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Non-linguistic sounds (NLSs) are a core feature of our everyday life and many evoke
powerful cognitive and emotional outcomes. The subjective perception of NLSs by
humans has occasionally been defined for single percepts, e.g., their pleasantness,
whereas many NLSs evoke multiple perceptions. There has also been very limited
attempt to determine if NLS perceptions are predicted from objective spectro-
temporal features. We therefore examined three human perceptions well-established
in previous NLS studies (“Complexity,” “Pleasantness,” and “Familiarity”), and the
accuracy of identification, for a large NLS database and related these four measures
to objective spectro-temporal NLS features, defined using rigorous mathematical
descriptors including stimulus entropic and algorithmic complexity measures, peaks-
related measures, fractal dimension estimates, and various spectral measures (mean
spectral centroid, power in discrete frequency ranges, harmonicity, spectral flatness,
and spectral structure). We mapped the perceptions to the spectro-temporal measures
individually and in combinations, using complex multivariate analyses including principal
component analyses and agglomerative hierarchical clustering.

Keywords: psychoacoustics, auditory perception, psychophysics, environmental sounds, non-linguistic sounds,
subjective perception, pleasantness, complexity

INTRODUCTION

The objective features of sensory stimuli form a large part of our subjective perceptions, e.g., a
chemical’s structure relates to our perception of its odor (Castro et al., 2013) and the wavelength
of light being reflected from an object influences our perception of its color (Solomon and Lennie,
2007). Perceiving these differences in the objective features of stimuli enables us to reliably navigate
our worlds, e.g., color perception aids in recognizing the difference between foliage and fruit
(Osorio and Vorobyev, 1996). Non-linguistic sounds (NLSs) – e.g., music, a passing bus, snoring,

Abbreviations: AHC, agglomerative hierarchical clustering; CI, cochlear implant; EEG, electroencephalogram; FD, fractal
dimension; HNR, harmonics-to-noise ratio; LZ, Lempel-Ziv; NLD, normalized length density; NLSs, non-linguistic sounds;
PC, principal component; PCA, principal components analysis; RMS, root mean square; SSI, spectral structure index; SSV,
spectral structure variability.
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a child crying – are important complex sounds in our everyday
environment. Attempts have been made to describe how humans
identify and remember such NLSs (e.g., Marcell et al., 2007),
and some studies (Kidd and Watson, 2003; Gygi et al., 2004)
have used spectrally filtered NLSs to test how qualitative
manipulation of the sounds through degraded or limited
spectral information affects NLS categorisation, though such
manipulations do not directly test precise perceptions of those
sounds and do not examine how objective features of the sounds
determine perceptions.

Non-linguistic sounds have great advantages for the mapping
of perception to objective spectro-temporal features as they are
complex, have meaning and are familiar, but do not have the
confounding overlay of semantic and linguistic constraints of
language. Some studies have probed various perceptual properties
of NLSs (Halpern et al., 1986; Ballas, 1993; Penrose and Clark,
1994; Cycowicz and Friedman, 1998; Lewis et al., 2005; Kumar
et al., 2008; Reddy et al., 2009; Reuter and Oehler, 2011; Singh,
2011; Kirmse et al., 2012; Talkington et al., 2012) to make
findings such as the importance of spectral features to percepts of
unpleasantness in NLSs (Halpern et al., 1986; Cox, 2008; Kumar
et al., 2008; Reuter and Oehler, 2011). However, almost all of these
studies focused on only a single percept and outside of special sets
or precepts of sounds such as musical timbre (Grey, 1977; Grey
and Gordon, 1978), urgency (Momtahan, 1991; Hellier et al.,
1993; Burt et al., 1995; Edworthy et al., 1995; Haas and Edworthy,
1996; Graham, 1999), and identification of materials, e.g., the
length of a material being struck and whether it is made of metal
or wood (Warren and Verbrugge, 1984; Lakatos et al., 1997),
tones (Pollack and Ficks, 1954), or subjects, e.g., the gender of
a human walker (Li et al., 1991), little is known generally about
the perceptual mappings between complex auditory stimuli and
their objective features.

We now address this issue for a database of complex
sounds that can have important meaning in everyday life.
We calculated objective features of sounds in a large NLSs
database and separately asked human participants to record
their subjective perceptions for three measures (Complexity,
Pleasantness, and Familiarity) which had been used in previous
studies of NLS perception (Marcell et al., 2007) but which had
not yet been related back to objective features. In addition,
we also noted sound identification accuracy. We hypothesized
that: (1) the percepts and identification accuracy for NLSs
can be quantitatively described by and correlate with objective
measurements of specific temporal or spectral contents; and (2)
different classes of NLSs would possess unique feature-sets of
objective measures which could be related to their perceptual
differences or their identification accuracy.

MATERIALS AND METHODS

NLSs Database
Publicly available NLSs (Marcell et al., 2007) and NLSs from
online multimedia archive sources (Shafiro and Gygi, 2004) were
combined to create a database of 158 sounds. This database
contained 144 distinct sound sources with 14 source exemplars

(sounds from an identical source, e.g., snoring, but which are
distinct recordings or events) from a broad range of categories
(Table 1; the full list of sounds used, including their labeled
categories, is provided in Supplementary Table 1). The first
step was to normalize all sounds to the same amplitude so that
amplitude differences, affecting audibility and level, did not affect
ratings. It is recognized that this procedure equalizes sounds
that, in life, may be of unequal level – e.g., the sound of a
car revving up would be naturally louder (unless originating
from a great distance) and would be, from our experience of
environmental sounds, perceived to be louder than the sounds of
birds singing. The Complexity of such relationships as a function
of our experience with sounds makes it a very difficult factor
to control and that may well be the reason why it has not
been accounted for in previous studies (e.g., Gygi et al., 2007;
Marcell et al., 2007). Here, it was decided that all sounds would
be normalized to a standard RMS amplitude before being used
for perceptions. All sounds were normalized to the RMS level
of the loudest sound in the database (15 dB) using the Cool
Edit 2000 sound program; no other change (e.g., to pitch or
rate) was applied.

During analysis of our results, we found it necessary to
categorize the NLSs. For categorisation of the NLSs we initially
considered using a naïve group of subjects to listen to the
NLSs and generate their own categories (c.f. Marcell et al.,
2007). However, this methodology still can produce significant
heterogeneity: Marcell et al. (2007) report that subjects use
widely varying methods, ranging from acoustic similarity to
sound imagery or sound source for self-categorization of NLSs,
producing widely varying categories even for the same set of
NLSs; further, even under the same experimental conditions
they can produce many highly specific, small categories. Marcell
et al. (2000) also do not show stable and reliable bases
for listener-derived groupings of environmental sounds and
acknowledge that when listeners are given free classification
(unlimited time and unlimited, listener-defined categories)
“personal and idiosyncratic categories” (Marcell et al., 2000,
p. 852) arise, and even after culling such categories with strict
conditions (e.g., categories must be used by >33% of listeners)

TABLE 1 | Categories of sounds in the NLSs database.

Category name and
ID number

Percentage of data set Number of sounds

Primate (#1) 8.86 14

Animal (#2) 24.05 38

Tool/machine (#3) 17.72 28

Nature (#4) 6.96 11

Human non-voc (#5) 3.80 6

Music (#6) 13.29 21

Insect (#7) 3.16 5

Other (#8) 15.82 25

Explosions/guns (#9) 6.33 10

Total 158

A mathematical approach to correlating objective spectro-temporal features of
non-linguistic sounds with their subjective perceptions in humans.
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and manually combining semantically similar groups, e.g.,
“instrument” and “musical instrument,” 27 categories were left: 4-
legged animal, accident, air transportation, bathroom, bird, farm
animal, game/recreation, ground transportation, household,
human, hygiene, insect, kitchen, machine, musical instrument,
nature, paper, pet, reptile/amphibian, sickness, signal, sleep, tool,
water/liquid, weapon, weather, and other. Leaving aside the
question of how ecologically relevant these distinctions actually
are for everyday listeners (e.g., “pet” vs. “4-legged animal” vs.
“farm animal”), there is the question of the reliability and
stability of the categories (e.g., the sound of a dishwasher could
be equally categorized as a “household,” “hygiene,” “kitchen,”
“machine,” “water/liquid,” or “other” sound). To determine the
latter, Ballas (1993) provided only these 27 categories to a new
cohort of listeners to categorize the same sounds. For some
sounds, 100% of subjects agreed on the same category but
for others, subjects had very little agreement. In fact, only 12
of the 120 sounds reported by Ballas (1993) were categorized
with 100% agreement and “[o]verall, 50 sounds were placed
with high agreement (90% and above) into categories, 58
were placed with mild-to-moderate levels of agreement (50–
89%), and 12 were placed with low levels of agreement (49%
and below)” (p. 856). Such high levels of disagreement in
a substantial number of categorizations speaks to the use of
“personal and idiosyncratic categories” (Marcell et al., 2000,
p. 852) and, implicitly, the individual differences which plague
listener-derived categorisation of sounds.

Gygi et al. (2007) prescribed listeners to creating at least 5
but not more than 12 categories in total but even with this
methodology, one subject’s categorisation was highly specific
and had to be discarded. The remaining results were collated
and following the method of Marcell et al. (2000) resulted
in 13 categories (number indicates number of sounds in that
category): animals/people 16, vehicles/mechanical 14, musical
11, water/weather 10, impact/explosion 8, location-specific 6,
sports 6, outdoor 4, pitched 3, rhythmic 3, rumbling 3,
startling/annoying 2, alerting 2. The number of categories was
notably smaller than in Marcell et al. (2000), likely due to the
latter using 38 subjects categorizing 120 sounds and the former
using 16 subjects categorizing 50 sounds. Gygi et al. (2007)
note that in both studies, subjects had a “tendency to categorize
sounds based on source types” (p. 851), supporting Gaver’s
(1993) hypothesis that everyday listening is primarily oriented
to the sound’s source in contrast to “musical listening,” which is
primarily orientated toward the sound’s acoustic qualities.

Given that a majority of listeners tend to categorize sounds
based on sound source and that there can otherwise be highly
specific, small categories and/or disagreement among listeners
about which category a sound belongs to, we chose to use
a strict experimenter-determined, sound source categorisation
method; if the general trend of many sounds leads to many
categories is true, then our database of 158 sounds (which is
larger than Marcell et al.’s and Gygi et al.’s) could otherwise
result in an unwieldy number of categories. We adopted a single
categorisation rule, using the source of the NLS as the sole basis
for categorisation, and implemented by the two experienced
experimenters independently and then consultatively if there

were any disagreements. In total, we formed nine categories:
primate (n = 14 sounds), non-primate animal (n = 38 sounds),
tool/machine (n = 28), non-animal nature (n = 11), human non-
vocal (n = 6), music (n = 21), insect (n = 5), explosions/guns
(n = 10), and uncategorized or other (n = 25, reflecting that
some NLSs did not fit well into any of the other categories).
The allocation of our NLSs to these categories is detailed in
Supplementary Table 1.

Psychophysics for Rating of Subjective
Perceptions
All psychophysics testing was conducted in a quiet room in
an isolated corridor of the department. Ethics approval for
the collection of this data was obtained from the institutional
Standing Committee on Ethics in Research in Humans.

Twelve normal-hearing observers (7 males, 5 females; mean
age 19.8 years, SD = 0.57) from the undergraduate student
population (all non-musicians), were tested individually using
audiometry to ensure normal hearing thresholds across the range
from 500 Hz to 8000 Hz (Rajan and Cainer, 2008). Then, in
groups of four, participants listened to the 158 NLSs individually,
in groups of 20 sounds at a time with a 1-min break between
groups, so as not to cause fatigue. Using Windows Media Player
the sounds were played out as waveform audio files (.wav) from
a Dell Inspiron computer and through an external sound card
(Audigy Creative Blaster) to two high-quality speakers (Altec).
We used two speakers to model the diotic element used in studies
by Gygi et al. (2004), Marcell et al. (2007), and Gygi and Shafiro
(2011) but to create a more natural feel than the headphones they
used. The four participants were organized in a semi-circle facing
the speakers, at a distance of about 1 m from the speakers. After
listening to each sound once, the participants were instructed
to rate the sound on seven-point Likert scales (Likert, 1932) for
“Complexity,” “Pleasantness,” and “Familiarity” (percepts), and
were also asked to name the sound source (Accuracy of Naming)
by writing down what they thought the sound was and to rate
their confidence in identifying the sounds; no verbal interaction
between participants was permitted. Subjects were told: “Your
task is to identify each sound as quickly and accurately as you can.
In one or two words please describe what you hear, and write the
appropriate response on the blank sheet. Each sheet has blocks of
trial numbers from 1 to 20. Sounds will be presented to you in
blocks of 20 and after each block you will receive a 1-min break.
After identifying the sound immediately after it is presented,
please rate the sound for Familiarity, Complexity, Pleasantness
and confidence on a scale of 1 to 7 (e.g., for Pleasantness 1 = not
pleasant at all, 7 = highly pleasant). The sound will only be
played once so please listen carefully. The time allocated for
each sound is 30 s.” This mimicked the method employed by
Marcell et al. (2007). Answers were recorded on sheets of paper
marked out in blocks of sounds (Block 1 = first 20 sounds),
trial number (trial #1, trial #2, etc.), a blank for the name of
the sound and three rating scales (Pleasantness, Familiarity, and
Complexity). These subjective ratings and sound identification
data were then analyzed for correlation with objective measures
of the rated NLSs.
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Objective Measures to Define Complex
Waveforms
A wide range of temporal and spectral measures of complex
waveforms from various disciplines involving signal processing
were considered for inclusion in this study. Particular emphasis
was placed on those which measured complexity or have been
shown to be related to sound percepts relevant or identical to
those used in this study. Measures were selected to include
a diversity of possible information (including from different
information theoretic viewpoints) without being superfluous
or repetitive. Since one percept of interest was “Complexity,”
we included two entropic measures which measure stimulus
“complexity” – sample entropy (Richman and Moorman, 2000;
Lake et al., 2002) and permutation entropy (Bandt and Pompe,
2002; Zanin et al., 2012; Riedl et al., 2013), derived from chaos
and information theory, respectively. An algorithmic complexity
measure was also included, the LZ measure (Xu et al., 1997;
Radhakrishnan and Gangadhar, 1998; Zhang et al., 2000; Wu
and Xu, 2001; Zhang et al., 2001; Huang et al., 2003; Khalatur
et al., 2003; Szczepański et al., 2003; Watanabe et al., 2003).
The remaining objective measures have been used in previous
research on sound identification or perception: peaks-related
measures (Gygi et al., 2007); fractal dimension estimates (Spasić
et al., 2005; Shibayama, 2006; Raghavendra and Dutt, 2010), using
both the Higuchi method (Higuchi, 1988) and the NLD method
(Kalauzi et al., 2009); mean spectral centroid (Grey and Gordon,
1978; Shao et al., 2003; Gygi et al., 2007; Maher and Studniarz,
2012); root mean squares (RMSs) of discrete frequency ranges
(Halpern et al., 1986; Gygi et al., 2007; Kumar et al., 2008; Reuter
and Oehler, 2011); harmonicity (Yumoto et al., 1982; Boersma,
1993; Lewis et al., 2005; Gygi et al., 2007); spectral flatness (Jayant
and Noll, 1984; Boersma, 2001); and spectral structure variability
(SSV) or index (SSI) (Reddy et al., 2009; Singh, 2011; Lewis et al.,
2012). For a more detailed discussion of these methods, including
their derivations, please see Supplementary Material 2.

The HNR measure was calculated for all NLSs using a
phonetics research program called Praat (Boersma, 2001) and
the remaining 18 selected measures were calculated for all NLSs
using MATLAB (MATLAB R2012a, The MathWorks Inc., Natick,
MA, United States). MATLAB and Praat codes for calculating
these measure may be found at the following GitHub repository:
https://github.com/tfburns/sounds-analyses.

Data Analysis
Pair Wise Regression of the Entire Dataset of NLSs
To determine whether any of the perceptions factors or any of
the objective measures were interrelated, we conducted linear
regressions in pair-wise fashion for all combinations of the four
measures: namely, Familiarity, Complexity and Pleasantness,
and Accuracy of Naming. Ratings of Familiarity were highly
correlated with ratings of Complexity and with Accuracy of
Naming. We therefore deleted Familiarity as it did not represent
an independent percept, and all further analyses used the
perceptions of Complexity and Pleasantness, and the Accuracy
of Naming, which we will refer to collectively as our three
subjective perceptions – we recognize that, strictly, Accuracy

of Naming is not a subjective perception but we include it
so to distinguish it from the objective measures of spectro-
temporal features against which it was mapped. We examined
pair-wise relationships between each subjective measure and each
selected objective measure used to define the NLS waveform.
Since temporal and spectral domains of sounds appear to be
affected differently in different types of hearing loss (Strouse
et al., 1998; Probst et al., 2017), and our work may have
implications for rehabilitation or testing regimes, we grouped
the objective measures into these two domains and conducted
pair-wise analyses between each subjective perception and each
objective measure within each domain. The resulting regression
tables were analyzed to evaluate (see, section “Results” for details)
which measures were most independent from the others. Then,
separately, we evaluated which objective measures could be
chosen as the salient objective measures for later analysis based
on their independentness from the other objective measures.
We conducted linear regressions for all pair-wise combinations
between each salient objective measure versus each of our three
subjective perceptions. Significance and correlation coefficients
were again calculated for all regressions.

Analyses Within Categories of Sound Type
The above analyses on the full NLS dataset identified general
trends for the relationships between each salient objective
measure and each of our three subjective perceptions. However,
there was still a rather large amount of imperfect mapping
between the objective measures and each perception. To
strengthen these analyses, we examined the homogeneity of the
NLSs for their objective measures, and for the three subjective
perceptions, to see if stronger relationships might be found by
removing outlier NLSs that did not fit a given trend between an
objective measure and each of the three subjective perceptions.
To objectively and precisely identify these outliers, each NLS was
placed into an experimenter-determined sound source category
(e.g., Primate sounds, Human non-vocal sounds, Nature sounds,
etc. – see Supplementary Table 1 for the full list of categories and
segregation of sounds). This allowed us to extract any common
objective measures underlying the perception of different types
of sounds from within the same sound source category.

One-way ANOVAs were calculated using GraphPad Prism 8
(Graphpad Software) and used to compare the NLS categories
for differences in the salient objective measures and differences in
their subjective perceptions. Heteroskedasticity was always tested
using Brown–Forsythe tests and pair-wise differences between
the categories were found using post hoc Tukey’s tests. Although
the determination of what would be considered ’homogenous’
would necessarily be somewhat arbitrary, we counted the number
of individual significant differences between the categories across
all ANOVAs to determine if there were more differences than
similarities (where a similarity is defined as having no significant
difference between two NLS categories). If there were more
differences than similarities, removing or separating categories of
NLSs from the database might allow perfect mappings between
objective measures and each of our subjective perceptions. If, on
the other hand, more similarities than differences were found,
mapping improvements would be unlikely.
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Multi-Variate Analyses, Principal Component
Analysis, and Agglomerative Hierarchical Clustering
for Data Analyses
In a final analysis, complex, multivariate analyses were used
to map combinations of salient objective measures to the
three perceptions for NLSs. Multiple linear regressions were
first conducted using combinations of objective measures to
map onto the perceptions and these relationships visualized
with bubble plots and biplots from principal component
analysis (PCA). However, as this analysis assumed linear and
consistent relationships, separate analyses unconstrained by these
assumptions were conducted using agglomerative hierarchical
clustering (AHC) with Euclidean distance and Ward’s method,
set a priori, to divide the database into 10 clusters of NLSs,
based on their makeup of objective measures for each domain –
spectral and temporal. The 10 clusters were then compared for
perceptions, using one-way ANOVAs, to determine if dissimilar
combinations of objective measures were related to dissimilar
perceptual reports. This analysis was repeated for different
degrees of clustering, e.g., clustering all NLSs into five clusters,
then three clusters, and finally two clusters (based on their
similarities and differences in perceptual ratings, Accuracy of
Naming, and salient objective measures). Finally, data were
reduced in dimensionality via PCA and then the AHC method
employed, to corroborate any significant differences found
between clusters in our three subjective perceptions in the high-
dimensional cluster analysis described here.

RESULTS

Interrelationships Between Familiarity,
Complexity and Accuracy and Between
Sound Complexity and Accuracy
There were significant inter-relationships between each of the
three perceptions and Accuracy of Naming (Table 2; all Pearson
correlations p < 0.05). Complexity, Familiarity, and Accuracy
of Naming had the most robust inter-relationships (r > 0.7),
while Pleasantness had a weaker relationship with the other
percepts and a very weak relationship with Accuracy of Naming.
Complexity was inversely correlated with Familiarity: the more
complex a sound, the less likely it was to be rated as familiar.
Accuracy of Naming was, unsurprisingly, positively correlated
with perceptions of Familiarity with the sound, and inversely
correlated with perceptions of sound Complexity, a novel

TABLE 2 | Correlation matrix (Pearson) of perceptions and identification accuracy.

Variables Complexity Pleasantness Accuracy Familiarity

Complexity −0.283 −0.701 −0.807

Pleasantness −0.283 0.197 0.321

Accuracy −0.701 0.197 0.735

Familiarity −0.807 0.321 0.735

∗All pearson correlations had p < 0.05 and bolded values indicate highly significant
relationships (α = 0.001).

relationship that has not, to the best of our knowledge, been
previously reported.

Given that Familiarity was so highly correlated with Accuracy
of Naming and Complexity, it provided the least amount of
independent variation and so was excluded from subsequent
analyses. Although Accuracy of Naming appeared to depend on
Complexity, it was retained in further analysis, given the novelty
and non-intuitive nature of this relationship (i.e., why Accuracy
of Naming should be inversely correlated with Complexity).
Overall, we retained for subsequent analyses three measures: the
two percepts of Complexity and Pleasantness, and the outcome
measure of Accuracy of Naming.

Perceptual Relationships With Individual
Objective Measures
To characterize the NLSs objectively, we started with 19 objective
measures that have been used to characterize complex signals. We
calculated these measures for our NLSs and conducted pair-wise
linear regression analyses of one measure against another, for
all combinations. As expected, many objective measures which
were theoretically related or which measured similar qualities of
an NLS were significantly correlated with one another for our
NLS database too, e.g., HNR and SFM (r = −0.822); Higuchi
and NLD estimates (r = 0.812). Hence, to avoid redundancy of
information captured by the objective measures and to increase
the power of subsequent analyses, we identified a set of salient
objective measures which (for our dataset) accounted for large
proportions of the variance in other objective measures within
the same domain (i.e., spectral or temporal) – i.e., we first
identified the objective measures that correlated most highly
with each other.

Although there are many significant relationships among the
measures, some are quite weak (e.g., Higuchi FD estimate and
duration, r = 0.059) and the choice of measures should include
some consideration toward the strength of relationships. Any
such consideration would have to be made on an arbitrary basis
since the “strength” of a correlation is subjective and relative;
we decided that if the correlation between two measures was
≥±0.45, only one of the pair would be included in subsequent
analyses. Ten cross-relationships with r ≥ ± 0.45 were found
among the temporal measures and seven among the spectral
measures. Retaining only one from each such cross-relationship
reduced the 19 objective measures to a subset of seven salient
objective measures (four temporal and three spectral; listed in
Table 3) which, independent of each other, accounted for a large
proportion of the total variance among all of the measures.

These salient objective measures were used to correlate with
the three measures (Complexity, Pleasantness, and Accuracy of
Naming) of the NLSs. The outcome of these correlations is
shown in Table 3. The mean spectral centroid was the best
individual descriptor for both Accuracy of Naming (p < 0.0001)
and Complexity (p = 0.0002). The only salient measure to
individually correlate significantly with Pleasantness was the
temporal measure of mean peak relative amplitude (p < 0.0001),
which also did not significantly correlate with the Accuracy of
Naming or Complexity.
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TABLE 3 | Correlation matrix (Pearson) for Complexity, Pleasantness, and
Accuracy of Naming, showing their individual, pair-wise relationships with each of
the salient measures.

Salient
measures

Temporal/
Spectral

Accuracy Complexity Pleasantness

NLDFD Temporal −0.254 0.265 −0.057

Mean peak Temporal −0.038 −0.039 0.324

Permutation
entropy

Temporal −0.031 0.106 −0.034

LZ complexity
(differential
binary)

Temporal −0.11 0.162 −0.048

HNR Spectral 0.182 −0.248 0.109

Mean spectral
centroid

Spectral −0.35 0.293 −0.089

1000–2000 Hz
RMS

Spectral 0.076 −0.052 −0.021

∗Bolded values indicate significant relationships (at α = 0.05).

Two measures – one temporal (permutation entropy) and one
spectral (1000–2000 Hz RMS) – did not correlate significantly
with any of the three measures. Note also that whenever a
measure was significantly correlated with Accuracy of Naming,
it was also significantly correlated with Complexity, except in
the case of the temporal measure of LZ complexity (differential
binary), which was only significantly correlated with Complexity
(p = 0.0413).

In summary, there was no strong correlation between
any single salient objective measure and the perceptions of
Complexity and Pleasantness of NLSs or the Accuracy of
Naming the NLSs.

Analysis of NLSs Within Categories:
Reducing Database Homogeneity
The absence of strong correlations between any single salient
objective measure and our three subjective measures could be
due to heterogeneity in the NLSs database. The NLSs span
a wide variety ranging from machine noises to primate and
animal vocalizations, and significant heterogeneity in the overall
database may warrant analyzing NLSs in smaller, alike groups. It
was for this reason that we categorized the NLSs as described in
Materials and Methods.

One-way ANOVAs with post hoc Tukey’s tests revealed
significant (p < 0.05) differences between the NLS categories
for our subjective measures and salient objective measures.
Significant differences between the NLS categories were found
for Accuracy of Naming (1 significant difference), Complexity
(4 significant differences), and Pleasantness (12 significant
differences). For the salient objective measures, differences
between the NLS categories were found for permutation entropy
(1 significant difference), the differential binary coded LZ
complexity (3 significant differences), and HNR (11 significant
differences), but not for NLD fractal dimension, mean peak
amplitude, 1000–2000 Hz RMS, or mean spectral centroid. The
most prominent differences among the sounds were therefore in
the domains of Pleasantness and HNR.

These significantly different pairs represented only one quarter
of the total possible pair-wise differences among the NLS
categories for individual percepts or objective measures, i.e.,
the NLS categories had fewer significant differences than there
was potential for (by a factor of three) in perceptual ratings,
Accuracy of Naming, and the salient objective measures. Further,
the differences between NLS categories for perceptual ratings and
Accuracy of Naming were inconsistent between the same NLS
categories for salient objective measures.

These analyses do not support the hypothesis that the
NLSs database should be treated as categories of sounds,
based on sound source. Hence, it will be assumed that the
NLSs can be treated as a single group of sounds which
have an acceptable homogeneity. It is recognized that there
were some perceptual and objective differences between the
categories vis-à-vis Pleasantness and HNR and for this reason,
in relevant subsequent analyses, information on labeled sound
categories are provided.

Multivariate Analysis
Given that pair-wise regressions of even the reduced subset
of most salient objective measures, against any of the three
subjective measures, did not yield strong relationships, we
examined if combinations of objective measures would yield
better predictions.

Pairs of Measures
Multiple linear regression using pairs of measures to explain each
of the subjective measures of Complexity and Pleasantness and
the Accuracy of Naming the NLSs, provided more significant
relationships (c.f. Table 3 vs. Table 4). In keeping with the
distinction made previously between temporal and spectral
domains, we only combined salient measures from the same
domain (spectral or temporal). These analyses are summarized
in Table 4 and plotted as bubble plots in Figure 1 for the

TABLE 4 | Correlation matrix (R2) for Complexity, Pleasantness, and Accuracy of
Naming, showing relationships with pairs of salient measures.

Pairs of salient measures Accuracy Complexity Pleasantness

NLDFD + permutation entropy 0.064 0.076 0.004

NLDFD + mean peak 0.065 0.074 0.112

NLDFD + LZ complexity
(differential binary)

0.071 0.087 0.005

Permutation entropy + mean
peak

0.002 0.014 0.111

Permutation entropy + LZ
complexity (differential binary)

0.012 0.030 0.003

Mean peak + LZ complexity
(differential binary)

0.012 0.033 0.121

HNR + mean spectral centroid 0.152 0.144 0.019

HNR + 1000–2000 Hz RMS 0.036 0.062 0.013

Mean spectral
centroid + 1000–2000 Hz RMS

0.130 0.089 0.008

∗Bolded values indicate significant relationships (α = 0.05).
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FIGURE 1 | (A) Mean spectral centroid and HNR measures bubble plot, where the size of a bubble (representing an individual NLS) is scaled to its accuracy of
naming. (B) Mean spectral centroid and HNR measures bubble plot, where the size of a bubble (representing an individual NLS) is scaled to its complexity. (C) Mean
peak and LZ complexity (differential binary) measures bubble plot where the size of a bubble (representing an individual NLS) is scaled to its pleasantness.

regressions with the highest explanatory power for each percept
and Accuracy of Naming.

The spectral combination of HNR and mean spectral centroid
provided the largest explanation of both Accuracy of Naming
(Figure 1A; R2 = 0.152; p < 0.0001) and Complexity (Figure 1B;
R2 = 0.144; p < 0.0001) of the pair-wise combinations. NLSs
which were less frequently identified correctly also tended to
have a lower HNR value (Figure 1A); equally, NLSs with lower
HNRs were more frequently rated as having high Complexity
(Figure 1B). Thus, low HNRs appear to be a consistent
factor accounting for the above-noted inverse inter-relationship
between Complexity and Accuracy of Naming, the latter being a
novel relationship that not previously reported.

Mean spectral centroid also appeared to separate NLSs
broadly – more complex and less well identified NLSs tended to
have higher mean spectral centroids (Figure 1B).

The temporal combination of mean peak relative amplitude
and LZ complexity (differential binary) had the most explanatory
power for the perception of Pleasantness of NLSs (Figure 1C;
R2 = 0.121; p < 0.0001). NLSs with a high Pleasantness where
situated mainly on the higher end of the mean peak relative
amplitude axis. However, there was no clear distinction for
bubble size along the LZ complexity (differential binary) axis,
where there seemed to be a fairly equal representation of pleasant
and unpleasant NLSs.

Three or More Measures
Adding additional objective measures into the multiple linear
regressions only marginally increased the predictive power for

each domain of the three perceptions (Table 5 c.f. Table 4),
suggesting that assuming linearity in the analysis reached the
limit of our predictive capabilities using just the salient measures.

The relationships between the measures which best accounted
for each of the three subjective measures were visualized using
PCA biplots (Figure 2). With regards to Accuracy of Naming
of the NLSs (Figure 2A), HNR and 1000–2000 Hz RMS are
relatively orthogonal (unaligned) to Accuracy of Naming and the
mean spectral centroid lies on the same plane but is almost exactly
opposite in direction. With respect to the percept of Complexity
of the NLSs, Figure 2B shows that both the 1000–2000 Hz RMS
measure and HNR are nearly orthogonal to Complexity, and the
mean spectral centroid is more closely aligned along the plane of
Complexity. Finally, with respect to the percept of Pleasantness of
the NLSs, Figure 2C shows that mean peak relative amplitude is

TABLE 5 | Correlation matrix (R2) for Complexity, Pleasantness and identification
accuracy, showing their relationships with groups of salient measures.

Salient measures grouped
by domain

Accuracy Complexity Pleasantness

All salient temporal measures –
NLDFD + permutation
entropy + mean peak + LZ
complexity (differential binary)

0.071 0.098 0.128

All salient spectral measures –
HNR + mean spectral
centroid + 1000–2000 Hz RMS

0.157 0.145 0.020

∗Bolded values indicate significant relationships (α = 0.05).
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FIGURE 2 | (A) Biplot of PCA for the salient spectral measures which best described accuracy of naming. N.B. Only 62.76% of the variance within these variables is
represented. (B) Biplot of PCA for the salient spectral measures which best described complexity. N.B. Only 62.27% of the variance within these variables is
represented. (C) Biplot of PCA for the salient spectral measures which best described pleasantness. N.B. Only 55.79% of the variance within these variables is
represented.

the primary measure to align itself roughly with Pleasantness and
all of the other salient temporal measures are relatively unrelated,
or contribute weakly.

Agglomerative Hierarchical Clustering (AHC)
The resultant clusters of the AHC on the raw spectral salient
objective measures data for all sounds, differed significantly (one-
way ANOVA and post hoc Tukey’s test; p < 0.05). However, the
objective spectral properties of the NLSs defined NLS groupings
for Accuracy of Naming and perceptual Complexity, but not for
perceptual Pleasantness. More precisely, these differences were
found for Accuracy of Naming (two: p = 0.0441; p = 0.0441) at
the 10-cluster level, for Accuracy of Naming (two: p = 0.0014;
p = 0.0016) and Complexity (two: p = 0.0039; p = 0.0069)
at the five-cluster level, and for Accuracy of Naming (one:
p = 0.0001) and Complexity (one: p = 0.0008) at the three-
cluster level. However, the difference at the 10-cluster level
for Accuracy of Naming relied on one cluster having only
two NLSs. Importantly, no significant differences were found
between clusters for Pleasantness at any level of clustering. This is
consistent with our previous analyses that spectral measures are
strongly related to both Accuracy of Naming and Complexity, but
not to Pleasantness (Tables 3–5).

The resultant clusters from the raw temporal AHC showed
no significant differences at the 10- or four-cluster level but
at the two-cluster level showed significant differences for both
Accuracy of Naming and Complexity. These differences had,
however, much higher p-values (p = 0.0306 for Accuracy of
Naming and p = 0.0470 for Complexity) than those from a
comparable cluster level for the spectral AHC, and were similar to
the three-cluster level (where p = 0.0001 for Accuracy of Naming
and p = 0.0008 for Complexity). This is consistent with our
earlier results that temporal measures do not correlate as strongly

as spectral measures with Accuracy of Naming and Complexity
(Tables 3–5).

Principal component analysis were conducted using all
temporal measures and, separately, all spectral measures. The
first two principal components (PCs), which accounted for
the greatest proportions of variance within the original sets
of salient measures, were then selected for use in subsequent
(PC) AHC analyses. In the case of the spectral PCA, the first
two PCs accounted for 70.78% of the variance, and for the
temporal PCA, 61.37% of the original variance was represented
in the first two PCs.

Results for the AHC analysis using PCs derived from the
spectral PCA were similar to those from the raw spectral AHC
(which used the unmodified data) – there were differences at
multiple cluster levels for Accuracy of Naming and Complexity,
but not for Pleasantness. The differences were found for Accuracy
of Naming (two: p = 0.0296; p = 0.0167) and Complexity (two:
p = 0.0218; p = 0.0258) at the 10-cluster level, for Accuracy of
Naming (two: p = 0.0008; p = 0.0176) and Complexity (two:
p = 0.0008; p = 0.0176) at the four-cluster level, but none at the
two-cluster level. However, at both 10- and four-cluster levels, the
clusters in the ANOVAs for Accuracy of Naming and Complexity
had significantly different standard deviations (p < 0.05). Thus,
these results may be unreliable but are presented in the interest
of completeness.

Results for the AHC analysis using PCs derived from the
temporal PCA were similar to those from the previous raw
temporal AHC – there were differences at multiple cluster
levels for Accuracy of Naming and Complexity, but never for
Pleasantness. The differences were for Accuracy of Naming (one:
p = 0.0491) at the 10-cluster level, for Accuracy of Naming
(one: p = 0.0296) at the six-cluster level, and for Accuracy of
Naming (one: p = 0.0027) and Complexity (one: p = 0.0115) at
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the three-cluster level. That absence of significant differences in
Pleasantness in this analysis (as was expected) is possibly due
to the fact that only 61.37% of the variance was captured in
the temporal PCA. Of our salient measures, mean peak relative
amplitude is the major or sole contributor to the relationship with
Pleasantness and the objective temporal domain. It could be that
its contribution was “washed-out” by the lost overall variance or
variance contribution from the other salient temporal measures
included in the PCA conducted prior to the AHC.

DISCUSSION

To our knowledge this study is the first major attempt at
understanding the way humans perceive the complexity of NLSs
in relation to the objective features of those sounds. Two near-
orthogonal axes were identified in perceptual space and we
have added significantly to what is known about the objective
determinants of the percepts of Pleasantness, Familiarity, and
NLS identification. We also demonstrated the usefulness of AHC
analysis on transformed data such as these and how similar
methods such as artificial neural networks may help to further
tease out complex mappings between objective features of stimuli
and their subjective perception as reported by humans.

Relationships Among Subjective
Percepts and Accuracy of Naming
As noted earlier, other studies have probed various perceptual
properties of NLSs (Halpern et al., 1986; Ballas, 1993; Cycowicz
and Friedman, 1998; Lewis et al., 2005, 2012; Marcell et al., 2007;
Kumar et al., 2008; Reddy et al., 2009; Reuter and Oehler, 2011;
Singh, 2011; Kirmse et al., 2012) but most focused on only a single
percept. Ballas (1993) used the most exhaustive list of perceptual
properties, of 22 ratings scales, for 41 NLSs, and condensed
this battery of perceptions into three PCs representing 87% of
the variance. Given the number of different rating scales, this
result shows that subjective ratings can be highly interrelated
or interdependent. These ratings did not include Accuracy of
Naming, nor Complexity or Pleasantness of NLSs, all of which
we considered here. Ballas (1993) did consider Familiarity but
the methodology allowed participants to replay the sound as
many times as desired and this could affect the other perceptual
reports – e.g., Familiarity with an NLS can alter the way it is
processed (Cycowicz and Friedman, 1998; Kirmse et al., 2012).
Marcell et al. (2007) studied the perceptions of Complexity,
Pleasantness, and Familiarity, and the Accuracy of Naming but
did not attempt to correlate these perceptual ratings.

We attempted to correlate the percepts of Complexity,
Pleasantness, Familiarity, and the Accuracy of Naming. For our
dataset of NLSs, there was a dominant relationship between the
percepts of Complexity and Familiarity, and Accuracy of Naming:
sounds rated as being highly complex are difficult to accurately
name and are rated as not familiar, and vice-versa. With the
constraint that our subjects were all from a very similar Western
industrialized background (albeit of different ethnicities), this
indicates that a person’s auditory experience determines their
ability to identify NLSs, and “complex” NLSs are rated as such

due to a person’s lack of Familiarity with them, independent of
any objective characteristics of the sound.

Pleasantness was not well related with the other percepts
and especially not with the Accuracy of Naming, except for
a weak relationship whereby familiar sounds were rated as
slightly more pleasant. Halpern et al. (1986) suggested that the
functional purpose of unpleasantness as an auditory feature is
to communicate distress or warnings, but this hypothesis was
based on similarities between the properties of unpleasant sounds
and macaque monkey warning cries, and these similarities are
not sufficiently robust to support this hypothesis (Cox, 2008).
McDermott and Hauser (2004) found that cotton-top tamarins
(Saguinus oedipus) had no preference for amplitude-matched
white noise versus the sound of a three-pronged metal garden
tool scraped down a pane of glass (a “screech” sound comparable
to fingernails scraping down a blackboard; Halpern et al., 1986)
while humans overwhelmingly preferred the white-noise control
(McDermott and Hauser, 2004) despite both species sharing
many similarities in perceptual processing for vocalizations
(Ramus et al., 2000; Miller et al., 2001a,b; Newport et al.,
2004). McDermott and Hauser (2004) also showed that the
tamarins significantly preferred looping soundscapes composed
of tamarin food chirp sounds versus tamarin distress screams.
If the perception of unpleasantness is species-specific, it might
not be possible to define it in terms of objective properties
alone (see below for discussion of the objective properties
related to Pleasantness in humans) or may involve semantic or
emotive contents which cannot be fully interpreted by another
species, or both.

Highly pleasant sounds, such as nature sounds (Shimai, 1993;
Marcell et al., 2007; Kumar and Ohana, 2008; Alvarsson et al.,
2010), may even impact on health (Cohen et al., 2007). Alvarsson
et al. (2010) show that sounds such as nature sounds (consistently
rated as highly pleasant; Shimai, 1993; Marcell et al., 2007;
Kumar et al., 2008; Alvarsson et al., 2010), facilitate recovery
from sympathetic activation in humans after experiencing a
psychological stressor but that other sounds, such as road traffic
sounds (often rated as unpleasant; Marcell et al., 2007; Alvarsson
et al., 2010), do not facilitate the same recovery. This facilitation
or absence of recovery may (also) involve higher-order emotional
or subjective elements and not just be due to the objective features
of these NLSs, especially considering that cortical representation
of unpleasant sounds is influenced by interactions with the
amygdala (Kumar et al., 2012).

Relationships Among Objective
Measures of NLSs
Many correlations were found among the objective measures in
both temporal and spectral domains, some expected and some
not. These relationships may only be true for this dataset of NLSs
and not a general rule for all types of NLSs, let alone all types of
signals, although some of these relationships are also evident in
EEG signals (Burns and Rajan, 2015).

Although dissimilar in methodology, both fractal dimension
estimation techniques – Higuchi and NLD – were highly
correlated, as also seen when these analyses were originally
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applied to EEG waveforms (Kalauzi et al., 2009). Interestingly,
we have reported the first significant correlation between a
fractal dimension estimate and the LZ complexity measure
(average binary and modified zone binary). Since both measures
ultimately attempt to find self-similarity or repeating aspects in
a signal, it is not unexpected that they carry some common
information. However, the degree of common information was
not always similar, e.g., the Higuchi FD correlated poorly with LZ
complexity (modified zone binary) (r = 0.361; Table 3) whereas
the NLD FD was more correlated (r = 0.577; Table 3).

The most significant relationship among the spectral
measures, the negative relationship between the SFM and HNR,
is logical since if a sound is highly harmonic it cannot also be
“flat” in its spectrum. The fact that the SFM and SSI are related
explains why they were also well correlated and therefore why
there was also a relationship between SSI and HNR.

Categories of Sounds Differentiated by
Source Were Not Strongly Differentiated
by Either Subjective Percepts or
Objective Measures
We analyzed our NLSs database for homogeneity to examine if
stronger relationships could be found by removing outlier NLSs
which did not fit a given trend between an objective measure
and subjective percept or Accuracy of Naming. We sought to
determine if different categories of NLSs followed their own
trends, independently of other categories (see section “Analyses
Within Categories of Sound Type”).

With respect to Accuracy of Naming, non-linguistic human
vocalizations (which we classed under “primates”) were the
most accurately identified NLS category, although only the
“other” category was significantly less so (p = 0.0037 c.f.
“primates”). This differs slightly from the results of Inverso
and Limb (2010), who found “mechanical/alerting” sounds to
be slightly more recognizable than “human” sounds. However,
their “human” category also included non-vocalizations like the
sound “footsteps” and their study participants were experienced
cochlear implant (CI) users, not normal-hearing university
students. It is not known if the perception of NLSs is the same
between the two categories of people, but these findings raise
caveats about assuming that the understanding of the perception
of NLSs by normal-hearing subjects can directly translate to the
perception of NLSs by deaf subjects using a CI.

With respect to perceived complexity, primate sounds in our
database were rated as significantly less complex than the sounds
of other animals; this may reflect the similarity between human
sounds and primate sounds (Hauser and Tecumseh Fitch, 2003),
and therefore be a Familiarity factor.

For ratings of Pleasantness, for our NLS categories, nature and
music sounds were rated as the most pleasant, as in previous
studies (Shimai, 1993; Marcell et al., 2007; Kumar et al., 2008;
Alvarsson et al., 2010).

Finally, the only salient objective measures showing
differences among the different NLS source categories were
LZ complexity (differential binary) and the HNR. Previous
studies (Gygi et al., 2007; Lewis et al., 2012; Leaver and

Rauschecker, 2010) have noted the importance of harmonicity to
NLS classification but did not determine if there were differences
among different experimenter-determined categories of sounds
for HNR (or LZ complexity).

Overall, there were some significant differences among
different categories of NLS sources for subjective percepts and
for objective measures of sounds but there were many groups for
which no significant differences were observed for either. Indeed,
we found that objective features of sounds can be similar or even
identical between different source categories. Later categorization
of the different sounds using AHC analyses showed that
this method of objective categorizing was more revealing of
similarities and differences between different sounds (note: not
different sound categories) for Complexity and the Accuracy of
Naming. Thus, identifying a sound’s source appears only partly to
rely on objective measures, and other information, perhaps visual
integrative learning or memory (Thompson and Paivio, 1994;
Giard and Peronnet, 1999), may also play a role. Higher-order
associations may also provide context and input into perceptions
of Complexity and Pleasantness (Johnson et al., 1999).

This conclusion has implications for the identification of NLSs
by CI users (viz., Inverso and Limb, 2010; Shafiro et al., 2015).
The poor success of CI users in identifying NLSs may have less
to do with the objective properties of the NLSs and more to
do with other attributes, e.g., remembering and associating that
sound with an image, based on experience or emotional valency.
Work on the perceptual learning of spectrally degraded speech
and NLSs (Loebach and Pisoni, 2008) shows that speech training
does not generalize to NLSs but that NLS training does generalize
to speech. This suggests that the development of specific NLS
training programs for CI or hearing aid users would be greatly
beneficial, both to allow recognition of an important set of
everyday sounds with strong emotional or survival value and to
feed into speech recognition.

Complexity, Familiarity, and Accuracy of
Naming
Since different categories of sounds, segregated by sound source,
were not strongly differentiated by either subjective percepts
or objective measures, we used the entire NLSs database
to find correlations with the objective measures along our
two, near-orthogonal perceptual dimensions of Complexity and
Pleasantness. Since Familiarity closely matched Complexity
and the Accuracy of Naming, any relationship which was
true for one would often exist oppositely for the other.
(Pleasantness was a near-orthogonal perceptual dimension to the
Complexity-Familiarity-Accuracy-of-Naming dimension, and its
relationships with objective measures are discussed in the
section “Pleasantness.”)

The consistent correlation between objective measures and
Familiarity suggests either (1) our subjects controlled their
auditory experience with respect to objective features of NLSs
(e.g., they avoided sounds with high FDs, and thus were
unfamiliar with them) or (2) there is something intrinsic to these
objective features which makes NLSs easier to become familiar
with. The latter hypothesis seems more plausible.
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Our standard multivariate analyses showed that both temporal
and spectral measures can be associated significantly with
differences in Complexity and the Accuracy of Naming
(Tables 4, 5). When the sounds in our database were separated
based on these objective measures using AHC analyses (and
incorporating PCA), differences arose between the resultant
clusters for both Complexity and the Accuracy of Naming.
However, the resultant clusters from AHC analyses which
included only spectral measures tended to show greater
numbers of and more significant differences in Complexity
and Accuracy of Naming. This suggests humans may assess
spectral features, more than temporal features, when assessing
NLS Complexity, Familiarity, or when seeking identify it.
Favoring spectral features over temporal ones may be a more
efficient means of neural processing insofar as being able
to more readily make a subjective judgment about a NLS,
since relying on temporal features may require a longer time
exposure to the NLS.

Pleasantness
For ratings of Pleasantness, temporal measures or combinations
thereof had the highest explanatory power and none of the
salient spectral measures were significantly correlated – alone
or in combination – with Pleasantness; clusters created using
spectral measures did not show any significant differences
in Pleasantness. The fact that temporal information becomes
highly important in CI users with spectrally degraded stimuli
(Fu et al., 2004), and because a decreased level of music
appreciation is found in the same individuals (Nimmons et al.,
2008; Philips et al., 2012), makes it likely that temporal
features are important to the appreciation of sounds as
being pleasant. Poorer temporal resolution might mean that
such features are indiscernible to a person with hearing
loss (Francart et al., 2015), and thus result in a lowered
appreciation of music.

However, past studies have repeatedly shown the importance
of spectral features to percepts of Unpleasantness in NLSs
(Halpern et al., 1986; Cox, 2008; Kumar et al., 2008; Reuter
and Oehler, 2011). This might be because Unpleasantness
has different objective drivers than does Pleasantness, i.e.,
the presence of an objective feature might make something
unpleasant but its absence might have a neutral or null
effect on Pleasantness. However, it must also be recognized
that there are significant methodological differences between
our study and the previous studies: Halpern et al. (1986)
and Reuter and Oehler (2011) used 16 digitally resynthesized
and filtered NLSs; Kumar et al. (2008) used 75 auditory
representations of NLSs in a modeled primary auditory cortex
(Shamma, 2003); and Cox (2008) used 34 NLSs but did
not measure any objective features. Further, none of these
studies tested the main temporal measure which we found to
correlate with Pleasantness – mean peak relative amplitude.
Based on the latter difference we would argue that these
studies do not negate our finding that Pleasantness perception
is based on temporal measures. This is not to say that
it has no spectral bases, but rather that it at least has
some temporal ones.

CONCLUSION

This study represents a critical step to the principled subjective
and objective characterization of NLSs, and could allow NLSs
libraries to be used in the evaluation or training of people with
hearing or cognitive impairments in the processing of NLSs
or their features.

As shown here and in other perceptual studies, e.g., for color
perception (Rúttiger et al., 1999) and auditory pitch (Tramo
et al., 2005), objective features of sensory data do not always map
simply to human perception – they can have complex mappings
and interactions. To fully unravel such relationships, methods
like the use of artificial neural networks have been employed with
some success (Shao et al., 2003). Such analytical complexity is
despite the fact that these subjective perceptions are otherwise
simple for us to understand and report, e.g., “the apple is red, not
blue,” “that C# is from a violin, not a piano.” While we have shown
that a variety of objective measures and percepts (including
the Accuracy of Naming) have strong interrelationships for our
NLSs database, future studies may still wish to investigate an
even broader range of percepts, objective features, and their
interactions for the same or an expanded database.

One practical implication of a NLSs database is in the
creation of a NLSs hearing test or training regime. Information
found by a NLSs hearing test could identify if a person finds
temporal or spectral information more difficult to process,
and this (married with a NLS training regiment) could
aid clinicians in developing more specific treatments and
rehabilitation strategies for their patients. Another important
area is the way in which perceptions may change with
cognitive impairment such as in dementia or less advanced
diseases. Whether the perception of the NLSs we used is
the same under such conditions and, if not, what elements
of our mathematical descriptors would best fit the altered
perception is an open question. Rather than speculate on
this complex topic, we hope to address this question directly
in future studies.

Another potential benefit could be in the identification and
removal of NLSs where they represent unwanted background
noise, such as in imperfect binary algorithms to digitally separate
speech from noise. Such algorithms could be incorporated into
hearing aids or CIs to dramatically counteract one of the
most commonly complained symptoms of hearing loss (the
cocktail party effect).
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Kalauzi, A., Bojić, T., and Rakić, L. (2009). Extracting complexity waveforms from
one-dimensional signals. Nonlinear. Biomed Phys. 3:8. doi: 10.1186/1753-4631-
3-8

Khalatur, P. G., Novikov, V. V., and Khokhlov, A. R. (2003). Conformation-
dependent evolution of copolymer sequences. Phys. Rev. E Stat. Phys. 67:10.

Kidd, G. R., and Watson, C. S. (2003). The perceptual dimensionality of
environmental sounds. Noise Control. Eng. J. 51, 216–231.

Frontiers in Neuroscience | www.frontiersin.org 12 July 2019 | Volume 13 | Article 794

https://www.frontiersin.org/articles/10.3389/fnins.2019.00794/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2019.00794/full#supplementary-material
https://doi.org/10.3390/ijerph7031036
https://doi.org/10.3390/ijerph7031036
https://doi.org/10.1037/0096-1523.19.2.250
https://doi.org/10.12688/f1000research.6590.1
https://doi.org/10.1101/085621
https://doi.org/10.1080/00140139508925271
https://doi.org/10.1371/journal.pone.0073289
https://doi.org/10.1016/j.apacoust.2007.11.004
https://doi.org/10.1006/brcg.1997.0955
https://doi.org/10.1542/peds.2014-0828
https://doi.org/10.3109/14992027.2014.989455
https://doi.org/10.3109/14992027.2014.989455
https://doi.org/10.1007/s10162-004-4046-1
https://doi.org/10.1007/s10162-004-4046-1
https://doi.org/10.1207/s15326969eco0501_1
https://doi.org/10.1207/s15326969eco0501_1
https://doi.org/10.1162/089892999563544
https://doi.org/10.1080/001401399185108
https://doi.org/10.1121/1.381428
https://doi.org/10.1121/1.381428
https://doi.org/10.1121/1.381843
https://doi.org/10.1121/1.1635840
https://doi.org/10.3758/bf03193921
https://doi.org/10.3758/bf03193921
https://doi.org/10.1037/a0020671
https://doi.org/10.1049/cce:19960407
https://doi.org/10.1049/cce:19960407
https://doi.org/10.3758/bf03211488
https://doi.org/10.3758/bf03211488
https://doi.org/10.1177/001872089303500408
https://doi.org/10.1177/001872089303500408
https://doi.org/10.1016/0167-2789(88)90081-4
https://doi.org/10.1097/AUD.0b013e3181d99a52
https://doi.org/10.1097/AUD.0b013e3181d99a52
https://doi.org/10.1006/jpho.1999.0100
https://doi.org/10.1006/jpho.1999.0100
https://doi.org/10.1186/1753-4631-3-8
https://doi.org/10.1186/1753-4631-3-8
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-13-00794 July 31, 2019 Time: 18:27 # 13

Burns and Rajan Audition Maps to Objective Features

Kirmse, U., Schröger, E., and Jacobsen, T. (2012). Familiarity of environmental
sounds is used to establish auditory rules. Neuroreport 23, 320–324. doi: 10.
1097/WNR.0b013e328351760b

Kumar, P., and Ohana, O. (2008). Inter- and intralaminar subcircuits of excitatory
and inhibitory neurons in layer 6a of the rat barrel cortex. J. Neurophysiol. 100,
1909–1922. doi: 10.1152/jn.90684.2008

Kumar, S., Forster, H. M., Bailey, P., and Griffiths, T. (2008). Mapping
unpleasantness of sounds to their auditory representation. J. Acoust. Soc. Am.
124, 3810–3817. doi: 10.1121/1.3006380

Kumar, S., Von Kriegstein, K., Friston, K., and Griffiths, T. D. (2012). Features
versus Feelings: dissociable representations of the acoustic features and valence
of aversive sounds. J. Neurosci. 32, 14184–14192. doi: 10.1523/JNEUROSCI.
1759-12.2012

Lakatos, S., McAdams, S., and Caussé, R. (1997). The representation of auditory
source characteristics: simple geometric form. Percept. Psychophys. 59, 1180–
1190. doi: 10.3758/bf03214206

Lake, D. E., Richman, J. S., Griffin, M. P., and Moorman, J. R. (2002). Sample
entropy analysis of neonatal heart rate variability. Am. J. Physiol. Regul. Integr.
Comp. Physiol. 283, R789–R797.

Leaver, A. M., and Rauschecker, J. P. (2010). Cortical representation of natural
complex sounds: effects of acoustic features and auditory object category.
J. Neurosci. 30, 7604–7612. doi: 10.1523/JNEUROSCI.0296-10.2010

Lewis, J. W., Brefczynski, J. A., Phinney, R. E., Janik, J. J., and DeYoe, E. A. (2005).
Distinct cortical pathways for processing tool versus animal sounds. J. Neurosci.
25, 5148–5158. doi: 10.1523/jneurosci.0419-05.2005

Lewis, J. W., Talkington, W. J., Tallaksen, K. C., and Frum, C. A. (2012). Auditory
object salience: human cortical processing of non-biological action sounds and
their acoustic signal attributes. Front. Syst. Neurosci. 6:27. doi: 10.3389/fnsys.
2012.00027

Li, X., Logan, R. J., and Pastore, R. E. (1991). Perception of acoustic source
characteristics: walking sounds. J. Acoust. Soc. Am. 90, 3036–3049. doi: 10.1121/
1.401778

Likert, R. (1932). A technique for the measurement of attitudes. Arch. Psych. 140,
1–55.

Loebach, J. L., and Pisoni, D. B. (2008). Perceptual learning of spectrally degraded
speech and environmental sounds. J. Acoust. Soc. Am. 123, 1126–1139. doi:
10.1121/1.2823453

Maher, R. C., and Studniarz, J. (2012). “Automatic Search and Classification of
Sound Sources in Long-Term Surveillance Recordings,” in Audio Eng Soc 46th
Int Conf, (Bozeman, MT,), 14–17.

Marcell, M., Borella, D., Greene, M., Kerr, E., and Rogers, S. (2000). Confrontation
naming of environmental sounds. J. Clin. Exp. Neuropsychol. 22, 830–864.
doi: 10.1076/jcen.22.6.830.949

Marcell, M., Malatanos, M., Leahy, C., and Comeaux, C. (2007). Identifying,
rating, and remembering environmental sound events. Behav Res Methods 39,
561–569. doi: 10.3758/bf03193026

McDermott, J., and Hauser, M. (2004). Are consonant intervals music to their
ears? Spontaneous acoustic preferences in a nonhuman primate. Cognition 94,
B11–B21.

Miller, C. T., Dibble, E., and Hauser, M. D. (2001a). Amodal completion of acoustic
signals by a nonhuman primate. Nat. Neurosci. 4, 783–784. doi: 10.1038/90481

Miller, C. T., Miller, J., Gil-Da-Costa, R., and Hauser, M. D. (2001b). Selective
phonotaxis by cotton-top tamarins (Saguinus oedipus). Behaviour 138, 811–826.
doi: 10.1163/156853901753172665

Momtahan, K. L. (1991). Mapping of psychoacoustic parameters to the perceived
urgency of auditory warning signals. Ottawa: National Library of Canad.

Newport, E. L., Hauser, M. D., Spaepen, G., and Aslin, R. N. (2004). Learning at a
distance II. Statistical learning of non-adjacent dependencies in a non-human
primate. Cogn. Psychol. 49, 85–117. doi: 10.1016/j.cogpsych.2003.12.002

Nimmons, G. L., Kang, R. S., Drennan, W. R., Longnion, J., Ruffin, C., Worman,
T., et al. (2008). Clinical assessment of music perception in cochlear implant
listeners. Otol. Neurotol. 29, 149–155. doi: 10.1097/mao.0b013e31812f7244

Osorio, D., and Vorobyev, M. (1996). Colour vision as an adaptation to frugivory
in primates. Proc. R. Soc. B Biol. Sci. 263, 593–599. doi: 10.1098/rspb.1996.0089

Penrose, R., and Clark, J. (1994). Roger penrose frs. rouse ball professor of
mathematics at oxford university, talks to jane clark about his forthcoming
book “shadows of the mind: a search for the missing science of consciousness.
J. Conscious. Stud. 1, 17–24.

Philips, B., Vinck, B., De Vel, E., Maes, L., D’Haenens, W., Keppler, H., et al. (2012).
Characteristics and determinants of music appreciation in adult CI users. Eur.
Arch. Oto Rhino Laryngol. 269, 813–821. doi: 10.1007/s00405-011-1718-4

Pollack, I., and Ficks, L. (1954). Information of elementary multidimensional
auditory displays. J. Acoust. Soc. Am. 26, 155–158. doi: 10.1121/1.1907300

Probst, R., Grevers, G., and Iro, H. (2017). Basic Otorhinolaryngology: A Step-by-
Step Learning Guide, 2nd Edn. Stuttgart: Thieme.

Radhakrishnan, N., and Gangadhar, B. N. (1998). Estimating regularity in epileptic
seizure time-series data: a complexity-measure approach. IEEE Eng. Med. Biol.
Mag. 17, 89–94. doi: 10.1109/51.677174

Raghavendra, B. S., and Dutt, D. N. (2010). Computing fractal dimension of signals
using multiresolution box-counting method. Int. J. Inf. Math. Sci. 6, 50–65.

Rajan, R., and Cainer, K. E. (2008). Ageing without hearing loss or cognitive
impairment causes a decrease in speech intelligibility only in informational
maskers. Neuroscience 154, 784–795. doi: 10.1016/j.neuroscience.2008.03.067

Ramus, F., Hauser, M. D., Miller, C., Morris, D., and Mehler, J. (2000). Language
discrimination by human newborns and by cotton-top tamarin monkeys.
Science 288, 349–351. doi: 10.1126/science.288.5464.349

Reddy, R. K., Ramachandra, V., Kumar, N., and Singh, N. C. (2009). Categorization
of environmental sounds. Biol. Cybern. 100, 299–306. doi: 10.1007/s00422-009-
0299-4

Reuter, C., and Oehler, M. (2011). Psychoacoustics of chalkboard squeaking.
J. Acoust. Soc. Am. 130:3.

Richman, J. S., and Moorman, J. R. (2000). Physiological time-series analysis using
approximate entropy and sample entropy. Am. J. Physiol. Circ. Physiol. 278,
H2039–H2049.

Riedl, M., Müller, A., and Wessel, N. (2013). Practical considerations of
permutation entropy: a tutorial review. Eur. Phys. J. Spec. Top. 222, 249–262.
doi: 10.1140/epjst/e2013-01862-7

Rúttiger, L., Braun, D. I., Gegenfurtner, K. R., Petersen, D., Schonle, P., and Sharpe,
L. T. (1999). Selective color constancy deficits after circumscribed unilateral
brain lesions. J. Neurosci. 19, 3094–3106. doi: 10.1523/JNEUROSCI.19-08-
03094.1999

Shafiro, V., and Gygi, B. (2004). How to select stimuli for environmental sound
research and where to find them. Behav. Res. Methods Instrum. Comput. 36,
590–598. doi: 10.3758/bf03206539

Shafiro, V., Sheft, S., Kuvadia, S., and Gygi, B. (2015). Environmental sound
training in cochlear implant users. J. Speech Lang. Hear Res. 58, 509–519.
doi: 10.1044/2015_JSLHR-H-14-0312

Shamma, S. (2003). Encoding sound timbre in the auditory system. IETE J. Res. 49,
145–156. doi: 10.1016/j.heares.2008.04.013

Shao, X., Xu, C., and Kankanhalli, M. S. (2003). “Applying neural network on the
content-based audio classification,” in ICICS-PCM 2003 - Proc 2003 Jt Conf 4th
Int Conf Information, Commun Signal Process 4th Pacific-Rim Conf Multimed,
Vol. 3, (Singapore: IEEE), 1821–1825.

Shibayama, H. (2006). The complexity of environmental sound as a function of
seasonal variation. J. Acoust. Soc. Am. 120, 3066–3071.

Shimai, S. (1993). Pleasantness-unpleasantness of environmental sounds and
gender difference in evaluation. Percept. Mot. Skills 76, 635–640. doi: 10.2466/
pms.1993.76.2.635

Singh, N. C. (2011). Measuring the ‘complexity’ of sound. Pramana 77, 811–816.
doi: 10.1007/s12043-011-0188-y

Solomon, S. G., and Lennie, P. (2007). The machinery of colour vision. Nat. Rev.
Neurosci. 8, 276–286. doi: 10.1038/nrn2094
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