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BACKGROUND: The objective of this study was to investigate the effects of interleukin-6 (IL-6) overexpression in androgen-dependent
prostate cancer LNCaP cells on their phenotype under an androgen-deprived condition.
METHODS: We established IL-6-overexpressing LNCaP (LNCaP/IL-6) by introducing the expression vector containing IL-6 cDNA.
Changes in the phenotype in LNCaP/IL-6 were compared with that in LNCaP transfected with control vector alone (LNCaP/Co).
RESULTS: In vitro, the growth of LNCaP/IL-6 was significantly inferior to that of LNCaP/Co under an androgen-deprived condition.
Similarly, LNCaP/IL-6 tumour in nude mice rapidly regressed after castration; however, LNCaP/Co tumour growth was transiently
inhibited after castration and then continuously accelerated. After androgen withdrawal, expression levels of phosphorylated p44/42
mitogen-activated protein kinase (MAPK) and Akt in LNCaP/IL-6 were markedly upregulated compared with those in LNCaP/Co;
however, additional treatment with specific inhibitor of the MAPK or Akt signalling pathway significantly inhibited the growth of
LNCaP/IL-6 compared with that of LNCaP/Co. Furthermore, gene microarray analyses showed that androgen deprivation resulted in
differential expression of genes involved in growth, apoptotsis and tumorigenesis between LNCaP/Co and LNCaP/IL-6.
CONCLUSION: Excessive secretion of IL-6 by LNCaP cells in an autocrine manner may have a suppressive function in their growth and
acquisition of androgen-independent phenotype under an androgen-deprived condition.
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The prognosis of patients with organ-confined prostate cancer has
been remarkably improved with technical advances in surgical as
well as radiological treatments; however, androgen withdrawal
therapy remains the only effective form of systemic therapy for
men with advanced prostate cancer. Initially, 480% of such
patients respond favourably to this therapy; however, progression
to the lethal and untreatable stage of androgen independence
ultimately occurs within a few years in the majority of these
patients (Rosenberg and Small, 2003). Recently completed phase
III trials first demonstrated a survival benefit of docetaxel-based
combined regimen in patients with hormone-refractory disease,
but these improved effects were not substantial (Petrylak et al,
2004; Tannock et al, 2004). Collectively, these findings suggest that
androgen-independent (AI) progression remains the major
obstacle to effective control and cure of advanced disease,
emphasising the need for a novel therapeutic strategy that targets
the molecular mechanism mediating emergence of the AI
phenotype.

Despite intensive efforts in the field of prostate cancer research,
the precise molecular mechanism of progression to androgen
independence has not been fully elucidated; however, several
hypotheses explaining the complex process during AI progression
have been reported (Arnold and Isaacs, 2002; So et al, 2005; Kasper
and Cookson, 2006). One potentially important mechanism is the
maintenance of androgen receptor (AR) signalling in hormone-
refractory prostate cancer by crosstalk between AR and nonster-
oidal molecules, including cytokines and growth factors (Culig
et al, 1994; Craft et al, 1999; Culig, 2004; Wang et al, 2008). Of
these, interleukin-6 (IL-6), a pleiotropic cytokine involved in the
regulation of hematopoiesis, immune response, inflammation,
bone metabolism and neural development (Kishimoto et al, 1992),
has been regarded as one of the most important mediators during
AI progression of prostate cancer through the ligand-independent
activation of AR (Okamoto et al, 1997; Hobisch et al, 1998; Lou
et al, 2000; Lin et al, 2001; Ueda et al, 2002a, b; Lee et al, 2003).

The biological activities of IL-6 are mediated by the IL-6
receptor; that is, the binding of IL-6 to its receptor results in the
activation of intracellular signalling, including mitogen-activated
protein kinase (MAPK), phosphoinositol 30-kinase (PI3K)/Akt and
Janus-activated kinase (JAK)/signal transducers and activation of
transcription (STAT) pathways (Kishimoto et al, 1992; Corcoran
and Costello, 2003). In recent studies, it was also demonstrated
that modulations of three major downstream signalling pathways,
MAPK, Akt and STAT3, are involved in AI transactivation of AR
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by IL-6 (Yang et al, 2003). However, the reported actions of IL-6 in
conferring malignant phenotype to prostate cancer cells remain
controversial, with some studies showing positive findings
(Okamoto et al, 1997; Hobisch et al, 1998; Lou et al, 2000; Lin
et al, 2001; Ueda et al, 2002a, b; Lee et al, 2003), and others
showing negative findings (Mori et al, 1999; Deeble et al, 2001;
Hobisch et al, 2001; Jia et al, 2004; Lee et al, 2007). It also remains
controversial which signal transduction pathway is most dom-
inantly associated with the transactivation of AR induced by IL-6
(Chen et al, 2000; Chung et al, 2000; Corcoran and Costello, 2003;
Yang et al, 2003). For example, Chen et al (2000) reported that
inhibition of STAT3 rather than MAPK results in inhibition of AR-
mediated gene activation in response to IL-6, whereas Yang et al
(2003) showed that IL-6 can enhance AR transactivation through
both the STAT3 and MAPK pathways, but not the PI3K-Akt
pathway. Furthermore, few studies have investigated the crosstalk
between AR and IL-6 secreted in an autocrine manner in prostate
cancer cells (Lee et al, 2003, 2004).

In this study, therefore, we evaluated the effects of IL-6
overexpression in human androgen-dependent (AD) prostate
cancer LNCaP cells on changes in their phenotype before and
after androgen withdrawal to assess the functional role of IL-6
secreted in an autocrine manner as a ligand-independent activator
of AR.

MATERIALS AND METHODS

Tumour cell lines

LNCaP and PC3, derived from human prostate cancer, were
purchased from the American Type Culture Collection (Rockville,
MD, USA). Cells were maintained in RPMI (Life Technologies,
Gaithersburg, MD, USA) supplemented with 10% heated inacti-
vated fetal bovine serum. To investigate the androgen deprivation
effect, steroid hormone-depleted charcoal-stripped medium (CSM)
containing 10% CS serum was prepared as described earlier (Saeed
et al, 1997).

Expression plasmid and transfection to tumour cells

The cDNA fragment encoding human IL-6 was directly cloned into
the expression vector pcDNA3.1 (Invitrogen, Carlsbad, CA, USA)
according to the manufacturer’s instructions. The pcDNA3.1/IL-6
construction was transfected into LNCaP cells by the liposome-
mediated gene transfer method (Miyake et al, 2000a). Briefly,
2� 105 LNCaP cells were plated in a 6-cm dish, 1 day before
transfection. A measure of 5 mg of purified pcDNA3.1/IL-6 or
pcDNA3.1 (as a control) was added to LNCaP cells after
preincubation for 30 min with 5 mg of lipofectamine reagent and
3 ml of serum-free OPTI-MEM (Life Technologies). Drug selection
in 300mg ml�1 Geneticin (Life Technologies) was begun 3 days
after transfection. Three weeks after the drug selection, colonies
were harvested with cloning cylinders and expanded to cell lines.

Enzyme-linked immunosorbent assay

The concentrations of IL-6 in overnight culture supernatants of
5� 106 LNCaP sublines were measured using a quantitative
sandwich enzyme-linked immunosorbent assay (ELISA) kit for
human IL-6 according to the manufacturer’s instructions (R&D
Systems, Minneapolis, MN, USA). Similarly, a sandwich ELISA kit
for human prostate-specific antigen (PSA) (Zymed Laboratories,
South San Francisco, CA, USA) was used to determine the
concentrations of PSA in overnight culture supernatants of 5� 106

LNCaP sublines and those in sera from nude mice bearing the
subcutaneous tumours of LNCaP sublines.

Cell proliferation assay

To compare the in vitro proliferation of LNCaP sublines, 5� 103

cells of each cell line were seeded in each well of 12-well plates, and
the number of cells in each cell line was counted daily by triplicate.
In addition, the effect of androgen deprivation on the proliferation
of LNCaP sublines with and without additional treatment with IL-6
(Sigma-Aldrich, Tokyo, Japan), UO126 (SA Bioscience, Frederick,
MD, USA) or LY294002 (SA Bioscience) was also examined; that is,
following the culture of LNCaP sublines in the standard medium
for 3 days, the medium was replaced with CSM with and without
supplementary IL-6, UO126 or LY294002, and the number of cells
was counted.

Western blot analysis

Western analysis was performed as described earlier (Miyake et al,
2000a). Briefly, samples containing equal amounts of protein
(25mg) from lysates of the LNCaP sublines cultured in either
standard medium or CSM were electrophoresed on an SDS–
polyacrylamide gel and transferred to a nitrocellulose filter. The
filters were blocked in PBS containing 5% nonfat milk powder at
41C overnight and then incubated for 1 h with antibodies against
IL-6 receptor (R&D Systems), AR, b-actin (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA) and total and phosphorylated STAT3,
p44/42 MAPK and Akt (Cell Signaling Technology, Danvers, MA,
USA). The filters were then incubated for 30 min with horseradish
peroxidase-conjugated secondary antibodies (Amersham Pharma-
cia Biotech, Arlington Heights, IL, USA), and specific proteins
were detected using an enhanced chemiluminescence western
blotting analysis system (Amersham Pharmacia Biotech).

Gene microarray

Gene microarrays of 34 580 (70-mer) human oligos representing
24 650 genes and 37 123 gene transcripts printed on aminosilane-
coated microarray slides were supplied by the microarray facility
of the Prostate Centre at Vancouver General Hospital (Vancouver,
Canada), and microarray analysis was performed as described
earlier (Snoek et al, 2009). Briefly, microarrays were hybridized
with 10mg of total RNA from independently prepared triplicate
samples of LNCaP sublines before and after androgen deprivation,
labelled with CY5 against 10 mg of Universal Human Reference
RNA labelled with CY3 (Stratagene, La Jolla, CA, USA), and
assessed using the 3DNA Array 350 Expression Array Detection kit
according to the manufacturer’s instructions (Genisphere, Hat-
field, PA, USA). After overnight hybridization and washing, arrays
were scanned on a Scan Array Express Microarray Scanner
(Perkin-Elmer, Waltham, MA, USA), and signal quality and
quantity were determined using the ImaGene 8.0 software
(BioDIscovery, El Segundo, CA, USA). Comparative analysis of
the gene expression profiles in each cell line was conducted to
identify genes that are differentially regulated by overexpression of
IL-6. Genes were considered to be significantly different if the
mean expression level in the IL-6-overexpressing cells was at least
2.0-fold greater or 2.0-fold less than that seen in the control cells.

Assessment of in vivo tumour growth

Male athymic nude mice (BALB/c-nu/nu males, 6 –8 weeks old)
were purchased from Clea Japan (Tokyo, Japan) and housed in a
controlled environment at 221C on a 12-h light, 12-h dark cycle.
Animals were maintained in accordance with the National
Institutes of Health Guide for the Care and Use of Laboratory
Animals. Each experimental group consisted of 20 mice. The
tumour cells of each cell line were trypsinized, washed twice with
PBS, and 5� 106 cells were subcutaneously injected with 100 ml of
Matrigel (Becton Dickinson, Franklin Lakes, NJ, USA) into right

Effects of interleukin-6 secretion on prostate cancer

T Terakawa et al

1732

British Journal of Cancer (2009) 101(10), 1731 – 1739 & 2009 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
stic

s



flank of mice. The subcutaneous tumour growth was measured
once per week using calipers as described earlier (Miyake et al,
1996); that is, the longest surface length (a) and width
perpendicular to this length (b) were measured, and tumour size
was reported as a� b. Furthermore, when the tumour size was
480 mm2, 10 of the 20 mice were castrated, and the growth of
subcutaneous tumour was continuously measured to estimate the
effect of androgen withdrawal on in vivo growth of the LNCaP
subline.

Statistical analysis

Differences between the two groups were compared using the
unpaired t-test. All statistical calculations were performed using
Statview 5.0 software (Abacus Concepts, Inc., Berkley, CA, USA),
and P-values o0.05 were considered significant.

RESULTS

IL-6 production in LNCaP sublines

LNCaP was transfected with pcDNA3.1/IL-6 or pcDNA3.1 alone as
a control. After drug selection, several Geneticin-resistant stable
transfectants were randomly isolated. The culture supernatants of
LNCaP sublines and PC3 were analysed by sandwich ELISA to
measure the IL-6 concentrations. All of the IL-6-transfected LNCaP
(LNCaP/IL-6#1 to LNCaP/IL-6#4) secreted abundant immuno-
reactive IL-6 protein in amounts equal to those of PC3 originally
expressing the IL-6 gene (Okamoto et al, 1997); however, limited
IL-6 was detected in the supernatants of the parental LNCaP
(LNCaP/P) and the cell line transfected with control vector-only
transfected cell line (LNCaP/Co) (Figure 1). Furthermore, there
was no significant difference in the expression level of IL-6
receptor among these LNCaP sublines (data not shown).

In the following in vitro experiments, almost identical findings
were obtained from IL-6-transfected cell lines (LNCaP/IL-6#1 to
LNCaP/IL-6#4) or their control cell lines (LNCaP/P and LNCaP/
Co); therefore, we subsequently presented the data for LNCaP/IL-
6#1 and LNCaP/Co only.

In vitro growth of LNCaP sublines

To examine the effects of IL-6 overexpression on in vitro growth of
LNCaP under conditions with and without androgen, the growth of

LNCaP sublines cultured in the standard medium and that in CSM
were assessed. As shown in Figure 2, there was no significant
difference in the growth of LNCaP sublines cultured in the
standard medium; however, after androgen deprivation by
replacing the standard medium with CSM, the growth of
LNCaP/IL-6#1 was significantly inhibited compared with that of
LNCaP/Co.

In vivo growth of LNCaP sublines

To examine the in vivo effect of IL-6 overexpression on tumour
growth, 5� 106 cells of each cell line were injected subcutaneously
into 20 nude mice; then 10 of the 20 mice were castrated when the
tumour size reached 80 mm2 or greater. In intact mice without
castration, the growth of LNCaP/IL-6#1 tumour was significantly
faster than that of LNCaP/Co tumour (Figure 2C). However,
LNCaP/IL-6#1 tumour in nude mice rapidly regressed after
castration, whereas LNCaP/Co tumour growth was transiently
inhibited after castration and then continuously accelerated
without regulation of androgen (Figure 2D).

PSA production by LNCaP sublines

As shown in Figure 3A, when maintained in standard medium,
PSA concentration in the culture supernatant of LNCaP/IL-6#1 was
significantly lower than that of LNCaP/Co; however, under the
androgen-deprived condition, PSA concentrations of both LNCaP/
Co and LNCaP/IL-6#1 drastically decreased, and there was no
significant difference in PSA concentration between these two cell
lines. Inconsistent with the in vitro finding, serum concentration of
PSA, which was adjusted based on tumour volume, in intact mice
bearing LNCaP/IL-6#1 tumour before castration was significantly
lower than that in mice bearing LNCaP/Co tumour. Two months
after castration, PSA concentration in mice bearing LNCaP/IL-6#1
tumour was significantly reduced compared with that before
castration, whereas PSA concentration in mice bearing LNCaP/Co
tumour acquiring the AI phenotype became greater than that
before castration (Figure 3B).

Effects of exogenous IL-6 treatment on signal transduction
pathways in LNCaP sublines

To evaluate whether treatment with exogenous IL-6 differentially
influences its major downstream signalling pathways, western blot
analyses of both phosphorylated and total MAPK, Akt and STAT3
expression in LNCaP sublines were performed. Despite the lack of
a significant difference in the expression levels of phosphorylated
Akt between LNCaP/Co and LNCaP/IL-6#1 (data not shown),
exogenous IL-6 rapidly activated MAPK and STAT3 pathways in
LNCaP/Co, but not in LNCaP/IL-6#1; that is, phosphorylated p44/
42 MAPK and STAT3, which were not induced in LNCaP/IL-6#1,
became detectable in LNCaP/Co 5 and 15 min after treatment with
IL-6, respectively (Figure 4).

Effects of androgen withdrawal on signal transduction
pathways in LNCaP sublines

To determine whether androgen withdrawal modulates the
activation patterns of signal transduction pathways through AR,
changes in expression of both phosphorylated and total MAPK,
Akt and STAT3 in LNCaP sublines were evaluated. There were no
significant differences in the expression levels of both phosphory-
lated and total STAT3 between LNCaP/Co and LNCaP/IL-6#1
under an androgen-deprived condition (data not shown). As
shown in Figure 5A, however, androgen withdrawal induced
remarkable activation of MAPK and Akt pathways in LNCaP/IL-
6#1 compared with that in LNCaP/Co; that is, expression levels of
both phosphorylated Akt and p44/42 MAPK in LNCaP/IL-6#1 were
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Figure 1 Immunoreactive interleukin-6 (IL-6) in culture supernatants of
PC3 and LNCaP sublines (LNCaP/P, parental cell line of LNCaP; LNCaP/
Co, control vector-only transfected cell line; LNCaP/IL-6#1, LNCaP/IL-
6#2, LNCaP/IL-6#3 and LNCaP/IL-6#4, IL-6-transfected cell lines).
Enzyme-linked immunosorbent assay was performed to analyse the
concentrations of IL-6 protein in culture supernatant from each cell line.
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significantly upregulated 4 days after androgen withdrawal,
whereas there was no upregulation of both phosphorylated Akt
and p44/42 MAPK in LNCaP/Co until 6 days after the initiation of
culture under an androgen-deprived condition.

Consistent with the evaluation of changes in the downstream
signalling pathways of IL-6, we investigated the effect of additional
treatment with UO126 or LY294002, a selective inhibitor of
mitogen-activated protein kinase kinase (MEK) or PI3K on the
growth of LNCaP sublines cultured in the androgen-deprived
condition. Treatment with UO126 or LY294002 inhibited the
growth of LNCaP/Co and LNCaP/IL-6#1; however, growth
inhibitory effects of both UO126 and LY294002 on LNCaP/IL-6#1
were significantly greater than those on LNCaP/Co (Figure 5B).

Changes in the expression of AR in LNCaP sublines were then
analysed. As shown in Figure 5C, expression levels of AR in both
LNCaP/Co and LNCaP/IL-6#1 were markedly inhibited 4 days after
androgen withdrawal; however, AR expression in LNCaP/Co was
restored to the basal level 6 days after androgen withdrawal,

despite the continuous suppression of AR expression in LNCaP/IL-
6 until 6 days after the initiation of culture without androgen.

Gene microarray analysis in LNCaP sublines

To further address the molecular mechanism involved in the
enhanced sensitivity of androgen withdrawal in LNCaP/IL-6#1, the
influence of IL-6 overexpression on global gene expression was
assessed by gene microarray analysis. We analysed the gene
expression profiles in LNCaP/Co and LNCaP/IL-6#1 cultured in
both the standard medium and CSM. Excluding genes differentially
expressed between LNCaP/Co and LNCaP/IL-6#1 cultured in the
standard medium, a total of 223 genes were found to be
differentially expressed in LNCaP/IL-6#1 at least 2.0-fold greater
or 2.0-fold less than those of LNCaP/Co under an androgen-
deprived condition. On the basis of the biological relevance and
magnitude of changes, 40 of these 223 genes were selected, and
presented in Table 1. For example, MAP3K7 was up-regulated in
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Effects of interleukin-6 secretion on prostate cancer

T Terakawa et al

1734

British Journal of Cancer (2009) 101(10), 1731 – 1739 & 2009 Cancer Research UK

M
o

le
c
u

la
r

D
ia

g
n

o
stic

s



LNCaP/IL-6#1 compared with that in LNCaP/Co, which is
consistent with the findings suggesting the activation of MAPK
pathway in LNCaP/IL-6#1, and this might be due to an adaptive
change to resist to proapoptotic stimuli induced by androgen
ablation. In addition, expression levels of some genes associated
with the progression of prostate cancer, such as relaxin, vascular
endothelial growth factor (VEGF), vimentin and bone morphoge-
netic protein-6 (BMP-6) (Soker et al, 2001; Dai et al, 2005;
Thompson et al, 2006; Feng et al, 2007; Wei et al, 2008), were
significantly downregulated in LNCaP/IL-6#1 compared with
LNCaP/Co. Overall, there are several genes listed in Table 1, which
are known to have functions mediating cell growth, apoptotsis, and
tumorigenesis, showing expression profiles that are reasonable for
theoretically elucidating the molecular mechanism mediating
enhanced sensitivity to androgen withdrawal by overexpression
of IL-6.

DISCUSSION

Since reports showing elevated levels of circulating IL-6 in men
with advanced prostate cancer (Twillie et al, 1995; Drachenberg
et al, 1999), a number of studies have been performed to clarify

how IL-6 signalling is involved in the progression of prostate
cancer. Consequently, it has been suggested that crosstalk between
AR and IL-6 may have an important function in the activation of
AR signalling in a ligand-independent manner (Okamoto et al,
1997; Hobisch et al, 1998; Lou et al, 2000; Lin et al, 2001; Ueda
et al, 2002a, b; Lee et al, 2003). To date, however, it remains
controversial whether IL-6 confers a malignant phenotype on
prostate cancer cells, particularly under an androgen-deprived
condition (Okamoto et al, 1997; Hobisch et al, 1998, 2001; Mori
et al, 1999; Lou et al, 2000; Deeble et al, 2001; Lin et al, 2001; Ueda
et al, 2002a, b; Lee et al, 2003, 2007; Jia et al, 2004). Accordingly, in
this study, we established the IL-6-overexpressing LNCaP cells
(i.e., LNCaP/IL-6#1), and assessed the effects of IL-6 secreted
through an autocrine manner on their phenotype before and after
androgen withdrawal.

The growth patterns of LNCaP sublines both in vitro and in vivo
were initially compared. Before androgen ablation, despite the lack
of a significant difference in the in vitro growth between LNCaP
sublines, LNCaP/IL-6#1 tumour grew significantly faster than
LNCaP/Co tumour. Under an androgen-deprived condition,
however, the in vitro growth of LNCaP/IL-6#1 was significantly
suppressed compared with that of LNCaP/Co. This enhanced
sensitivity of LNCaP/IL-6#1 to androgen withdrawal was more
remarkable in vivo; that is, after castration, LNCaP/IL-6#1 tumour
rapidly regressed and completely disappeared. According to
previously reported studies, the effects of IL-6 on the growth of
LNCaP cells seem to be puzzling with some groups showing growth
stimulation, whereas others showing growth inhibition (Spiotto
and Chung, 2000; Lee et al, 2003, 2007; Jia et al, 2004). For
example, Lee et al (2007) reported the bifunctional action of IL-6
according to the manner of its secretion; that is, IL-6 acts as a
growth inhibitor for LNCaP cells by a paracrine mechanism,
whereas endogenously produced IL-6 stimulates LNCaP cell
growth by an autocrine mechanism. As most of the previously
observed effects of IL-6 on the growth of prostate cancer cells were
examined in vitro, this study is the first to demonstrate the
following evidence that overexpression of IL-6 in LNCaP cells
enhanced their sensitivity to androgen withdrawal both in vitro
and in vivo, resulting in marked growth inhibition immediately
after androgen ablation. Furthermore, it would be of interest to
investigate the effects of an antiandrogen, such as bicalutamide, on
the growth of LNCaP sublines.
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serum-free medium was exogenously treated with IL-6 (50 ng ml�1), and
proteins were extracted from each cell line several times after treatment
with IL-6. Both phosphorylated and total p44/42 mitogen-activated protein
kinase (MAPK) and signal transducers and activation of transcription 3
(STAT3) protein levels were analysed by western blotting.
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PSA is a reliable tumour marker showing a proportional change
in relation to the degree of prostate cancer progression (Lilja et al,
2008). In this study, PSA concentrations in culture supernatants
and sera from mice generally reflected the proliferative status of
LNCaP sublines cultured in vitro and that subcutaneously
implanted, respectively, under both conditions with and without
androgen. Interestingly, the amount of baseline PSA production by
LNCaP/IL-6#1 was significantly smaller than that by LNCaP/Co

both in vitro and in vivo, when androgen was supplemented;
however, several earlier studies have shown that treatment of
LNCaP cells with IL-6 enhances their AR-mediated PSA gene
expression through an increase in PSA reporter activity (Lin et al,
2001; Ueda et al, 2002a; Lee et al, 2003). Although the discrepancy
described above cannot be clearly explained, it would be
speculated that overexpression of IL-6 by LNCaP cells itself rather
than exogenous administration of IL-6 may render them
undifferentiated, resulting in a lesser amount of PSA production
than that in LNCaP/Co cells.

Considering the unique proliferative potential and PSA produc-
tion of LNCaP/IL-6#1 cells, it would be of interest to investigate
whether LNCaP/IL-6#1 exhibits a different response to exogenous
IL-6 compared with that of LNCaP/Co. As reported earlier (Ueda
et al, 2002a; Jia et al, 2004), exogenous IL-6 induced rapid
activation of MAPK and STAT3 pathways in LNCaP/Co cells,
which are unable to secrete endogenous IL-6. In addition, rapid
activation of MAPK pathway by IL-6 was also observed in a subline
of LNCaP derived by chronic treatment with IL-6 (Steiner et al,
2003). However, treatment of LNCaP/IL-6#1 with exogenous IL-6,
which was a markedly greater amount than that produced by
LNCaP/IL-6#1, failed to activate the MAPK and STAT3 pathways.
Collectively, these findings strongly suggest that IL-6 may exert
various effects on changes in the phenotype of prostate cancer cells
through different molecular mechanisms according to the manner
of secretion.

Another point of interest is the mechanism whereby over-
expression of IL-6 enhances sensitivity of LNCaP cells to androgen
withdrawal. To address this point, it was investigated whether the
downstream signalling pathways of IL-6 are differentially regulated
by androgen between LNCaP sublines. Although the growth of
LNCaP/IL-6#1 was significantly inhibited compared with that of
LNCaP/Co under an androgen-deprived condition, Akt and MAPK
pathways in LNCaP/IL-6#1, which are generally regarded as a
positive regulator of prostate cancer cell growth through the
transactivation of AR (Ueda et al, 2002b; Corcoran and Costello,
2003; Lee et al, 2003), appeared to be markedly activated following
androgen withdrawal compared with those in LNCaP/Co. How-
ever, stress-induced increase in several antiapoptotic genes, such
as bcl-2, clusterin, insulin-like growth factor binding protein-2
(IGFBP-2), IGFBP-5 and heat-shock protein 27, have been shown
to have important functions in the AI progression of prostate
cancer after castration (Gleave et al, 1999; Miyake et al, 2000b, c;
Kiyama et al, 2003; Rocchi et al, 2004). Therefore, these findings
suggest that activation of Akt and MAPK pathways after a
proapoptotic trigger in LNCaP/IL-6#1 represents an adaptive
mechanism mediating cell survival. In addition, this hypothesis
was supported by the finding that additional treatment with UO126
or LY294002, a selective inhibitor of MEK or PI3K, respectively,
after androgen deprivation resulted in significant growth inhibi-
tion of LNCaP/IL-6#1 compared with that of LNCaP/Co. Further-
more, the restoration of AR expression after androgen withdrawal
in LNCaP/IL-6#1 was shown to be significantly delayed compared
with that in LNCaP/Co; however, the unique proliferative potential
and PSA production in LNCaP/IL-6#1 could not be entirely
explained by the changes in AR expression in this cell line.

We further investigated the molecular mechanism underlying
the enhancement of androgen withdrawal-induced apoptotic cell
death of LNCaP/IL-6#1 using gene microarray analysis. Gene
expression profiling showed that 223 genes were differentially
expressed between LNCaP/Co and LNCaP/IL-6#1 under androgen-
deprived condition, and 40 of these 223 were listed considering the
biological relevance and magnitude of changes. These outcomes
were not confirmed by an alternative method; however, expression
profiles in some genes in LNCaP/Co before and after androgen
withdrawal were consistent with those in parental LNCaP reported
in earlier studies (Stewart et al, 2001; Thompson et al, 2006),
suggesting the reliability of our gene microarray analysis. Although
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Figure 5 (A) Effects of androgen withdrawal on the signal transduction
pathways in LNCaP sublines. Proteins were extracted from each cell line
cultured in the standard medium for 3 days and that in steroid hormone-
depleted charcoal-stripped medium for 4 and 6 days. Both phosphorylated
and total p44/42 mitogen-activated protein kinase (MAPK) and Akt protein
levels were analysed by western blotting. (B) Effect of additional treatment
with UO126 or LY294002, a selective inhibitor of mitogen-activated
protein kinase kinase or phosphoinositol 30-kinase on the growth of LNCaP
sublines cultured in the androgen-deprived condition. Each cell line cultured
in steroid hormone-depleted charcoal-stripped medium for 24 h was
treated with UO126 (5mM) or LY294002 (5mM). After incubation with
either agent for 96 h, cell numbers in each cell line were counted in
triplicate. Bars, s.d. * differs from the growth inhibition by UO126 or
LY294002 in LNCaP/Co (Po0.01). (C) Effects of androgen withdrawal on
the expression of androgen receptor (AR) in LNCaP sublines. Proteins
were extracted from each cell line cultured in the standard medium for 3
days and that in steroid hormone-depleted charcoal-stripped medium for 4
and 6 days. AR and b-actin protein levels were analysed by western
blotting.
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it would be necessary to perform functional analysis to identify
genes having potential functions in the mechanism described
above, several candidate genes could be identified by gene
microarray analysis. For example, androgen withdrawal-induced
marked downregulation of relaxin, VEGF, vimentin and BMP-6,
involved in cancer progression (Soker et al, 2001; Dai et al, 2005;
Thompson et al, 2006; Feng et al, 2007; Wei et al, 2008) as well as
upregulation of cellular retinol binding protein 7 and interferon-g
receptor, negatively regulating cancer progression (Kuppumbatti
et al, 2001; Yang et al, 2008), in LNCaP/IL-6#1. In addition, DnaJ,
acting as a cytoprotective chaperon in response to stress-induced
apoptosis (Cajo et al, 2006), were upregulated in LNCaP/IL-6#1,
which might be an adaptive change as observed in Akt and MAPK
pathways after androgen deprivation.

In conclusion, this is the first study to show enhanced sensitivity
to androgen withdrawal due to overexpression of IL-6 in AD

human prostate cancer LNCaP cells. Furthermore, the present
findings suggest that the difference in response to exogenous IL-6
between LNCaP/Co and LNCaP/IL-6#1 may, at least in part, be
involved in the differential sensitivity to androgen withdrawal
between these two sublines, and that despite the significant
activation of Akt and MAPK pathways in LNCaP/IL-6#1 compared
with that in LNCaP/Co under an androgen-deprived condition, this
might be due to the response to proapototic stimuli representing
an adaptive cell survival mechanism. Although gene microarray
analysis identified several potentially important candidate genes
responsible for the different sensitivities to androgen ablation
between LNCaP/Co and LNCaP/IL-6#1 by globally evaluating
their gene expression profiles, it would be further required to
accumulate the intensive investigation to elucidate the molecular
mechanism underlying changes in the phenotype of LNCaP cells
by overexpression of IL-6.
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