. nobilis mortalities continued and more potential threats were implicated in the
devastation of its natural populations [23,24].

However, little is known regarding the pathophysiological consequences caused, alone
or synergistically, by each microorganism detected in P. nobilis and even less regarding the
impacts on its physiological performance. Overall, immune responses of bivalves to the
presence of pathogens rely on their innate immune system due to their inability to acquire
immune responses and thus exhibit a stronger reaction in future encounters [25]. During
the invasion of potential pathogens, the innate immune system of bivalves exhibits a strong
response through pattern recognition receptors and triggers the downstream immune
signaling pathways by the recognition of pathogen-associated molecular patterns [25–27].
Under the prism of pathogen infections, host cell death constitutes an intrinsic immune
defense process for both invertebrates and vertebrates [28,29]. Apoptosis or programmed
cell death can be triggered by external and internal factors [30]. The extrinsic pathway
is activated upon stimulation of specific receptors for cell death, with the activation of
Caspases being the final stage of the process [29]. The intrinsic pathway is activated
through the release of signals by mitochondria and finally the activation of apoptotic
proteins (Bcl-2 etc.) [29]. On the other hand, autophagy is a natural and fundamental
mechanism that contributes to the management of intracellular biomass by self-digestion
of cytoplasmatic components that range in complexity and size from individual proteins
to whole organelles [31–33]. In addition to the aforementioned pathways, autophagy
is also involved in cell homeostasis and other cellular processes, including adjustment
to starvation, intracellular pathogen elimination, and cell death [34,35]. There are three
distinct types of autophagy: microautophagy, macroautophagy, and chaperone-mediated
autophagy [33]. All three types of autophagy are necessary processes for nutrient recycling
in organisms; however, macroautophagy is the best studied [36]. Macroautophagy is
involved in the isolation of cytoplasmic components within double-membrane vesicles,
known as autophagosomes, and then the vesicles fuse with the lysosome in order to
begin the degradation of cytoplasm [37]. Similarly, ubiquitination is the process for the
degradation and removal of harmful proteins via the proteasome and also affects the
retention of the paternal mtDNA in male bivalves [38,39]. However, cell protection is
supported by heat shock proteins (Hsps) [40], which are responsible for the assembly and
folding as well as translocation of proteins and also assisting in the degradation of structural
aberrant proteins [40], thereby assisting in disease resistance and environmental changes



Cells 2021, 10, 2838 3 of 17

in all aquatic organisms. Hsps dynamically assist in the stimulation of the secretion
of inflammatory cytokines such as nitric oxide synthase, tumor necrosis factor-a and
interleukins IL-1β and IL-6 [41].

Keeping in mind the lack of complete knowledge concerning the physiological re-
sponse of infected P. nobilis specimens against various pathogens, the objectives of this
study are the investigation of the pathophysiological responses of P. nobilis individuals orig-
inating from mortality events, as well their correlation to the different potential pathogens
detected in the diseased animals. In order to assess its pathophysiological response, cell
indicators of heat shock (Hsp70 and Hsp90) and immune response (Il-6 and TNFα) as
well as autophagic (ubiquitin, LC3, and SQSTM1/p62) and apoptotic (caspases) indica-
tors were examined through both Western blot and dot blot analysis, as well as with
immunohistochemistry (IHC).

2. Materials and Methods
2.1. Animal and Tissue Sampling

The digestive gland, gills, and mantle obtained from specimens originating from mass
mortality events, as described in Lattos et al. [4] (Table 1), were utilized for the investigation
of the pathophysiology of Pinna nobilis.

Table 1. Data of the specimens used for the study.

Specimen ID Shell Length, Height, Width (cm) Weight (gr) Tissue Haplosporidiosis Mycobacteriosis Vibriosis

Ther01
DG

+ +52.2, 14.2, 6.6 1482.26 G
M

Ther02
DG

+ + +56.5, 13.5, 6.3 1543.72 G
M

Ther03
DG

+ + +68.6, 18.4, 7.3 3080.42 G
M

Lim01
DG

+ + +22.3, 8.1, 2.5 160.2 G
M

Kal10
DG

+ +34.2, 12.8, 4.3 298.26 G
M

Kal12
DG

+ + +29.3, 11.4, 3.5 208.75 G
M

Kal10, Kal12: Kalloni Gulf—Lesvos island, Ther01, Ther02, Ther03: Thermaikos Gulf—Thessaloniki, Lim01: Limnos island. DG: Digestive
gland, G: Gills, M: Mantle.

Specimens used for the microbiome analysis [19] were also used for the needs of this
study. Among the specimens used for this study, two of them originated from Kalloni
Gulf (Lesvos island) (Kal10, Kal12), three of them originated from Thermaikos Gulf (Thes-
saloniki) (Ther01, Ther02, Ther03), whereas the last specimen originated from Limnos
island (Lim01) (Table 1). All the above areas exhibited a similar level of mass mortalities.
However, contrary to Lesvos island, where all specimens were dead, moribund and alive
specimens were found in Limnos island and in Thermaikos Gulf, respectively. The origin of
specimen origin has been described in detail in Lattos et al. [4] (Figure 1). Specimens from
the Thermaikos Gulf have been collected during May 2019 (17 ◦C) in C. nodosa meadows of
5–8 m depth, from Kalloni Gulf (Lesvos island) during January 2019 (13 ◦C) in P. oceanica
meadows of 5–6 m depth, and from Limnos island during June 2019 (16 ◦C) in P. oceanica
meadows of 3–5 m depth.
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Figure 1. Origin of specimens used for the research.

Since Pinna nobilis is considered a highly endangered species, special permission was
requested and received from local authorities in order to collect specimens (МЕЕ/GDDDP89
926/1117).

2.2. Histopathological Procedures

Histopathological processes presented herein are described in detail in Lattos et al. [4].
In brief, tissue parts were fixed immediately for 48 h in the Davidson solution, and after de-
hydration through graded alcohols, samples were embedded in paraffin wax and sectioned
at 4–5 µm using a rotary microtome. After the samples were stained with Hematoxylin
and Eosin, Ziehl–Neelsen staining was also applied to the specimens in order to examine
the presence of mycobacteria parasites.

2.3. Immunohistochemistry Procedure for Protein Localization

Embedded tissue paraffin blocks, obtained from specimens that originated in Greek
mortality events, were used for the protein localization in sampled tissue [4]. Embedded
tissues in paraffin wax were sectioned at 4–5 µm using a rotary microtome and mounted
in positive charged slides. Sections were left at room temperature overnight for optimal
drying. Deperaffinization was performed with immersion of mounted sections in Dewax
and Hier Buffer H (Thermo Fisher Scientific, Waltham, MA, USA), and staining was held
according to manufacturer’s protocol with UltraVisionQuanto HRP Detection System
(Thermo Fisher Scientific, USA). The antibodies used were monoclonal mouse anti-hsp90
(H1775, Sigma, Germany), anti-IL-6 (CSB-PA06757A0Rb, Cusabio, Houston, TX, USA), anti-
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TNFα (CSB-PA07427A0Rb, Cusabio, USA), anti-cleaved caspase antibody (Cat. No.8698
Cell Signalling, Oxford, UK), polyclonal anti-ubiquitin rabbit antibody (Cat. No. 3936, Cell
Signalling, UK), and monoclonal rabbit anti-LC3B (3868, Cell Signaling, UK).

2.4. SDS-PAGE/Immunoblot and Dot Blot Analysis
2.4.1. Preparation of Tissue Samples

Tissue samples were homogenized (1/3 w/v) in cold lysis buffer (20 mMβ-glycerophosphate,
50 mM NaF, 2 mM EDTA, 20 mM Hepes, 0.2 mM Na3VO4, 10 mM benzamidine, pH 7,
200 µM leupeptin, 10 µM trans-epoxy succinyl-L-leucylamido-(4-guanidino)butane, 5 mM
dithiotheitol, 300 µM phenyl methyl sulfonyl fluoride (PMSF), 50 µg mL−1 pepstatin, and
1% v/v Triton X-100). After a 30 min extraction on ice, samples were centrifuged (10,000× g,
10 min, 4 ◦C) and the supernatants were boiled (3/1 v/v) with sample buffer (330 mM
Tris-HCl, 13% v/v glycerol, 133 mM DTT, 10% w/v SDS, 0.2% w/v bromophenol blue).
Protein concentrations were determined using the BioRad protein assay.

2.4.2. SDS-PAGE/Immunoblot

Indicators of the autophagic and apoptotic pathways were determined in mantle
and PAM samples according to well-established protocols for SDS-PAGE/immunoblot
analysis. Specifically, equivalent amounts of proteins (80 µg) were separated on 10% (w/v)
acrylamide and 0.275% (w/v) bisacrylamide slab gels, and transferred electrophoretically
onto nitrocellulose membranes (0.45 µm, Schleicher & Schuell, Keene N. H. 03431, USA).
Non-specific binding sites on the membranes were blocked with 5% (w/v) non-fat milk in
TBST (20 mM Tris-HCl, pH 7.5, 137 mM NaCl, 0.1% (v/v) Tween 20) for 30 min at room
temperature. Nitrocellulose membranes resulting from the above procedure were subjected
to overnight incubation with monoclonal mouse anti-hsp70 (H5147, Sigma, Germany),
monoclonal mouse anti-hsp90 (H1775, Sigma, Germany), anti-IL-6 (CSB-PA06757A0Rb,
Cusabio, USA), anti-TNFα (CSB-PA07427A0Rb, Cusabio, USA), and polyclonal rabbit
anti-p62/SQSTM1 (5114, Cell Signaling, UK). Quality transfer and protein loading were
assured by Ponceau stain and actin (anti-β actin 3700, Cell Signaling, UK) (data not shown).
Antibodies were diluted as recommended by the manufacturer’s guidelines. After washing
in TBST (3 periods, 5 min each time), the blots were incubated with horseradish peroxidase-
linked secondary antibodies, washed again in TBST (3 periods, 5 min each time), and the
bands were detected using enhanced chemiluminescence (Chemicon) with exposure to
Fuji Medical X-ray films. Films were quantified by laser-scanning densitometry (GelPro
Analyzer Software, GraphPad, San Diego, CA, USA).

2.4.3. Dot Blot Analysis

Cleaved caspases and ubiquitin conjugate levels were determined in mantle and PAM
samples with the employment of a dot blot apparatus. Specifically, samples were diluted
to a concentration of 5 µg mL−1 in a saline solution (150 mM NaCl); 100 µL volumes
were loaded onto a pre-soaked nitrocellulose membrane (0.45 µm) in a dot blot vacuum
apparatus (BioRad), and gravity-fed through the membrane. The membrane was blocked
with 5% (w/v) non-fat milk in TBST (20 mM Tris-HCl, pH 7.5, 137 mM NaCl, 0.1% (v/v)
Tween 20) for 30 min at room temperature. The resulting nitrocellulose membrane was
subjected to overnight incubation with anti-cleaved caspase antibody (Cat. No.8698 Cell
Signaling, UK) and polyclonal anti-ubiquitin rabbit antibody (Cat. No. 3936, Cell Signaling,
UK). Antibodies were diluted as recommended by the manufacturer’s guidelines. After
washing in TBST (3 periods, 5 min each time), the dots were incubated with horseradish
peroxidase-linked secondary antibodies, washed again in TBST (3 periods, 5 min each
time), and the dots were detected using enhanced chemiluminescence (Chemicon) with
exposure to Fuji Medical X-ray films. Films were quantified by laser-scanning densitometry
(GelPro Analyzer Software, GraphPad, USA).



Cells 2021, 10, 2838 6 of 17

2.5. Statistical Analysis

One-way analysis of variance (ANOVA) (GraphPad Instat 3.0, USA) followed by
Bonferroni post hoc analysis was employed to test for significance at p < 0.05 (5%) level
between all experimental groups examined herein. Since normality tests have little power
to test the homogeneity of data for small sample sizes (as the ones described herein—n = 3
technical replicates), Friedman’s non-parametric test and Dunn’s post-test were applied.
Moreover, correlation analysis between the biochemical indicators examined in the present
study was conducted in order to establish significant relations.

3. Results

Haplosporidium pinnae was histologically detected in four out of the six samples used
for this research (Figure 2(Aa,Ba,Bb)), while Mycobacterium sp. was also histologically
detected in all samples used in this research (Figure 2(Ab)). All aforementioned mi-
croorganisms were molecularly identified, and all novel sequences were deposited in the
Genbank database in our previous study [4]. Individuals originating from the Thermaikos
Gulf showed a better health condition regarding macroscopical results, while individuals
originating from the Kalloni Gulf (Lesvos Island) and Limnos Island exhibited macro-
scopical signs attributed to heavy infections [4]. H. pinnae was detected in all its stages
in the digestive gland of the infected individuals. Moreover, H. pinnae detection was
accompanied with heavy lesions in the connective tissue of the digestive gland of each
individual, while high-density degenerative process in the epithelial tissue was also ob-
served (Figure 2(Aa,Ba,Bb)). Along with the aforementioned processes, heavy haemocytic
infiltration was detected in all tissues; in the connective tissue of the digestive gland, it
was detected in higher density (Figure 2(Ba)). Brown cell formation was also present in
the digestive gland as a sign of the pathogen invasion in the individuals (Figure 2(Ba)).
Regarding Mycobacterium sp., the existence of purple rod-shaped, acid-fast, Gram-positive
bacilli was presented, filling the immune cell constituents in all individuals examined in
this research.
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Figure 2. Histological sections of P. nobilis, showing sporulation stages of H. pinnae and
Mycobacterium sp. in the digestive gland of infected animals. (Aa) Sporulation stages of H. pinnae
(arrows). (Ab) Gram-positive acid-fast mycobacteria (arrows) on sections stained with ZN staining.
(Ba) Diffuse type inflammation in digestive gland of infected specimens with H. pinnae (arrows) and
heavy haemocyte infiltration in the surrounding connective tissue (triangle). (Bb) Display of heavy
lesions in the digestive gland of infected animals with the presence of H. pinnae (arrows).
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Regarding the detection of the proteins examined in this research, Western blotting,
dot blotting, and IHC techniques were employed to quantify and localize the expression
between the individuals infected by both parasites and the individuals infected only by
Mycobacterium sp. IHC results showed different expression patterns in each protein in the
digestive gland tissue examined for this research. Labeling of primary antibodies was
observed as brown precipitates (indicated by black arrows), the product of DAB (3,3′-
Diaminobenzidine) chromogen. In general, no differences were observed in the expression
and localization of the proteins observed as a result of IHC between the individuals infected
only with Mycobacterium sp. and the individuals infected by both pathogens.

Hsp70 was localized, in both cases, mostly in the epithelial cell of the digestive gland
and less on the connective tissue (Figure 3(Ba,Bb)). In contrast, Western blot analysis
indicated that individuals additionally infected by H. pinnae exhibited higher levels of both
Hsp70 and Hsp90 in all three examined tissues, compared to the non-H. pinnae-infected
individuals, as depicted in grey shaded areas in Figure 3A.
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Figure 3. (A). Hsp70 and Hsp90 levels in the digestive gland (DG), gills (G), and mantle (M) of
Pinna nobilis specimens from the Kalloni Gulf (Lesvos Island) (M10, M12), from Thermaikos gulf
(Thessaloniki) (T01, T02, T03), and from Limnos Island (L1). All specimens were infected with my-
cobacteria and vibrios, while grey shaded areas represent specimens additionally infected with the
haplosporidian parasite. Tissue extracts from all groups were immunoblotted for Hsp70 and Hsp90.
Blots were quantified using scanning densitometry. Representative blots are shown. Lower-case
letters indicate statistically significant differences (p < 0.05) between samples. (B) (a,b) Immunohis-
tochemical detection (arrows) of Hsp90 in the digestive tubule and in the connective tissue of the
digestive gland of non-infected (a) and infected (b) specimens from H. pinnae.
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In contrast to the Hsp levels observed, analysis of Il-6 levels detected by Western
blot did not reveal differences between the H. pinnae infected and non-H. pinnae-infected
individuals (Figure 4A), except for the digestive gland (DG) of individuals from Thermaikos
gulf, where Il-6 levels were higher in H. pinnae infected individuals. This pattern of non-
significant differences between H. pinnae infected and non-H. pinnae infected individuals
was also confirmed by IHC detection of Il-6, which was observed in both connective and
epithelial tissue, regardless of the H. pinnae presence (Figure 4(Ba,Bb)).
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Figure 4. (A). Il-6 levels in the digestive gland (DG), gills (G), and mantle (M) of Pinna nobilis
specimens from Kalloni Gulf (Lesvos Island) (M10, M12), Thermaikos Gulf (Thessaloniki) (T01,
T02, T03), and Limnos Island (L1). All specimens were infected with mycobacteria and vibrios,
while grey shaded areas represent specimens additionally infected with the haplosporidian parasite.
Tissue extracts from all groups were immunoblotted for Il-6. Blots were quantified using scanning
densitometry. Representative blots are shown. Lower-case letters indicate statistically significant
differences (p < 0.05) between samples. (B). (a,b) Immunohistochemical detection (arrows) of Il-6 in
the connective tissue of P. nobilis digestive gland of non-infected (a) and infected (b) specimens by H.
pinnae. (in Ba, left arrow indicates concentrated, while right arrow indicates scattered Il-6 detection).

A similar pattern to the Il-6 expression was observed concerning TNFa. Thus, TNFa
levels detected by Western blot analysis revealed differences between the H. pinnae infected
and non-H. pinnae-infected individuals only in the digestive gland (DG) of Thermaikos
gulf individuals (Figure 5A). The pattern expression of the TNFa by IHC detection was
similar to Il-6 as described above (Figure 5(Ba,Bb)).
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Figure 5. (A). TNFα levels in the digestive gland (DG), gills (G), and mantle (M) of Pinna nobilis
specimens from Kalloni Gulf (Lesvos Island) (M10, M12), from Thermaikos Gulf (Thessaloniki) (T01,
T02, T03), and from Limnos Island (L1). All specimens were infected with mycobacteria and vibrios,
while grey shaded areas represent specimens additionally infected with the haplosporidian parasite.
Tissue extracts from all groups were immunoblotted for TNFα. Blots were quantified using scanning
densitometry. Representative blots are shown. Lower case letters indicate statistically significant
differences (p < 0.05) between samples. (B). (a,b) Immunohistochemical detection (arrows) of TNFa,
in the connective tissue of P. nobilis digestive gland of non-infected (a) and infected (b) specimens by
H. pinnae.

The ubiquitin conjugate levels exhibited the same pattern as Hsp levels. Specifically,
the ubiquitin conjugate levels, as detected by Western blot analysis, were higher in all
three examined tissues of individuals infected additionally with H. pinnae, compared to
the non-H. pinnae infected ones, as depicted in grey shaded areas in Figure 6A. However,
IHC localization of ubiquitin was observed in the same density in both the connective and
epithelial tissues in both cases (Figure 6(Ba,Bb)).
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Concerning cleaved caspases, its appears that although individuals infected by H. 
pinnae in Limnos (L) and Lesvos (M) islands exhibited higher levels compared to the non-
infected ones, Thermaikos Gulf individuals exhibited a different pattern. Specifically, 
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Figure 6. (A). Ubiquitin conjugates levels in the digestive gland (DG), gills (G), and mantle (M) of
Pinna nobilis specimens from the Kalloni Gulf (Lesvos Island) (M10, M12), from Thermaikos gulf
(Thessaloniki) (T01, T02, T03), and from Limnos Island (L1). All specimens were infected with
mycobacterium and vibrio, while grey shaded areas represent specimens additionally infected with
the haplosporidian parasite. Tissue extracts from all groups were immunoblotted for ubiquitin. Dots
were quantified using scanning densitometry. Representative dots are shown. Lower-case letters in-
dicate statistically significant differences (p < 0.05) between samples. (B). (a,b) Immunohistochemical
detection of ubiquitin (arrows) in the connective tissue of the digestive gland of non-infected (a) and
infected (b) specimens from H. pinnae.

Concerning cleaved caspases, its appears that although individuals infected by H.
pinnae in Limnos (L) and Lesvos (M) islands exhibited higher levels compared to the
non-infected ones, Thermaikos Gulf individuals exhibited a different pattern. Specifically,
caspase levels exhibited differences between the H. pinnae infected and non-H. pinnae-
infected individuals only in the digestive gland (DG) of Thermaikos Gulf individuals
(Figure 7).
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Figure 9 depicts the IHC localization of LC3B. As it is shown, it is mostly observed 
on epithelial cells of both H. pinnae infected and non-infected cases. 

Figure 7. Cleaved caspases levels in the digestive gland (DG), gills (G), and mantle (M) of Pinna nobilis
specimens from the Kalloni Gulf (Lesvos Island) (M10, M12), from the Thermaikos Gulf (Thessaloniki)
(T01, T02, T03), and from Limnos Island (L1). All specimens were infected with mycobacterium and
vibrio, while grey shaded areas represent specimens additionally infected with the haplosporidian
parasite. Tissue extracts from all groups were immunoblotted for caspases. Dots were quantified
using scanning densitometry. Representative dots are shown. Lower-case letters indicate statistically
significant differences (p < 0.05) between samples.

The same pattern with cleaved caspases levels was observed concerning SQSTM1/p62
levels, as these levels were decreased in all three examined tissues of individuals infected
by H. pinnae in Limnos (L) and in the digestive gland (DG) of the Thermaikos Gulf H.
pinnae infected individuals (Figure 8).
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Figure 8. SQSTM1/p62 levels in the digestive gland (DG), gills (G), and mantle (M) of Pinna nobilis
specimens from the Kalloni Gulf (Lesvos Island) (M10, M12), from the Thermaikos Gulf (Thessaloniki)
(T01, T02, T03), and from Limnos Island (L1). All specimens were infected with mycobacterium and
vibrio, while grey shaded areas represent specimens additionally infected with the haplosporidian
parasite. Tissue extracts from all groups were immunoblotted for SQSTM1/p62. Blots were quantified
using scanning densitometry. Representative blots are shown. Lower-case letters indicate statistically
significant differences (p < 0.05) between samples.

Figure 9 depicts the IHC localization of LC3B. As it is shown, it is mostly observed on
epithelial cells of both H. pinnae infected and non-infected cases.
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Figure 9. Immunohistochemical detection of the digestive gland tissue showing detected antibod-
ies (arrows) of LC3B in the connective tissue of non-infected (a) and infected (b) from H. pinnae
individuals.

Table 2 depicts the correlation between the examined biochemical indicators in the
present study. The most significant correlation is found between Hsps, ubiquitin and the
autophagic indicator SQSTM1/p62.

Table 2. Correlation analysis between biochemical parameters examined with Western blot and dot
blot analysis.

Hsp70 Hsp90 Il-6 TNF-α UbiquitinCaspases SQSTM1/p62

Hsp70 1
Hsp90 0.463 1

Il-6 0.228 −0.042 1
TNF-α 0.228 −0.197 0.211 1

Ubiquitin 0.673 0.318 0.085 0.049 1
Caspases 0.421 0.332 0.314 −0.065 0.787 1

SQSTM1/62 −0.921 −0.425 −0.102 −0.063 −0.754 −0.447 1

4. Discussion

Population reduction of fan mussel continuing along the Greek coastline has resulted
in heavy population losses in both the Aegean and Ionian seas, even in 2021. Mortalities of
P. nobilis in Greek territories have modified the distribution of the species. Subsequently,
P. nobilis populations may be restricted to only deeper seabed topologies. The regeneration
status in shallow waters is at low levels, reaching up to zero percent in many cases due to
the extensive heat in the summer of 2021.

Disease aetiology of mass mortality events in P. nobilis species is considered a complex
situation, involving many microorganisms in relation to rapid changes in abiotic factors
due to ongoing climate change [21]. Infection by H. pinnae was adopted as a main causative
agent in many cases without taking into consideration the pathobiome of the species [21].
Furthermore, a lack of healthy–uninfected populations and a limited number of alive
individuals further jeopardise the accession to the pathogenesis of the microorganisms to
the infected species. Additionally, the lack of individuals and the rapid decrease in all the
populations of the Mediterranean Sea constitute an obstacle in order to correlate the effect
of abiotic factors directly to the microorganisms detected in moribund specimens.

The results of the current research are in line with the results of Box et al. [42], who
estimated for the first time P. nobilis physiological performance, after the comparison
of infected and uninfected animals. Their study confirmed the theory of multifactorial
mortalities with many pathogens, each of those having a cumulative negative effect on
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host physiology of the species. The results of their study demonstrated the reduction
of antioxidant defenses in the presence of both H. pinnae and Mycobacterium sp., and
the cumulative effect of both pathogens in comparison with both the uninfected and
the individuals hosting only one of them. Herein, analysis of both Hsp70 and Hsp90
demonstrated a similar pattern in both cases. Individuals infected with all three pathogens
exhibited higher levels of protein induction, indicating an increased cellular stress response
in comparison with the individuals infected only with mycobacterium and vibrio. Higher
protein induction in individuals with all three pathogens occurred even in the same
sampling with the same environmental conditions. Keeping in mind that Hsps enable cells
to adapt to various stresses, it is obvious that this cellular mechanism maintains normal
cellular functions by counteracting misfolded cellular proteins [43]. This is consistent
with the decreased levels of Hsps in vital tissues, such as the gills and mantle of the
Thermaikos individuals, since the latter exhibited a better health condition regarding
macroscopical results, compared to individuals collected from the Kalloni Gulf (Lesvos
Island) and Limnos Island, which exhibited heavy macroscopical infection signs such as
extended lesion sites [4]. Although the relation of Hsps’ induction with lesion formation
has not been evidenced in marine organisms, it has been shown in mammalian animal
models. Specifically, Hsp70 is strongly upregulated very early at lesion-prone sites in
young apoE−/− knockout mice aortas [44]. Pathogenic infection induces Hsp70 and Hsp90
in marine bivalves which are closely related to immune responses [45–47].

Although Hsps seem to play a pivotal role in the induction of pro-inflammatory
cytokines’ production [48], the present study showed that the expression patterns of both
Il-6 and TNF-α did not follow the Hsps’ pattern of induction. Specifically, Il-6 expression
did not follow any pattern on infections, although it is considered to be an important
cytokine in regulating immune responses and was allocated mostly in the connective tissue
of the digestive gland tissue examined through IHC [49]. Additionally, TNF-α, which is
produced to induce an inflammatory reaction [50], similarly to Il-6, did not demonstrated
any significant difference between individuals infected additionally with H. pinnae and
individuals with both pathogens. Moreover, the Il-6 and TNF-α levels did not exhibit any
notable differences between the samplings through different seasons in the year, resulting
in the fact that inflammatory responses are at high levels throughout the year. The latter
shows that infected populations in both cases of infection present consistently high stress
levels. Concerning the immunohistochemical localization of these two important cytokines
in the digestive gland, they seemed to be scattered around the digestive gland without any
limitation in their localization.

Ubiquitin conjugate levels presented the same expression pattern as Hsps mentioned
before, as also seen in Table 2. This may be attributed to the fact that in eukaryotic cells,
ubiquitin and certain ubiquitin-conjugating enzymes are Hsps that function in the rapid
turnover of denatured proteins [51]. In the case of infection with both H. pinnae and
Mycobaterium sp., the ubiquitination levels were significantly higher than in the case of
infection only with the haplosporidan parasite, thereby strengthening the important role of
ubiquitin in stress and immune responses [52].

Due to the fact that ubiquitin is a ubiquitously expressed protein that can be covalently
connected to selected proteins, as well as tag proteins for proteasomal or lysosomal degra-
dation, its connection to cell death pathways is indisputable [53]. Cell death pathways
such as apoptosis and autophagy account for self-destructive processes through which
excessive cellular damage and damaged organelles are abolished. Although the successful
corporation between apoptosis and autophagy is a very complex process, the choice of
which response is going to be followed depends on the stimulus potency [54]. Therefore,
while due to several stimuli, the autophagic pathway may prevent cell death by eliminating
apoptosis, other stimuli may trigger autophagy as an alternative cell death possibility [53].
Regarding apoptosis, caspases, which have an important role in cell death activation, their
levels accord with the result pattern of Hsps and ubiquitin, confirming the importance
they pose in pathogenetic stress conditions of the host [55]. Herein, the obtained results
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have not shown a similar pattern of expression for autophagy. Concerning autophagy,
although due to unknown facts, LC3 was not detected through Western blot in the present
study, the SQSTM1/p62 exhibited a tissue specific pattern of expression, indicating lower
levels and therefore increased autophagy in individuals additionally infected with the
haplosporidian parasite. The protein is itself degraded by autophagy and may serve to
link ubiquitinated proteins to the autophagic machinery to enable their degradation in
the lysosome [56]. Although the aforementioned biochemical pathways have also been
studied in other aquatic organisms such as teleosts [57], the sequence of these events has
not been examined, since the latter is beyond this study’s aim. Tissue-specific response in
most of the different proteins examined in the present study has also been observed both
in invertebrate and vertebrate marine organisms [58,59].

Conclusively, disease aetiology of the fan mussel, P. nobilis and the co-infection by
several microorganisms, accompanied by the limited individuals left in Greek seas, result in
devastating to the species population effects. Although water physicochemical parameters
were different between examined areas, no correlation between these parameters and
the mortality status of the populations could be concluded. This fact could be attributed
to the general limitations regarding P. nobilis studies due to this species status. Despite
the complexity and limitations in the study of P. nobilis mortality events, the results of
this research demonstrate the additive negative effect of co-infection in comparison with
the additional infection by the H. pinnae. Fan mussels infected by all the main referred
pathogens exhibited lower physiological performance compared with Fan mussels hosting
only H. pinnae. Histopathological lesions originating from previous research confirmed
the negative effect on the hosts infected only by Mycobacterium sp. [4]. Co-infections of
multiple pathogenic microorganisms can affect the progression and disease pathogenesis,
the transmission of the disease among the same population and the clinical effects on
the host [23]. In addition, impacts of global climate change, such as oceanic warming
and acidification, affecting physiological performance and immune responses, result in
more vulnerable to infectious diseases populations [60,61], a phenomenon which may
intensify in the future. The latter is due to the rapid climate change and its effects, as they
consist of a major stressor in all terrestrial and marine ecosystems and in their habitats [4].
The main impacts of global climate change are reportedly linked to phenomena such as
decreased ocean productivity, changes in species habitat distribution, and the spread of
pathogens [62]. In addition, changes in abiotic parameters can affect the physiological
performance of the species, leading to lower immune responses [63,64]. Moreover, it
should be mentioned that decreased physiological performance could have an impact on
the affected immune responses, which may eventually lead to the uncontrollable growth of
opportunistic microorganisms, and finally to the detriment of the host [65–67].
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